Update space
Browse files- app.py +116 -10
- src/about.py +17 -0
- src/display/utils.py +22 -0
- src/leaderboard/read_evals.py +130 -7
- src/populate.py +32 -23
app.py
CHANGED
@@ -97,8 +97,11 @@ def init_leaderboard(dataframe):
|
|
97 |
interactive=False,
|
98 |
)
|
99 |
|
100 |
-
model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
def overall_leaderboard(dataframe):
|
104 |
if dataframe is None or dataframe.empty:
|
@@ -118,6 +121,25 @@ def overall_leaderboard(dataframe):
|
|
118 |
|
119 |
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
demo = gr.Blocks(css=custom_css)
|
122 |
with demo:
|
123 |
gr.HTML(TITLE)
|
@@ -126,33 +148,117 @@ with demo:
|
|
126 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
127 |
|
128 |
with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0):
|
129 |
-
|
130 |
-
leaderboard =
|
131 |
|
132 |
|
133 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
137 |
|
138 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
139 |
with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
140 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
143 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
146 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
|
149 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
150 |
|
151 |
with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
152 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
155 |
-
leaderboard = overall_leaderboard(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
|
|
97 |
interactive=False,
|
98 |
)
|
99 |
|
100 |
+
# model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
|
101 |
+
# model_result_path = "./src/results/models_2024-10-08-03:10:26.811832.jsonl"
|
102 |
+
model_result_path = "./src/results/models_2024-10-08-03:25:44.801310.jsonl"
|
103 |
+
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
104 |
+
|
105 |
|
106 |
def overall_leaderboard(dataframe):
|
107 |
if dataframe is None or dataframe.empty:
|
|
|
121 |
|
122 |
|
123 |
|
124 |
+
def overview_leaderboard(dataframe):
|
125 |
+
if dataframe is None or dataframe.empty:
|
126 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
127 |
+
|
128 |
+
return Leaderboard(
|
129 |
+
value=dataframe,
|
130 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
131 |
+
select_columns=None,
|
132 |
+
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
|
133 |
+
placeholder="Search by the model name",
|
134 |
+
label="Searching"),
|
135 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
136 |
+
filter_columns=None,
|
137 |
+
interactive=False,
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
demo = gr.Blocks(css=custom_css)
|
144 |
with demo:
|
145 |
gr.HTML(TITLE)
|
|
|
148 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
149 |
|
150 |
with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0):
|
151 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
152 |
+
# leaderboard = overview_leaderboard(model_leaderboard_df)
|
153 |
|
154 |
|
155 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
156 |
+
|
157 |
+
leaderboard = overall_leaderboard(
|
158 |
+
get_model_leaderboard_df(
|
159 |
+
model_result_path,
|
160 |
+
benchmark_cols=[
|
161 |
+
AutoEvalColumn.rank_overall.name,
|
162 |
+
AutoEvalColumn.model.name,
|
163 |
+
AutoEvalColumn.score_overall.name,
|
164 |
+
AutoEvalColumn.sd_overall.name,
|
165 |
+
AutoEvalColumn.license.name,
|
166 |
+
AutoEvalColumn.organization.name,
|
167 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
168 |
+
],
|
169 |
+
rank_col=[AutoEvalColumn.rank_overall.name],
|
170 |
+
))
|
171 |
|
172 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
173 |
|
174 |
# leaderboard = init_leaderboard(LEADERBOARD_DF)
|
175 |
with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"):
|
176 |
+
leaderboard = overall_leaderboard(
|
177 |
+
get_model_leaderboard_df(
|
178 |
+
model_result_path,
|
179 |
+
benchmark_cols=[
|
180 |
+
AutoEvalColumn.rank_math_algebra.name,
|
181 |
+
AutoEvalColumn.model.name,
|
182 |
+
AutoEvalColumn.score_math_algebra.name,
|
183 |
+
AutoEvalColumn.sd_math_algebra.name,
|
184 |
+
AutoEvalColumn.license.name,
|
185 |
+
AutoEvalColumn.organization.name,
|
186 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
187 |
+
],
|
188 |
+
rank_col=[AutoEvalColumn.rank_math_algebra.name],
|
189 |
+
)
|
190 |
+
)
|
191 |
|
192 |
with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"):
|
193 |
+
leaderboard = overall_leaderboard(
|
194 |
+
get_model_leaderboard_df(
|
195 |
+
model_result_path,
|
196 |
+
benchmark_cols=[
|
197 |
+
AutoEvalColumn.rank_math_geometry.name,
|
198 |
+
AutoEvalColumn.model.name,
|
199 |
+
AutoEvalColumn.score_math_geometry.name,
|
200 |
+
AutoEvalColumn.sd_math_geometry.name,
|
201 |
+
AutoEvalColumn.license.name,
|
202 |
+
AutoEvalColumn.organization.name,
|
203 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
204 |
+
],
|
205 |
+
rank_col=[AutoEvalColumn.rank_math_geometry.name],
|
206 |
+
)
|
207 |
+
)
|
208 |
|
209 |
with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"):
|
210 |
+
leaderboard = overall_leaderboard(
|
211 |
+
get_model_leaderboard_df(
|
212 |
+
model_result_path,
|
213 |
+
benchmark_cols=[
|
214 |
+
AutoEvalColumn.rank_math_probability.name,
|
215 |
+
AutoEvalColumn.model.name,
|
216 |
+
AutoEvalColumn.score_math_probability.name,
|
217 |
+
AutoEvalColumn.sd_math_probability.name,
|
218 |
+
AutoEvalColumn.license.name,
|
219 |
+
AutoEvalColumn.organization.name,
|
220 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
221 |
+
],
|
222 |
+
rank_col=[AutoEvalColumn.rank_math_probability.name],
|
223 |
+
)
|
224 |
+
)
|
225 |
|
226 |
|
227 |
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3):
|
228 |
|
229 |
with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"):
|
230 |
+
leaderboard = overall_leaderboard(
|
231 |
+
get_model_leaderboard_df(
|
232 |
+
model_result_path,
|
233 |
+
benchmark_cols=[
|
234 |
+
AutoEvalColumn.rank_reason_logical.name,
|
235 |
+
AutoEvalColumn.model.name,
|
236 |
+
AutoEvalColumn.score_reason_logical.name,
|
237 |
+
AutoEvalColumn.sd_reason_logical.name,
|
238 |
+
AutoEvalColumn.license.name,
|
239 |
+
AutoEvalColumn.organization.name,
|
240 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
241 |
+
],
|
242 |
+
rank_col=[AutoEvalColumn.rank_reason_logical.name],
|
243 |
+
)
|
244 |
+
)
|
245 |
|
246 |
with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=1, elem_classes="subtab"):
|
247 |
+
leaderboard = overall_leaderboard(
|
248 |
+
get_model_leaderboard_df(
|
249 |
+
model_result_path,
|
250 |
+
benchmark_cols=[
|
251 |
+
AutoEvalColumn.rank_reason_social.name,
|
252 |
+
AutoEvalColumn.model.name,
|
253 |
+
AutoEvalColumn.score_reason_social.name,
|
254 |
+
AutoEvalColumn.sd_reason_social.name,
|
255 |
+
AutoEvalColumn.license.name,
|
256 |
+
AutoEvalColumn.organization.name,
|
257 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
258 |
+
],
|
259 |
+
rank_col=[AutoEvalColumn.rank_reason_social.name],
|
260 |
+
)
|
261 |
+
)
|
262 |
|
263 |
|
264 |
with gr.TabItem("</> Coding", elem_id="coding-tab-table", id=4):
|
src/about.py
CHANGED
@@ -1,6 +1,23 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@dataclass
|
5 |
class Domain:
|
6 |
dimension: str
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
|
5 |
+
# @dataclass
|
6 |
+
# class Ranking:
|
7 |
+
# dimension: str
|
8 |
+
# metric: str
|
9 |
+
# col_name: str
|
10 |
+
|
11 |
+
# class Rankings(Enum):
|
12 |
+
# # dimension_key in the json file, metric_key in the json file, name to display in the leaderboard
|
13 |
+
# rank0 = Ranking("overall", "Avg Score", "Overall")
|
14 |
+
# rank1 = Ranking("math_algebra", "Avg Score", "Math (Algebra)")
|
15 |
+
# rank2 = Ranking("math_geometry", "Avg Score", "Math (Geometry)")
|
16 |
+
# rank3 = Ranking("math_prob", "Avg Score", "Math (Probability)")
|
17 |
+
# rank4 = Ranking("reason_logical", "Avg Score", "Logical Reasoning")
|
18 |
+
# rank5 = Ranking("reason_social", "Avg Score", "Social Reasoning")
|
19 |
+
|
20 |
+
|
21 |
@dataclass
|
22 |
class Domain:
|
23 |
dimension: str
|
src/display/utils.py
CHANGED
@@ -63,6 +63,28 @@ auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lamb
|
|
63 |
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
|
64 |
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
for task in Tasks:
|
68 |
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
|
|
|
63 |
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
|
64 |
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])
|
65 |
|
66 |
+
# fine-graine dimensions
|
67 |
+
auto_eval_column_dict.append(["score_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Overall", "number", True))])
|
68 |
+
auto_eval_column_dict.append(["score_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Algebra)", "number", True))])
|
69 |
+
auto_eval_column_dict.append(["score_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Geometry)", "number", True))])
|
70 |
+
auto_eval_column_dict.append(["score_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Math (Probability)", "number", True))])
|
71 |
+
auto_eval_column_dict.append(["score_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Logical Reasoning", "number", True))])
|
72 |
+
auto_eval_column_dict.append(["score_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Social Reasoning", "number", True))])
|
73 |
+
|
74 |
+
auto_eval_column_dict.append(["sd_overall", ColumnContent, field(default_factory=lambda: ColumnContent("SD Overall", "number", True))])
|
75 |
+
auto_eval_column_dict.append(["sd_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Algebra)", "number", True))])
|
76 |
+
auto_eval_column_dict.append(["sd_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Geometry)", "number", True))])
|
77 |
+
auto_eval_column_dict.append(["sd_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("SD Math (Probability)", "number", True))])
|
78 |
+
auto_eval_column_dict.append(["sd_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("SD Logical Reasoning", "number", True))])
|
79 |
+
auto_eval_column_dict.append(["sd_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("SD Social Reasoning", "number", True))])
|
80 |
+
|
81 |
+
auto_eval_column_dict.append(["rank_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Overall", "number", True))])
|
82 |
+
auto_eval_column_dict.append(["rank_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Algebra)", "number", True))])
|
83 |
+
auto_eval_column_dict.append(["rank_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Geometry)", "number", True))])
|
84 |
+
auto_eval_column_dict.append(["rank_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Math (Probability)", "number", True))])
|
85 |
+
auto_eval_column_dict.append(["rank_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Logical Reasoning", "number", True))])
|
86 |
+
auto_eval_column_dict.append(["rank_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Rank Social Reasoning", "number", True))])
|
87 |
+
|
88 |
|
89 |
for task in Tasks:
|
90 |
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
|
src/leaderboard/read_evals.py
CHANGED
@@ -11,14 +11,10 @@ from src.display.formatting import make_clickable_model
|
|
11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
-
# @dataclass
|
15 |
-
# class RankResult:
|
16 |
-
|
17 |
-
|
18 |
|
19 |
@dataclass
|
20 |
-
class
|
21 |
-
"""Represents one
|
22 |
"""
|
23 |
eval_name: str
|
24 |
full_model: str
|
@@ -74,7 +70,7 @@ class ModelResult:
|
|
74 |
|
75 |
# AutoEvalColumn.precision.name: self.precision.value.name,
|
76 |
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
77 |
-
# AutoEvalColumn.model_type_symbol.name
|
78 |
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
79 |
# AutoEvalColumn.architecture.name: self.architecture,
|
80 |
# AutoEvalColumn.revision.name: self.revision,
|
@@ -83,6 +79,116 @@ class ModelResult:
|
|
83 |
# AutoEvalColumn.params.name: self.num_params,
|
84 |
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
85 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# for task in Tasks:
|
88 |
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
@@ -306,7 +412,23 @@ def get_raw_model_results(results_path: str) -> list[EvalResult]:
|
|
306 |
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
|
307 |
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
|
308 |
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
|
|
|
|
|
|
310 |
eval_name = eval_result.eval_name
|
311 |
eval_results[eval_name] = eval_result
|
312 |
|
@@ -319,6 +441,7 @@ def get_raw_model_results(results_path: str) -> list[EvalResult]:
|
|
319 |
results = []
|
320 |
for v in eval_results.values():
|
321 |
# print(v.to_dict())
|
|
|
322 |
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
|
323 |
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
|
324 |
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
|
|
|
11 |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@dataclass
|
16 |
+
class RankResult:
|
17 |
+
"""Represents one the overall ranking table
|
18 |
"""
|
19 |
eval_name: str
|
20 |
full_model: str
|
|
|
70 |
|
71 |
# AutoEvalColumn.precision.name: self.precision.value.name,
|
72 |
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
73 |
+
# AutoEvalColumn.model_type_symbol.name
|
74 |
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
75 |
# AutoEvalColumn.architecture.name: self.architecture,
|
76 |
# AutoEvalColumn.revision.name: self.revision,
|
|
|
79 |
# AutoEvalColumn.params.name: self.num_params,
|
80 |
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
81 |
}
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class ModelResult:
|
87 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
88 |
+
"""
|
89 |
+
eval_name: str
|
90 |
+
full_model: str
|
91 |
+
org: str
|
92 |
+
model: str
|
93 |
+
results: dict
|
94 |
+
license: str = "?"
|
95 |
+
knowledge_cutoff: str = ""
|
96 |
+
|
97 |
+
@classmethod
|
98 |
+
def init_from_json_dict(self, data):
|
99 |
+
|
100 |
+
config = data.get("config")
|
101 |
+
# Get model and org
|
102 |
+
model = config.get("model_name")
|
103 |
+
org = config.get("organization")
|
104 |
+
license = config.get("license")
|
105 |
+
knowledge_cutoff = config.get("knowledge_cutoff")
|
106 |
+
|
107 |
+
model_results = data.get("results")
|
108 |
+
new_results = {}
|
109 |
+
for k, v in model_results.items():
|
110 |
+
new_v = {}
|
111 |
+
for kk, vv in v.items():
|
112 |
+
if vv == 'N/A':
|
113 |
+
new_v[kk] = None
|
114 |
+
else:
|
115 |
+
new_v[kk] = vv
|
116 |
+
|
117 |
+
new_results[k] = new_v
|
118 |
+
|
119 |
+
# Extract results available in this file (some results are split in several files)
|
120 |
+
# results = {}
|
121 |
+
# for domain in Domains:
|
122 |
+
# domain = domain.value
|
123 |
+
# results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
|
124 |
+
|
125 |
+
return self(
|
126 |
+
eval_name=f"{org}_{model}",
|
127 |
+
full_model=f"{org}/{model}",
|
128 |
+
org=org,
|
129 |
+
model=model,
|
130 |
+
results=new_results,
|
131 |
+
license=license,
|
132 |
+
knowledge_cutoff=knowledge_cutoff
|
133 |
+
)
|
134 |
+
|
135 |
+
def to_dict(self):
|
136 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
137 |
+
|
138 |
+
data_dict = {
|
139 |
+
# "eval_name": self.eval_name, # not a column, just a save name,
|
140 |
+
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
141 |
+
# AutoEvalColumn.rank.name: None, # placeholder for the rank
|
142 |
+
AutoEvalColumn.model.name: self.model,
|
143 |
+
# AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
|
144 |
+
# AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
|
145 |
+
|
146 |
+
# AutoEvalColumn.score_overall.name: float(self.results.get("OVERALL").get("Average Score", None)),
|
147 |
+
# AutoEvalColumn.score_math_algebra.name: float(self.results.get("Algebra").get("Average Score", None)),
|
148 |
+
# AutoEvalColumn.score_math_geometry.name: float(self.results.get("Geometry").get("Average Score", None)),
|
149 |
+
# AutoEvalColumn.score_math_probability.name: float(self.results.get("Probability").get("Average Score", None)),
|
150 |
+
# AutoEvalColumn.score_reason_logical.name: float(self.results.get("Logical").get("Average Score", None)),
|
151 |
+
# AutoEvalColumn.score_reason_social.name: float(self.results.get("Social").get("Average Score", None)),
|
152 |
+
|
153 |
+
# AutoEvalColumn.sd_overall.name: float(self.results.get("OVERALL").get("Standard Deviation", None)),
|
154 |
+
# AutoEvalColumn.sd_math_algebra.name: float(self.results.get("Algebra").get("Standard Deviation", None)),
|
155 |
+
# AutoEvalColumn.sd_math_geometry.name: float(self.results.get("Geometry").get("Standard Deviation", None)),
|
156 |
+
# AutoEvalColumn.sd_math_probability.name: float(self.results.get("Probability").get("Standard Deviation", None)),
|
157 |
+
# AutoEvalColumn.sd_reason_logical.name: float(self.results.get("Logical").get("Standard Deviation", None)),
|
158 |
+
# AutoEvalColumn.sd_reason_social.name: float(self.results.get("Social").get("Standard Deviation", None)),
|
159 |
+
|
160 |
+
# AutoEvalColumn.rank_overall.name: int(self.results.get("OVERALL").get("Rank", None)),
|
161 |
+
# AutoEvalColumn.rank_math_algebra.name: int(self.results.get("Algebra").get("Rank", None)),
|
162 |
+
# AutoEvalColumn.rank_math_geometry.name: int(self.results.get("Geometry").get("Rank", None)),
|
163 |
+
# AutoEvalColumn.rank_math_probability.name: int(self.results.get("Probability").get("Rank", None)),
|
164 |
+
# AutoEvalColumn.rank_reason_logical.name: int(self.results.get("Logical").get("Rank", None)),
|
165 |
+
# AutoEvalColumn.rank_reason_social.name: int(self.results.get("Social").get("Rank", None)),
|
166 |
+
|
167 |
+
AutoEvalColumn.score_overall.name: self.results.get("OVERALL").get("Average Score", None),
|
168 |
+
AutoEvalColumn.score_math_algebra.name: self.results.get("Algebra").get("Average Score", None),
|
169 |
+
AutoEvalColumn.score_math_geometry.name: self.results.get("Geometry").get("Average Score", None),
|
170 |
+
AutoEvalColumn.score_math_probability.name: self.results.get("Probability").get("Average Score", None),
|
171 |
+
AutoEvalColumn.score_reason_logical.name: self.results.get("Logical").get("Average Score", None),
|
172 |
+
AutoEvalColumn.score_reason_social.name: self.results.get("Social").get("Average Score", None),
|
173 |
+
|
174 |
+
AutoEvalColumn.sd_overall.name: self.results.get("OVERALL").get("Standard Deviation", None),
|
175 |
+
AutoEvalColumn.sd_math_algebra.name: self.results.get("Algebra").get("Standard Deviation", None),
|
176 |
+
AutoEvalColumn.sd_math_geometry.name: self.results.get("Geometry").get("Standard Deviation", None),
|
177 |
+
AutoEvalColumn.sd_math_probability.name: self.results.get("Probability").get("Standard Deviation", None),
|
178 |
+
AutoEvalColumn.sd_reason_logical.name: self.results.get("Logical").get("Standard Deviation", None),
|
179 |
+
AutoEvalColumn.sd_reason_social.name: self.results.get("Social").get("Standard Deviation", None),
|
180 |
+
|
181 |
+
AutoEvalColumn.rank_overall.name: self.results.get("OVERALL").get("Rank", None),
|
182 |
+
AutoEvalColumn.rank_math_algebra.name: self.results.get("Algebra").get("Rank", None),
|
183 |
+
AutoEvalColumn.rank_math_geometry.name: self.results.get("Geometry").get("Rank", None),
|
184 |
+
AutoEvalColumn.rank_math_probability.name: self.results.get("Probability").get("Rank", None),
|
185 |
+
AutoEvalColumn.rank_reason_logical.name: self.results.get("Logical").get("Rank", None),
|
186 |
+
AutoEvalColumn.rank_reason_social.name: self.results.get("Social").get("Rank", None),
|
187 |
+
|
188 |
+
AutoEvalColumn.license.name: self.license,
|
189 |
+
AutoEvalColumn.organization.name: self.org,
|
190 |
+
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
|
191 |
+
}
|
192 |
|
193 |
# for task in Tasks:
|
194 |
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
|
|
412 |
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
|
413 |
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
|
414 |
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
|
415 |
+
|
416 |
+
# all_num_results = eval_result.results
|
417 |
+
|
418 |
+
# def get_terminal_values(data):
|
419 |
+
# terminal_values = []
|
420 |
+
# for key, value in data.items():
|
421 |
+
# if isinstance(value, dict):
|
422 |
+
# terminal_values.extend(get_terminal_values(value))
|
423 |
+
# else:
|
424 |
+
# terminal_values.append(value)
|
425 |
+
# return terminal_values
|
426 |
+
|
427 |
+
# all_values = get_terminal_values(all_num_results)
|
428 |
|
429 |
+
# if 'N/A' in all_values:
|
430 |
+
# continue
|
431 |
+
|
432 |
eval_name = eval_result.eval_name
|
433 |
eval_results[eval_name] = eval_result
|
434 |
|
|
|
441 |
results = []
|
442 |
for v in eval_results.values():
|
443 |
# print(v.to_dict())
|
444 |
+
# exit()
|
445 |
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
|
446 |
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
|
447 |
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
|
src/populate.py
CHANGED
@@ -9,44 +9,53 @@ from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_resul
|
|
9 |
|
10 |
|
11 |
|
12 |
-
def get_overview_leaderboard_df(results_path: str) -> pd.DataFrame:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
|
30 |
|
31 |
-
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame:
|
32 |
"""Creates a dataframe from all the individual experiment results"""
|
33 |
raw_data = get_raw_model_results(results_path)
|
34 |
all_data_json = [v.to_dict() for v in raw_data]
|
35 |
|
36 |
df = pd.DataFrame.from_records(all_data_json)
|
37 |
-
|
38 |
-
df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# print(cols) # []
|
40 |
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
|
41 |
# exit()
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
# filter out if any of the benchmarks have not been produced
|
49 |
-
|
50 |
return df
|
51 |
|
52 |
|
|
|
9 |
|
10 |
|
11 |
|
12 |
+
# def get_overview_leaderboard_df(results_path: str) -> pd.DataFrame:
|
13 |
+
# """Creates a dataframe from all the individual experiment results"""
|
14 |
+
# raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
+
# all_data_json = [v.to_dict() for v in raw_data]
|
16 |
|
17 |
+
# df = pd.DataFrame.from_records(all_data_json)
|
18 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
19 |
+
# for col in cols:
|
20 |
+
# if col not in df.columns:
|
21 |
+
# df[col] = None
|
22 |
+
# else:
|
23 |
+
# df[col] = df[col].round(decimals=2)
|
24 |
|
25 |
+
# # filter out if any of the benchmarks have not been produced
|
26 |
+
# df = df[has_no_nan_values(df, benchmark_cols)]
|
27 |
+
# return df
|
28 |
|
29 |
|
30 |
|
31 |
+
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[], rank_col: list=[]) -> pd.DataFrame:
|
32 |
"""Creates a dataframe from all the individual experiment results"""
|
33 |
raw_data = get_raw_model_results(results_path)
|
34 |
all_data_json = [v.to_dict() for v in raw_data]
|
35 |
|
36 |
df = pd.DataFrame.from_records(all_data_json)
|
37 |
+
|
38 |
+
df = df[benchmark_cols]
|
39 |
+
df = df.dropna(subset=benchmark_cols)
|
40 |
+
|
41 |
+
if rank_col:
|
42 |
+
df = df.sort_values(by=[rank_col[0]], ascending=True)
|
43 |
+
|
44 |
+
# df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
|
45 |
+
# df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
|
46 |
# print(cols) # []
|
47 |
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
|
48 |
# exit()
|
49 |
+
# only keep the columns that are in the cols list
|
50 |
+
|
51 |
+
# for col in cols:
|
52 |
+
# if col not in df.columns:
|
53 |
+
# df[col] = None
|
54 |
+
# else:
|
55 |
+
# df = df[cols].round(decimals=2)
|
56 |
|
57 |
# filter out if any of the benchmarks have not been produced
|
58 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
59 |
return df
|
60 |
|
61 |
|