File size: 1,544 Bytes
3facca5 549018e 3facca5 549018e 3facca5 549018e 3facca5 549018e 3facca5 549018e 3facca5 549018e 3facca5 549018e 3facca5 549018e ace3238 549018e 3facca5 549018e 3facca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
import gradio as gr
import config as cfg
# Load the pre-trained model
pipe = MochiPipeline.from_pretrained(cfg.MODEL_PRE_TRAINED_ID, variant="bf16", torch_dtype=torch.bfloat16)
# Enable memory-saving optimizations
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
@spaces.GPU(duration=600)
def generate_video(prompt, num_frames=84, fps=30):
# Generate video frames
print("Generating video frames...")
frames = pipe(prompt, num_frames=num_frames).frames[0]
# Export frames as video
video_path = "mochi.mp4"
export_to_video(frames, video_path, fps=fps)
return video_path
# Create the Gradio interface
interface = gr.Interface(
fn=generate_video,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your text prompt here... 💡"),
gr.Slider(minimum=1, maximum=240, value=84, label="Number of frames 🎞️"),
gr.Slider(minimum=1, maximum=60, value=30, label="FPS (Frames per second) ⏱️")
],
outputs=gr.outputs.Video(),
title=cfg.TITLE,
description=cfg.DESCRIPTION,
examples=cfg.EXAMPLES,
article=cfg.BUY_ME_A_COFFEE
)
# Launch the application
if __name__ == "__main__":
interface.launch() |