import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, SUB_TITLE, EXTERNAL_LINKS, COMING_SOON_TEXT ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=None, # SelectColumns( # default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], # cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], # label="Select Columns to Display:", # ), # search_columns=None, # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], placeholder="Search by the model name", label="Searching"), hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=None, # [ # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), # ColumnFilter( # AutoEvalColumn.params.name, # type="slider", # min=0.01, # max=150, # label="Select the number of parameters (B)", # ), # ColumnFilter( # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True # ), # ], # bool_checkboxgroup_label="Hide models", interactive=False, ) # model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl" # model_result_path = "./src/results/models_2024-10-08-03:10:26.811832.jsonl" # model_result_path = "./src/results/models_2024-10-08-03:25:44.801310.jsonl" model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl" # model_leaderboard_df = get_model_leaderboard_df(model_result_path) def overall_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=None, search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], placeholder="Search by the model name", label="Searching"), hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=None, interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.HTML(SUB_TITLE) gr.HTML(EXTERNAL_LINKS) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ # AutoEvalColumn.rank_overall.name, AutoEvalColumn.model.name, AutoEvalColumn.rank_overall.name, AutoEvalColumn.rank_math_algebra.name, AutoEvalColumn.rank_math_geometry.name, AutoEvalColumn.rank_math_probability.name, AutoEvalColumn.rank_reason_logical.name, AutoEvalColumn.rank_reason_social.name, ], rank_col=[], ) ) with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1): DESCRIPTION_TEXT = """ Overall dimension measures the comprehensive performance of LLMs across diverse tasks. We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685), coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science). """ gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_overall.name, AutoEvalColumn.model.name, AutoEvalColumn.score_overall.name, AutoEvalColumn.sd_overall.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_overall.name], )) with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2): DESCRIPTION_TEXT=""" Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. We prioritize recent math datasets and focus on college and beyond level math questions. The current datasets include [MATH](https://arxiv.org/abs/2103.03874), [MATH-500](https://github.com/openai/prm800k/tree/main/prm800k/math_splits), [Omni](https://omni-math.github.io/), [MathQA](https://arxiv.org/abs/1905.13319), [MathBench](https://arxiv.org/abs/2405.12209), [SciBench](https://arxiv.org/abs/2307.10635), and more! We plan to include more math domains, such as calculus, number theory, and more in the future. """ gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") # leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=0, elem_classes="subtab"): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_math_algebra.name, AutoEvalColumn.model.name, AutoEvalColumn.score_math_algebra.name, AutoEvalColumn.sd_math_algebra.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_math_algebra.name], ) ) with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=1, elem_classes="subtab"): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_math_geometry.name, AutoEvalColumn.model.name, AutoEvalColumn.score_math_geometry.name, AutoEvalColumn.sd_math_geometry.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_math_geometry.name], ) ) with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=2, elem_classes="subtab"): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_math_probability.name, AutoEvalColumn.model.name, AutoEvalColumn.score_math_probability.name, AutoEvalColumn.sd_math_probability.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_math_probability.name], ) ) with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3): DESCRIPTION_TEXT = """ Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective at distinguishing between modern LLMs. Our current focus is on two challenging types of reasoning: logical reasoning and social reasoning, both of which present more meaningful and sophisticated ways to assess LLM performance. For logical reasoning, we collect datasets from [BigBench Hard (BBH)](https://arxiv.org/abs/2210.09261), [FOLIO](https://arxiv.org/abs/2209.00840), [LogiQA2.0](https://github.com/csitfun/LogiQA2.0), [PrOntoQA](https://arxiv.org/abs/2210.01240), [ReClor](https://arxiv.org/abs/2002.04326). For social reasoning, we collect datasets from [MMToM-QA](https://arxiv.org/abs/2401.08743), [BigToM](https://arxiv.org/abs/2306.15448), [Adv-CSFB](https://arxiv.org/abs/2305.14763), [SocialIQA](https://arxiv.org/abs/1904.09728), [NormBank](https://arxiv.org/abs/2305.17008). """ gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=0, elem_classes="subtab"): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_reason_logical.name, AutoEvalColumn.model.name, AutoEvalColumn.score_reason_logical.name, AutoEvalColumn.sd_reason_logical.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_reason_logical.name], ) ) with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=1, elem_classes="subtab"): leaderboard = overall_leaderboard( get_model_leaderboard_df( model_result_path, benchmark_cols=[ AutoEvalColumn.rank_reason_social.name, AutoEvalColumn.model.name, AutoEvalColumn.score_reason_social.name, AutoEvalColumn.sd_reason_social.name, AutoEvalColumn.license.name, AutoEvalColumn.organization.name, AutoEvalColumn.knowledge_cutoff.name, ], rank_col=[AutoEvalColumn.rank_reason_social.name], ) ) with gr.TabItem("🔬 Science", elem_id="science-table", id=4): CURRENT_TEXT = """ # Coming soon! We are working on adding more tasks on scientific domains to the leaderboard. The forthcoming ones are biology, chemistry, and physics. We have diversely and aggressively collected recent science datasets, including but not limited to [GPQA](https://arxiv.org/abs/2311.12022), [JEEBench](https://aclanthology.org/2023.emnlp-main.468/), [MMLU-Pro](https://arxiv.org/abs/2406.01574), [OlympiadBench](https://arxiv.org/abs/2402.14008), [SciBench](https://arxiv.org/abs/2307.10635), [SciEval](https://arxiv.org/abs/2308.13149). """ gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") with gr.TabItem(" Coding", elem_id="coding-table", id=5): CURRENT_TEXT = """ # Coming soon! We are working on adding more tasks in coding domains to the leaderboard. The forthcoming ones focus on Python, Java, and C++, with plans to expand to more languages. We collect a variety of recent coding datasets, including [HumanEval](https://huggingface.co/datasets/openai/openai_humaneval), [MBPP](https://huggingface.co/datasets/google-research-datasets/mbpp), [HumanEvalFix](https://huggingface.co/datasets/bigcode/humanevalpack), [newly crawled LeetCode data](https://leetcode.com/problemset/), filtered code-related queries from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) and more! Our efforts also include synthesizing new code-related queries to ensure diversity! """ gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=6): ABOUT_TEXT = """ """ gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") ''' with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Column(): with gr.Accordion( f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False, ): with gr.Row(): finished_eval_table = gr.components.Dataframe( value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False, ): with gr.Row(): running_eval_table = gr.components.Dataframe( value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False, ): with gr.Row(): pending_eval_table = gr.components.Dataframe( value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Row(): gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox(label="Model name") revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") model_type = gr.Dropdown( choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], label="Model type", multiselect=False, value=None, interactive=True, ) with gr.Column(): precision = gr.Dropdown( choices=[i.value.name for i in Precision if i != Precision.Unknown], label="Precision", multiselect=False, value="float16", interactive=True, ) weight_type = gr.Dropdown( choices=[i.value.name for i in WeightType], label="Weights type", multiselect=False, value="Original", interactive=True, ) base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type, ], submission_result, ) ''' with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()