File size: 10,489 Bytes
da92625
979b424
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb3ae7
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7f3c1
da92625
 
 
8d7f3c1
da92625
 
 
a6bb893
 
 
 
 
 
69f5df3
979b424
12e16dd
550d12e
 
da92625
a4bf183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664fbb8
da92625
 
 
 
bfb3ae7
2642851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da92625
 
 
428cea6
 
da92625
ee84fd2
 
bfb3ae7
ee84fd2
 
f99d80b
2642851
bed7fbb
f99d80b
bed7fbb
 
5f0ee8c
bed7fbb
e19ffb4
5f0ee8c
e19ffb4
 
5f0ee8c
bed7fbb
 
8d7f3c1
f99d80b
5f0ee8c
 
 
 
 
 
 
8d7f3c1
f99d80b
8d7f3c1
 
5f0ee8c
f99d80b
8d7f3c1
 
5f0ee8c
f99d80b
da92625
 
2a7d8c1
174a614
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174a614
 
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=None,
        # SelectColumns(
        #     default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
        #     cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
        #     label="Select Columns to Display:",
        # ),
        # search_columns=None,
        # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
                                     placeholder="Search by the model name",
                                     label="Searching"),
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=None,
        # [
        #     ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
        #     ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
        #     ColumnFilter(
        #         AutoEvalColumn.params.name,
        #         type="slider",
        #         min=0.01,
        #         max=150,
        #         label="Select the number of parameters (B)",
        #     ),
        #     ColumnFilter(
        #         AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
        #     ),
        # ],
        # bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


model_leaderboard_df = get_model_leaderboard_df()

def overall_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=None,
        search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
                                     placeholder="Search by the model name",
                                     label="Searching"),
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=None,
        interactive=False,
    )
    
    

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:

        with gr.TabItem("๐Ÿ… Overview", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)
            

        with gr.TabItem("๐ŸŽฏ Overall", elem_id="llm-benchmark-tab-table", id=1):
            leaderboard = overall_leaderboard(LEADERBOARD_DF)
            
        with gr.TabItem("๐Ÿ”ข Math", elem_id="math-tab-table", id=2):
            
            # leaderboard = init_leaderboard(LEADERBOARD_DF)
            with gr.TabItem("๐Ÿงฎ Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"): 
                leaderboard = init_leaderboard(LEADERBOARD_DF)
                
            with gr.TabItem("๐Ÿ“ Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"): 
                leaderboard = init_leaderboard(LEADERBOARD_DF)

            with gr.TabItem("๐Ÿ“Š Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
                leaderboard = init_leaderboard(LEADERBOARD_DF)
                

        with gr.TabItem("๐Ÿง  Reasoning", elem_id="reasonong-tab-table", id=3):

            with gr.TabItem("๐Ÿงฉ Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):         
                leaderboard = init_leaderboard(LEADERBOARD_DF)

            with gr.TabItem("๐Ÿ—ฃ๏ธ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):         
                leaderboard = init_leaderboard(LEADERBOARD_DF)


        with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
            leaderboard = init_leaderboard(LEADERBOARD_DF)


        with gr.TabItem("๐Ÿ”ฌ Science", elem_id="science-table", id=5):
            leaderboard = init_leaderboard(LEADERBOARD_DF)


        with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=6):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")


        '''
        with gr.TabItem("๐Ÿš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"โœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"๐Ÿ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# โœ‰๏ธโœจ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )
        '''
        
    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()