yzabc007 commited on
Commit
2566764
·
1 Parent(s): 48ffe6b

Update space

Browse files
src/display/utils.py CHANGED
@@ -59,7 +59,7 @@ for domain in Domains:
59
 
60
  auto_eval_column_dict.append(["organization", ColumnContent, field(default_factory=lambda: ColumnContent("Organization", "str", False))])
61
  auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, field(default_factory=lambda: ColumnContent("Knowledge cutoff", "str", False))])
62
-
63
 
64
  for task in Tasks:
65
  auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
 
59
 
60
  auto_eval_column_dict.append(["organization", ColumnContent, field(default_factory=lambda: ColumnContent("Organization", "str", False))])
61
  auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, field(default_factory=lambda: ColumnContent("Knowledge cutoff", "str", False))])
62
+ auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lambda: ColumnContent("Score", "number", True))])
63
 
64
  for task in Tasks:
65
  auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
src/leaderboard/read_evals.py CHANGED
@@ -34,11 +34,13 @@ class ModelResult:
34
  license = config.get("license")
35
  knowledge_cutoff = config.get("knowledge_cutoff")
36
 
 
 
37
  # Extract results available in this file (some results are split in several files)
38
  results = {}
39
  for domain in Domains:
40
  domain = domain.value
41
- results[domain.dimension] = data.get("results").get(domain.metric)
42
 
43
  return self(
44
  eval_name=f"{org}_{model}",
@@ -53,13 +55,13 @@ class ModelResult:
53
  def to_dict(self):
54
  """Converts the Eval Result to a dict compatible with our dataframe display"""
55
 
56
- # average = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
57
- average = 1
58
  # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
59
  data_dict = {
60
- "eval_name": self.eval_name, # not a column, just a save name,
61
  # AutoEvalColumn.model.name: make_clickable_model(self.full_model),
62
  AutoEvalColumn.model.name: self.model,
 
63
  AutoEvalColumn.license.name: self.license,
64
  AutoEvalColumn.organization.name: self.org,
65
  AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
 
34
  license = config.get("license")
35
  knowledge_cutoff = config.get("knowledge_cutoff")
36
 
37
+ model_results = data.get("results")
38
+
39
  # Extract results available in this file (some results are split in several files)
40
  results = {}
41
  for domain in Domains:
42
  domain = domain.value
43
+ results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
44
 
45
  return self(
46
  eval_name=f"{org}_{model}",
 
55
  def to_dict(self):
56
  """Converts the Eval Result to a dict compatible with our dataframe display"""
57
 
58
+ # score = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
 
59
  # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
60
  data_dict = {
61
+ # "eval_name": self.eval_name, # not a column, just a save name,
62
  # AutoEvalColumn.model.name: make_clickable_model(self.full_model),
63
  AutoEvalColumn.model.name: self.model,
64
+ AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
65
  AutoEvalColumn.license.name: self.license,
66
  AutoEvalColumn.organization.name: self.org,
67
  AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
src/populate.py CHANGED
@@ -14,7 +14,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
- # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
  # print(cols) # []
19
  # print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
20
  # exit()
 
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
+ df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
18
  # print(cols) # []
19
  # print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
20
  # exit()