Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import numpy as np | |
import jax.numpy as jnp | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
#from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import load_image | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
def image_grid(imgs, rows, cols): | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
rng = create_key(0) | |
canny_image = load_image( | |
"https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" | |
) | |
prompts = "a living room with tv, sea, window" | |
negative_prompts = "fan " | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"tsungtao/controlnet-mlsd-202305011046", from_flax=True, dtype=jnp.float32 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 | |
) | |
params["controlnet"] = controlnet_params | |
num_samples = jax.device_count() | |
rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=rng, | |
num_inference_steps=50, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
output_images = image_grid(output_images, num_samples // 4, 4) | |
output_images.save("tao/image.png") | |
#gr.Interface.load("models/tsungtao/controlnet-mlsd-202305011046").launch() | |
def infer(prompt, negative_prompt, image): | |
# implement your inference function here | |
return output_image | |
gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image").launch() |