|
import spaces
|
|
import random
|
|
import argparse
|
|
import glob
|
|
import json
|
|
import os
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import onnxruntime as rt
|
|
import tqdm
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
import MIDI
|
|
from midi_synthesizer import MidiSynthesizer
|
|
from midi_tokenizer import MIDITokenizer
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
in_space = os.getenv("SYSTEM") == "spaces"
|
|
|
|
|
|
def softmax(x, axis):
|
|
x_max = np.amax(x, axis=axis, keepdims=True)
|
|
exp_x_shifted = np.exp(x - x_max)
|
|
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
|
|
|
|
|
def sample_top_p_k(probs, p, k, generator=None):
|
|
if generator is None:
|
|
generator = np.random
|
|
probs_idx = np.argsort(-probs, axis=-1)
|
|
probs_sort = np.take_along_axis(probs, probs_idx, -1)
|
|
probs_sum = np.cumsum(probs_sort, axis=-1)
|
|
mask = probs_sum - probs_sort > p
|
|
probs_sort[mask] = 0.0
|
|
mask = np.zeros(probs_sort.shape[-1])
|
|
mask[:k] = 1
|
|
probs_sort = probs_sort * mask
|
|
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
|
|
shape = probs_sort.shape
|
|
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
|
|
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
|
|
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
|
|
next_token = next_token.reshape(*shape[:-1])
|
|
return next_token
|
|
|
|
|
|
def apply_io_binding(model: rt.InferenceSession, inputs, outputs, batch_size, past_len, cur_len):
|
|
io_binding = model.io_binding()
|
|
for input_ in model.get_inputs():
|
|
name = input_.name
|
|
if name.startswith("past_key_values"):
|
|
present_name = name.replace("past_key_values", "present")
|
|
if present_name in outputs:
|
|
v = outputs[present_name]
|
|
else:
|
|
v = rt.OrtValue.ortvalue_from_shape_and_type(
|
|
(batch_size, input_.shape[1], past_len, input_.shape[3]),
|
|
element_type=np.float32,
|
|
device_type=device)
|
|
inputs[name] = v
|
|
else:
|
|
v = inputs[name]
|
|
io_binding.bind_ortvalue_input(name, v)
|
|
|
|
for output in model.get_outputs():
|
|
name = output.name
|
|
if name.startswith("present"):
|
|
v = rt.OrtValue.ortvalue_from_shape_and_type(
|
|
(batch_size, output.shape[1], cur_len, output.shape[3]),
|
|
element_type=np.float32,
|
|
device_type=device)
|
|
outputs[name] = v
|
|
else:
|
|
v = outputs[name]
|
|
io_binding.bind_ortvalue_output(name, v)
|
|
return io_binding
|
|
|
|
def generate(model, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
|
|
tokenizer = model[2]
|
|
if disable_channels is not None:
|
|
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
|
else:
|
|
disable_channels = []
|
|
if generator is None:
|
|
generator = np.random
|
|
max_token_seq = tokenizer.max_token_seq
|
|
if prompt is None:
|
|
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
|
|
input_tensor[0, 0] = tokenizer.bos_id
|
|
input_tensor = input_tensor[None, :, :]
|
|
input_tensor = np.repeat(input_tensor, repeats=batch_size, axis=0)
|
|
else:
|
|
if len(prompt.shape) == 2:
|
|
prompt = prompt[None, :]
|
|
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
|
|
elif prompt.shape[0] == 1:
|
|
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
|
|
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
|
|
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
|
|
prompt = prompt[..., :max_token_seq]
|
|
if prompt.shape[-1] < max_token_seq:
|
|
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
|
|
mode="constant", constant_values=tokenizer.pad_id)
|
|
input_tensor = prompt
|
|
cur_len = input_tensor.shape[1]
|
|
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
|
model0_inputs = {}
|
|
model0_outputs = {}
|
|
emb_size = 1024
|
|
for output in model[0].get_outputs():
|
|
if output.name == "hidden":
|
|
emb_size = output.shape[2]
|
|
past_len = 0
|
|
with bar:
|
|
while cur_len < max_len:
|
|
end = [False] * batch_size
|
|
model0_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(input_tensor[:, past_len:], device_type=device)
|
|
model0_outputs["hidden"] = rt.OrtValue.ortvalue_from_shape_and_type(
|
|
(batch_size, cur_len - past_len, emb_size),
|
|
element_type=np.float32,
|
|
device_type=device)
|
|
io_binding = apply_io_binding(model[0], model0_inputs, model0_outputs, batch_size, past_len, cur_len)
|
|
io_binding.synchronize_inputs()
|
|
model[0].run_with_iobinding(io_binding)
|
|
io_binding.synchronize_outputs()
|
|
|
|
hidden = model0_outputs["hidden"].numpy()[:, -1:]
|
|
next_token_seq = np.zeros((batch_size, 0), dtype=np.int64)
|
|
event_names = [""] * batch_size
|
|
model1_inputs = {"hidden": rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device)}
|
|
model1_outputs = {}
|
|
for i in range(max_token_seq):
|
|
mask = np.zeros((batch_size, tokenizer.vocab_size), dtype=np.int64)
|
|
for b in range(batch_size):
|
|
if end[b]:
|
|
mask[b, tokenizer.pad_id] = 1
|
|
continue
|
|
if i == 0:
|
|
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
|
if disable_patch_change:
|
|
mask_ids.remove(tokenizer.event_ids["patch_change"])
|
|
if disable_control_change:
|
|
mask_ids.remove(tokenizer.event_ids["control_change"])
|
|
mask[b, mask_ids] = 1
|
|
else:
|
|
param_names = tokenizer.events[event_names[b]]
|
|
if i > len(param_names):
|
|
mask[b, tokenizer.pad_id] = 1
|
|
continue
|
|
param_name = param_names[i - 1]
|
|
mask_ids = tokenizer.parameter_ids[param_name]
|
|
if param_name == "channel":
|
|
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
|
mask[b, mask_ids] = 1
|
|
mask = mask[:, None, :]
|
|
x = next_token_seq
|
|
if i != 0:
|
|
|
|
if i == 1:
|
|
hidden = np.zeros((batch_size, 0, emb_size), dtype=np.float32)
|
|
model1_inputs["hidden"] = rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device)
|
|
x = x[:, -1:]
|
|
model1_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(x, device_type=device)
|
|
model1_outputs["y"] = rt.OrtValue.ortvalue_from_shape_and_type(
|
|
(batch_size, 1, tokenizer.vocab_size),
|
|
element_type=np.float32,
|
|
device_type=device
|
|
)
|
|
io_binding = apply_io_binding(model[1], model1_inputs, model1_outputs, batch_size, i, i+1)
|
|
io_binding.synchronize_inputs()
|
|
model[1].run_with_iobinding(io_binding)
|
|
io_binding.synchronize_outputs()
|
|
logits = model1_outputs["y"].numpy()
|
|
scores = softmax(logits / temp, -1) * mask
|
|
samples = sample_top_p_k(scores, top_p, top_k, generator)
|
|
if i == 0:
|
|
next_token_seq = samples
|
|
for b in range(batch_size):
|
|
if end[b]:
|
|
continue
|
|
eid = samples[b].item()
|
|
if eid == tokenizer.eos_id:
|
|
end[b] = True
|
|
else:
|
|
event_names[b] = tokenizer.id_events[eid]
|
|
else:
|
|
next_token_seq = np.concatenate([next_token_seq, samples], axis=1)
|
|
if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
|
|
break
|
|
if next_token_seq.shape[1] < max_token_seq:
|
|
next_token_seq = np.pad(next_token_seq,
|
|
((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
|
|
mode="constant", constant_values=tokenizer.pad_id)
|
|
next_token_seq = next_token_seq[:, None, :]
|
|
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
|
|
past_len = cur_len
|
|
cur_len += 1
|
|
bar.update(1)
|
|
yield next_token_seq[:, 0]
|
|
if all(end):
|
|
break
|
|
|
|
|
|
def create_msg(name, data):
|
|
return {"name": name, "data": data}
|
|
|
|
|
|
def send_msgs(msgs):
|
|
return json.dumps(msgs)
|
|
|
|
|
|
def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm,
|
|
time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
|
|
remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
|
|
t = gen_events // 30
|
|
if "large" in model_name:
|
|
t = gen_events // 23
|
|
return t + 5
|
|
|
|
|
|
@spaces.GPU(duration=get_duration)
|
|
def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig,
|
|
key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels,
|
|
seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
|
|
model = models[model_name]
|
|
model_base = rt.InferenceSession(model[0], providers=providers)
|
|
model_token = rt.InferenceSession(model[1], providers=providers)
|
|
tokenizer = model[2]
|
|
model = [model_base, model_token, tokenizer]
|
|
bpm = int(bpm)
|
|
if time_sig == "auto":
|
|
time_sig = None
|
|
time_sig_nn = 4
|
|
time_sig_dd = 2
|
|
else:
|
|
time_sig_nn, time_sig_dd = time_sig.split('/')
|
|
time_sig_nn = int(time_sig_nn)
|
|
time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
|
|
if key_sig == 0:
|
|
key_sig = None
|
|
key_sig_sf = 0
|
|
key_sig_mi = 0
|
|
else:
|
|
key_sig = (key_sig - 1)
|
|
key_sig_sf = key_sig // 2 - 7
|
|
key_sig_mi = key_sig % 2
|
|
gen_events = int(gen_events)
|
|
max_len = gen_events
|
|
if seed_rand:
|
|
seed = random.randint(0, MAX_SEED)
|
|
generator = np.random.RandomState(seed)
|
|
disable_patch_change = False
|
|
disable_channels = None
|
|
if tab == 0:
|
|
i = 0
|
|
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
|
|
if tokenizer.version == "v2":
|
|
if time_sig is not None:
|
|
mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
|
|
if key_sig is not None:
|
|
mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
|
|
if bpm != 0:
|
|
mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
|
|
patches = {}
|
|
if instruments is None:
|
|
instruments = []
|
|
for instr in instruments:
|
|
patches[i] = patch2number[instr]
|
|
i = (i + 1) if i != 8 else 10
|
|
if drum_kit != "None":
|
|
patches[9] = drum_kits2number[drum_kit]
|
|
for i, (c, p) in enumerate(patches.items()):
|
|
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
|
|
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
|
|
mid_seq = mid.tolist()
|
|
if len(instruments) > 0:
|
|
disable_patch_change = True
|
|
disable_channels = [i for i in range(16) if i not in patches]
|
|
elif tab == 1 and mid is not None:
|
|
eps = 4 if reduce_cc_st else 0
|
|
mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
|
|
remap_track_channel=remap_track_channel,
|
|
add_default_instr=add_default_instr,
|
|
remove_empty_channels=remove_empty_channels)
|
|
mid = mid[:int(midi_events)]
|
|
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
|
|
mid_seq = mid.tolist()
|
|
elif tab == 2 and mid_seq is not None:
|
|
mid = np.asarray(mid_seq, dtype=np.int64)
|
|
if continuation_select > 0:
|
|
continuation_state.append(mid_seq)
|
|
mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0)
|
|
mid_seq = mid.tolist()
|
|
else:
|
|
continuation_state.append(mid.shape[1])
|
|
else:
|
|
continuation_state = [0]
|
|
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
|
|
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
|
|
mid_seq = mid.tolist()
|
|
|
|
if mid is not None:
|
|
max_len += mid.shape[1]
|
|
|
|
init_msgs = [create_msg("progress", [0, gen_events])]
|
|
if not (tab == 2 and continuation_select == 0):
|
|
for i in range(OUTPUT_BATCH_SIZE):
|
|
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
|
|
init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
|
|
create_msg("visualizer_append", [i, events])]
|
|
yield mid_seq, continuation_state, seed, send_msgs(init_msgs)
|
|
midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp,
|
|
top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change,
|
|
disable_control_change=not allow_cc, disable_channels=disable_channels,
|
|
generator=generator)
|
|
events = [list() for i in range(OUTPUT_BATCH_SIZE)]
|
|
t = time.time() + 1
|
|
for i, token_seqs in enumerate(midi_generator):
|
|
token_seqs = token_seqs.tolist()
|
|
for j in range(OUTPUT_BATCH_SIZE):
|
|
token_seq = token_seqs[j]
|
|
mid_seq[j].append(token_seq)
|
|
events[j].append(tokenizer.tokens2event(token_seq))
|
|
if time.time() - t > 0.5:
|
|
msgs = [create_msg("progress", [i + 1, gen_events])]
|
|
for j in range(OUTPUT_BATCH_SIZE):
|
|
msgs += [create_msg("visualizer_append", [j, events[j]])]
|
|
events[j] = list()
|
|
yield mid_seq, continuation_state, seed, send_msgs(msgs)
|
|
t = time.time()
|
|
yield mid_seq, continuation_state, seed, send_msgs([])
|
|
|
|
|
|
def finish_run(model_name, mid_seq):
|
|
if mid_seq is None:
|
|
outputs = [None] * OUTPUT_BATCH_SIZE
|
|
return *outputs, []
|
|
tokenizer = models[model_name][2]
|
|
outputs = []
|
|
end_msgs = [create_msg("progress", [0, 0])]
|
|
if not os.path.exists("outputs"):
|
|
os.mkdir("outputs")
|
|
for i in range(OUTPUT_BATCH_SIZE):
|
|
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
|
|
mid = tokenizer.detokenize(mid_seq[i])
|
|
with open(f"outputs/output{i + 1}.mid", 'wb') as f:
|
|
f.write(MIDI.score2midi(mid))
|
|
outputs.append(f"outputs/output{i + 1}.mid")
|
|
end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
|
|
create_msg("visualizer_append", [i, events]),
|
|
create_msg("visualizer_end", i)]
|
|
return *outputs, send_msgs(end_msgs)
|
|
|
|
|
|
def synthesis_task(mid):
|
|
return synthesizer.synthesis(MIDI.score2opus(mid))
|
|
|
|
def render_audio(model_name, mid_seq, should_render_audio):
|
|
if (not should_render_audio) or mid_seq is None:
|
|
outputs = [None] * OUTPUT_BATCH_SIZE
|
|
return tuple(outputs)
|
|
tokenizer = models[model_name][2]
|
|
outputs = []
|
|
if not os.path.exists("outputs"):
|
|
os.mkdir("outputs")
|
|
audio_futures = []
|
|
for i in range(OUTPUT_BATCH_SIZE):
|
|
mid = tokenizer.detokenize(mid_seq[i])
|
|
audio_future = thread_pool.submit(synthesis_task, mid)
|
|
audio_futures.append(audio_future)
|
|
for future in audio_futures:
|
|
outputs.append((44100, future.result()))
|
|
if OUTPUT_BATCH_SIZE == 1:
|
|
return outputs[0]
|
|
return tuple(outputs)
|
|
|
|
|
|
def undo_continuation(model_name, mid_seq, continuation_state):
|
|
if mid_seq is None or len(continuation_state) < 2:
|
|
return mid_seq, continuation_state, send_msgs([])
|
|
tokenizer = models[model_name][2]
|
|
if isinstance(continuation_state[-1], list):
|
|
mid_seq = continuation_state[-1]
|
|
else:
|
|
mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq]
|
|
continuation_state = continuation_state[:-1]
|
|
end_msgs = [create_msg("progress", [0, 0])]
|
|
for i in range(OUTPUT_BATCH_SIZE):
|
|
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
|
|
end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
|
|
create_msg("visualizer_append", [i, events]),
|
|
create_msg("visualizer_end", i)]
|
|
return mid_seq, continuation_state, send_msgs(end_msgs)
|
|
|
|
|
|
def load_javascript(dir="javascript"):
|
|
scripts_list = glob.glob(f"{dir}/*.js")
|
|
javascript = ""
|
|
for path in scripts_list:
|
|
with open(path, "r", encoding="utf8") as jsfile:
|
|
js_content = jsfile.read()
|
|
js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
|
|
f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
|
|
javascript += f"\n<!-- {path} --><script>{js_content}</script>"
|
|
template_response_ori = gr.routes.templates.TemplateResponse
|
|
|
|
def template_response(*args, **kwargs):
|
|
res = template_response_ori(*args, **kwargs)
|
|
res.body = res.body.replace(
|
|
b'</head>', f'{javascript}</head>'.encode("utf8"))
|
|
res.init_headers()
|
|
return res
|
|
|
|
gr.routes.templates.TemplateResponse = template_response
|
|
|
|
|
|
def hf_hub_download_retry(repo_id, filename):
|
|
print(f"downloading {repo_id} {filename}")
|
|
retry = 0
|
|
err = None
|
|
while retry < 30:
|
|
try:
|
|
return hf_hub_download(repo_id=repo_id, filename=filename)
|
|
except Exception as e:
|
|
err = e
|
|
retry += 1
|
|
if err:
|
|
raise err
|
|
|
|
|
|
def get_tokenizer(repo_id):
|
|
config_path = hf_hub_download_retry(repo_id=repo_id, filename=f"config.json")
|
|
with open(config_path, "r") as f:
|
|
config = json.load(f)
|
|
tokenizer = MIDITokenizer(config["tokenizer"]["version"])
|
|
tokenizer.set_optimise_midi(config["tokenizer"]["optimise_midi"])
|
|
return tokenizer
|
|
|
|
|
|
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
|
|
40: "Blush", 48: "Orchestra"}
|
|
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
|
|
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
|
|
key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
|
|
'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
|
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
|
|
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
|
|
parser.add_argument("--batch", type=int, default=8, help="batch size")
|
|
parser.add_argument("--max-gen", type=int, default=1024, help="max")
|
|
opt = parser.parse_args()
|
|
OUTPUT_BATCH_SIZE = opt.batch
|
|
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
|
|
thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
|
|
synthesizer = MidiSynthesizer(soundfont_path)
|
|
models_info = {
|
|
"generic pretrain model (tv2o-medium) by skytnt": [
|
|
"skytnt/midi-model-tv2o-medium", "", {
|
|
"jpop": "skytnt/midi-model-tv2om-jpop-lora",
|
|
"touhou": "skytnt/midi-model-tv2om-touhou-lora"
|
|
}
|
|
],
|
|
"generic pretrain model (tv2o-large) by asigalov61": [
|
|
"asigalov61/Music-Llama", "", {}
|
|
],
|
|
"generic pretrain model (tv2o-medium) by asigalov61": [
|
|
"asigalov61/Music-Llama-Medium", "", {}
|
|
],
|
|
"generic pretrain model (tv1-medium) by skytnt": [
|
|
"skytnt/midi-model", "", {}
|
|
]
|
|
}
|
|
models = {}
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
device = "cuda"
|
|
|
|
for name, (repo_id, path, loras) in models_info.items():
|
|
model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
|
|
model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
|
|
tokenizer = get_tokenizer(repo_id)
|
|
models[name] = [model_base_path, model_token_path, tokenizer]
|
|
for lora_name, lora_repo in loras.items():
|
|
model_base_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_base.onnx")
|
|
model_token_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_token.onnx")
|
|
models[f"{name} with {lora_name} lora"] = [model_base_path, model_token_path, tokenizer]
|
|
|
|
load_javascript()
|
|
app = gr.Blocks(theme=gr.themes.Soft())
|
|
with app:
|
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
|
|
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
|
|
"Midi event transformer for symbolic music generation\n\n"
|
|
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
|
|
"[Open In Colab]"
|
|
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
|
|
" or [download windows app](https://github.com/SkyTNT/midi-model/releases)"
|
|
" for unlimited generation\n\n"
|
|
"**Update v1.3**: MIDITokenizerV2 and new MidiVisualizer\n\n"
|
|
"The current **best** model: generic pretrain model (tv2o-medium) by skytnt"
|
|
)
|
|
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
|
|
js_msg.change(None, [js_msg], [], js="""
|
|
(msg_json) =>{
|
|
let msgs = JSON.parse(msg_json);
|
|
executeCallbacks(msgReceiveCallbacks, msgs);
|
|
return [];
|
|
}
|
|
""")
|
|
input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
|
|
type="value", value=list(models.keys())[0])
|
|
tab_select = gr.State(value=0)
|
|
with gr.Tabs():
|
|
with gr.TabItem("custom prompt") as tab1:
|
|
input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
|
|
multiselect=True, max_choices=15, type="value")
|
|
input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
|
|
value="None")
|
|
input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
|
|
step=1,
|
|
value=0)
|
|
input_time_sig = gr.Radio(label="time signature (only for tv2 models)",
|
|
value="auto",
|
|
choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4",
|
|
"2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"]
|
|
)
|
|
input_key_sig = gr.Radio(label="key signature (only for tv2 models)",
|
|
value="auto",
|
|
choices=["auto"] + key_signatures,
|
|
type="index"
|
|
)
|
|
example1 = gr.Examples([
|
|
[[], "None"],
|
|
[["Acoustic Grand"], "None"],
|
|
[['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
|
|
'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
|
|
[['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
|
|
'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
|
|
[['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
|
|
'Oboe', 'Pizzicato Strings'], "Orchestra"],
|
|
[['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
|
|
'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
|
|
[["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
|
|
"Electric Bass(finger)"], "Standard"]
|
|
], [input_instruments, input_drum_kit])
|
|
with gr.TabItem("midi prompt") as tab2:
|
|
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
|
|
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
|
|
step=1,
|
|
value=128)
|
|
input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
|
|
input_remap_track_channel = gr.Checkbox(
|
|
label="remap tracks and channels so each track has only one channel and in order", value=True)
|
|
input_add_default_instr = gr.Checkbox(
|
|
label="add a default instrument to channels that don't have an instrument", value=True)
|
|
input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
|
|
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
|
|
[input_midi, input_midi_events])
|
|
with gr.TabItem("last output prompt") as tab3:
|
|
gr.Markdown("Continue generating on the last output.")
|
|
input_continuation_select = gr.Radio(label="select output to continue generating", value="all",
|
|
choices=["all"] + [f"output{i + 1}" for i in
|
|
range(OUTPUT_BATCH_SIZE)],
|
|
type="index"
|
|
)
|
|
undo_btn = gr.Button("undo the last continuation")
|
|
|
|
tab1.select(lambda: 0, None, tab_select, queue=False)
|
|
tab2.select(lambda: 1, None, tab_select, queue=False)
|
|
tab3.select(lambda: 2, None, tab_select, queue=False)
|
|
input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
|
|
step=1, value=0)
|
|
input_seed_rand = gr.Checkbox(label="random seed", value=True)
|
|
input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
|
|
step=1, value=opt.max_gen // 2)
|
|
with gr.Accordion("options", open=False):
|
|
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
|
|
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95)
|
|
input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20)
|
|
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
|
|
input_render_audio = gr.Checkbox(label="render audio after generation", value=True)
|
|
example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]],
|
|
[input_temp, input_top_p, input_top_k])
|
|
run_btn = gr.Button("generate", variant="primary")
|
|
|
|
output_midi_seq = gr.State()
|
|
output_continuation_state = gr.State([0])
|
|
midi_outputs = []
|
|
audio_outputs = []
|
|
with gr.Tabs(elem_id="output_tabs"):
|
|
for i in range(OUTPUT_BATCH_SIZE):
|
|
with gr.TabItem(f"output {i + 1}") as tab1:
|
|
output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
|
|
output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}")
|
|
output_midi = gr.File(label="output midi", file_types=[".mid"])
|
|
midi_outputs.append(output_midi)
|
|
audio_outputs.append(output_audio)
|
|
run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
|
|
input_continuation_select, input_instruments, input_drum_kit, input_bpm,
|
|
input_time_sig, input_key_sig, input_midi, input_midi_events,
|
|
input_reduce_cc_st, input_remap_track_channel,
|
|
input_add_default_instr, input_remove_empty_channels,
|
|
input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
|
|
input_top_k, input_allow_cc],
|
|
[output_midi_seq, output_continuation_state, input_seed, js_msg],
|
|
concurrency_limit=10, queue=True)
|
|
finish_run_event = run_event.then(fn=finish_run,
|
|
inputs=[input_model, output_midi_seq],
|
|
outputs=midi_outputs + [js_msg],
|
|
queue=False)
|
|
finish_run_event.then(fn=render_audio,
|
|
inputs=[input_model, output_midi_seq, input_render_audio],
|
|
outputs=audio_outputs,
|
|
queue=False)
|
|
|
|
|
|
undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
|
|
[output_midi_seq, output_continuation_state, js_msg], queue=False)
|
|
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
|
|
thread_pool.shutdown()
|
|
|