Spaces:
Sleeping
Sleeping
Create mdx.py
Browse files
mdx.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import onnxruntime as ort
|
3 |
+
from tqdm import tqdm
|
4 |
+
import warnings
|
5 |
+
import numpy as np
|
6 |
+
import hashlib
|
7 |
+
import queue
|
8 |
+
import threading
|
9 |
+
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
+
|
12 |
+
class MDX_Model:
|
13 |
+
def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
|
14 |
+
self.dim_f = dim_f
|
15 |
+
self.dim_t = dim_t
|
16 |
+
self.dim_c = 4
|
17 |
+
self.n_fft = n_fft
|
18 |
+
self.hop = hop
|
19 |
+
self.stem_name = stem_name
|
20 |
+
self.compensation = compensation
|
21 |
+
|
22 |
+
self.n_bins = self.n_fft//2+1
|
23 |
+
self.chunk_size = hop * (self.dim_t-1)
|
24 |
+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
|
25 |
+
|
26 |
+
out_c = self.dim_c
|
27 |
+
|
28 |
+
self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(device)
|
29 |
+
|
30 |
+
def stft(self, x):
|
31 |
+
x = x.reshape([-1, self.chunk_size])
|
32 |
+
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
|
33 |
+
x = torch.view_as_real(x)
|
34 |
+
x = x.permute([0,3,1,2])
|
35 |
+
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,4,self.n_bins,self.dim_t])
|
36 |
+
return x[:,:,:self.dim_f]
|
37 |
+
|
38 |
+
def istft(self, x, freq_pad=None):
|
39 |
+
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
|
40 |
+
x = torch.cat([x, freq_pad], -2)
|
41 |
+
# c = 4*2 if self.target_name=='*' else 2
|
42 |
+
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
|
43 |
+
x = x.permute([0,2,3,1])
|
44 |
+
x = x.contiguous()
|
45 |
+
x = torch.view_as_complex(x)
|
46 |
+
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
|
47 |
+
return x.reshape([-1,2,self.chunk_size])
|
48 |
+
|
49 |
+
|
50 |
+
class MDX:
|
51 |
+
|
52 |
+
DEFAULT_SR = 44100
|
53 |
+
# Unit: seconds
|
54 |
+
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
|
55 |
+
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
|
56 |
+
|
57 |
+
DEFAULT_PROCESSOR = 0
|
58 |
+
|
59 |
+
def __init__(self, model_path:str, params:MDX_Model, processor=DEFAULT_PROCESSOR):
|
60 |
+
|
61 |
+
# Set the device and the provider (CPU or CUDA)
|
62 |
+
self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
|
63 |
+
self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
|
64 |
+
|
65 |
+
self.model = params
|
66 |
+
|
67 |
+
# Load the ONNX model using ONNX Runtime
|
68 |
+
self.ort = ort.InferenceSession(model_path, providers=self.provider)
|
69 |
+
# Preload the model for faster performance
|
70 |
+
self.ort.run(None, {'input':torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
|
71 |
+
self.process = lambda spec:self.ort.run(None, {'input': spec.cpu().numpy()})[0]
|
72 |
+
|
73 |
+
self.prog = None
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
def get_hash(model_path):
|
77 |
+
try:
|
78 |
+
with open(model_path, 'rb') as f:
|
79 |
+
f.seek(- 10000 * 1024, 2)
|
80 |
+
model_hash = hashlib.md5(f.read()).hexdigest()
|
81 |
+
except:
|
82 |
+
model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
|
83 |
+
|
84 |
+
return model_hash
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
|
88 |
+
"""
|
89 |
+
Segment or join segmented wave array
|
90 |
+
Args:
|
91 |
+
wave: (np.array) Wave array to be segmented or joined
|
92 |
+
combine: (bool) If True, combines segmented wave array. If False, segments wave array.
|
93 |
+
chunk_size: (int) Size of each segment (in samples)
|
94 |
+
margin_size: (int) Size of margin between segments (in samples)
|
95 |
+
Returns:
|
96 |
+
numpy array: Segmented or joined wave array
|
97 |
+
"""
|
98 |
+
|
99 |
+
if combine:
|
100 |
+
processed_wave = None # Initializing as None instead of [] for later numpy array concatenation
|
101 |
+
for segment_count, segment in enumerate(wave):
|
102 |
+
start = 0 if segment_count == 0 else margin_size
|
103 |
+
end = None if segment_count == len(wave)-1 else -margin_size
|
104 |
+
if margin_size == 0:
|
105 |
+
end = None
|
106 |
+
if processed_wave is None: # Create array for first segment
|
107 |
+
processed_wave = segment[:, start:end]
|
108 |
+
else: # Concatenate to existing array for subsequent segments
|
109 |
+
processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)
|
110 |
+
|
111 |
+
else:
|
112 |
+
processed_wave = []
|
113 |
+
sample_count = wave.shape[-1]
|
114 |
+
|
115 |
+
if chunk_size <= 0 or chunk_size > sample_count:
|
116 |
+
chunk_size = sample_count
|
117 |
+
|
118 |
+
if margin_size > chunk_size:
|
119 |
+
margin_size = chunk_size
|
120 |
+
|
121 |
+
for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
|
122 |
+
|
123 |
+
margin = 0 if segment_count == 0 else margin_size
|
124 |
+
end = min(skip+chunk_size+margin_size, sample_count)
|
125 |
+
start = skip-margin
|
126 |
+
|
127 |
+
cut = wave[:,start:end].copy()
|
128 |
+
processed_wave.append(cut)
|
129 |
+
|
130 |
+
if end == sample_count:
|
131 |
+
break
|
132 |
+
|
133 |
+
return processed_wave
|
134 |
+
|
135 |
+
def pad_wave(self, wave):
|
136 |
+
"""
|
137 |
+
Pad the wave array to match the required chunk size
|
138 |
+
Args:
|
139 |
+
wave: (np.array) Wave array to be padded
|
140 |
+
Returns:
|
141 |
+
tuple: (padded_wave, pad, trim)
|
142 |
+
- padded_wave: Padded wave array
|
143 |
+
- pad: Number of samples that were padded
|
144 |
+
- trim: Number of samples that were trimmed
|
145 |
+
"""
|
146 |
+
n_sample = wave.shape[1]
|
147 |
+
trim = self.model.n_fft//2
|
148 |
+
gen_size = self.model.chunk_size-2*trim
|
149 |
+
pad = gen_size - n_sample%gen_size
|
150 |
+
|
151 |
+
# Padded wave
|
152 |
+
wave_p = np.concatenate((np.zeros((2,trim)), wave, np.zeros((2,pad)), np.zeros((2,trim))), 1)
|
153 |
+
|
154 |
+
mix_waves = []
|
155 |
+
for i in range(0, n_sample+pad, gen_size):
|
156 |
+
waves = np.array(wave_p[:, i:i+self.model.chunk_size])
|
157 |
+
mix_waves.append(waves)
|
158 |
+
|
159 |
+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
|
160 |
+
|
161 |
+
return mix_waves, pad, trim
|
162 |
+
|
163 |
+
def _process_wave(self, mix_waves, trim, pad, q:queue.Queue, _id:int):
|
164 |
+
"""
|
165 |
+
Process each wave segment in a multi-threaded environment
|
166 |
+
Args:
|
167 |
+
mix_waves: (torch.Tensor) Wave segments to be processed
|
168 |
+
trim: (int) Number of samples trimmed during padding
|
169 |
+
pad: (int) Number of samples padded during padding
|
170 |
+
q: (queue.Queue) Queue to hold the processed wave segments
|
171 |
+
_id: (int) Identifier of the processed wave segment
|
172 |
+
Returns:
|
173 |
+
numpy array: Processed wave segment
|
174 |
+
"""
|
175 |
+
mix_waves = mix_waves.split(1)
|
176 |
+
with torch.no_grad():
|
177 |
+
pw = []
|
178 |
+
for mix_wave in mix_waves:
|
179 |
+
self.prog.update()
|
180 |
+
spec = self.model.stft(mix_wave)
|
181 |
+
processed_spec = torch.tensor(self.process(spec))
|
182 |
+
processed_wav = self.model.istft(processed_spec.to(self.device))
|
183 |
+
processed_wav = processed_wav[:,:,trim:-trim].transpose(0,1).reshape(2, -1).cpu().numpy()
|
184 |
+
pw.append(processed_wav)
|
185 |
+
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
|
186 |
+
q.put({_id:processed_signal})
|
187 |
+
return processed_signal
|
188 |
+
|
189 |
+
def process_wave(self, wave:np.array, mt_threads=1):
|
190 |
+
"""
|
191 |
+
Process the wave array in a multi-threaded environment
|
192 |
+
Args:
|
193 |
+
wave: (np.array) Wave array to be processed
|
194 |
+
mt_threads: (int) Number of threads to be used for processing
|
195 |
+
Returns:
|
196 |
+
numpy array: Processed wave array
|
197 |
+
"""
|
198 |
+
self.prog = tqdm(total=0)
|
199 |
+
chunk = wave.shape[-1]//mt_threads
|
200 |
+
waves = self.segment(wave, False, chunk)
|
201 |
+
|
202 |
+
# Create a queue to hold the processed wave segments
|
203 |
+
q = queue.Queue()
|
204 |
+
threads = []
|
205 |
+
for c, batch in enumerate(waves):
|
206 |
+
mix_waves, pad, trim = self.pad_wave(batch)
|
207 |
+
self.prog.total = len(mix_waves)*mt_threads
|
208 |
+
thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
|
209 |
+
thread.start()
|
210 |
+
threads.append(thread)
|
211 |
+
for thread in threads:
|
212 |
+
thread.join()
|
213 |
+
self.prog.close()
|
214 |
+
|
215 |
+
processed_batches = []
|
216 |
+
while not q.empty():
|
217 |
+
processed_batches.append(q.get())
|
218 |
+
processed_batches = [list(wave.values())[0] for wave in sorted(processed_batches, key=lambda d: list(d.keys())[0])]
|
219 |
+
assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
|
220 |
+
return self.segment(processed_batches, True, chunk)
|