import gradio as gr
import jax
import numpy as np
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def canny_filter(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
edges_image = cv2.Canny(blurred_image, 50, 200)
return edges_image
# load control net and stable diffusion v1-5
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"tsungtao/controlnet-mlsd-202305011046", from_flax=True, dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
im = canny_filter(image)
canny_image = Image.fromarray(im)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
title = "ControlNet MLSD"
description = "This is a demo on ControlNet MLSD."
examples = [["living room with TV", "fan", "image_01.jpg"],
["a living room with hardwood floors and a flat screen tv", "sea", "image_02.jpg"],
["a living room with a fireplace and a view of the ocean", "pendant", "image_03.jpg"]
]
with gr.Blocks(css=".gradio-container {background: url('file=sky.jpg')}") as demo:
gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery", title = title, description = description, examples = examples, theme='gradio/soft')
gr.Markdown(
"""
* * *
* [Dataset](https://huggingface.co/datasets/tsungtao/diffusers-testing)
* [Diffusers model](https://huggingface.co/runwayml/stable-diffusion-v1-5)
* [Training Report](https://wandb.ai/tsungtao0311/controlnet-mlsd-202305011046/runs/ezfn6bkz?workspace=user-tsungtao0311)
""")
with gr.Accordion("Open for More!"):
gr.Markdown("Look at me...")
gr.Markdown("")
gr.Markdown("")
gr.Markdown("* * *")
gr.Markdown("")
demo.launch()