Spaces:
Build error
Build error
File size: 32,016 Bytes
ac31431 026623a ac31431 06429f7 ac31431 06429f7 ac31431 06429f7 ac31431 06429f7 ac31431 026623a ac31431 06429f7 ac31431 06429f7 ac31431 31d95fa ac31431 ffd4ba7 ac31431 9f2db4b ac31431 576e03c ac31431 576e03c ac31431 cd7d79e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
import os
import numpy as np
import datetime
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field
import io
import spaces
import base64
from PIL import Image
import gradio as gr
import time
import hashlib
from utils import build_logger
from conversation import conv_seed_llama2
import hydra
import pyrootutils
import torch
import re
import time
from omegaconf import OmegaConf
from flask import Flask
import json
from typing import Optional
import cv2
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
from src.data.any_res import process_anyres_image
BOI_TOKEN = '<img>'
BOP_TOKEN = '<patch>'
EOI_TOKEN = '</img>'
EOP_TOKEN = '</patch>'
IMG_TOKEN = '<img_{:05d}>'
IMG_FLAG = '<image>'
num_img_in_tokens = 64
num_img_out_tokens = 64
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2', '2x3', '3x2', '2x4', '4x2']
base_resolution = 448
app = Flask(__name__)
def decode_image(encoded_image: str) -> Image:
decoded_bytes = base64.b64decode(encoded_image.encode('utf-8'))
buffer = io.BytesIO(decoded_bytes)
image = Image.open(buffer)
return image
def encode_image(image: Image.Image, format: str = 'PNG') -> str:
with io.BytesIO() as buffer:
image.save(buffer, format=format)
encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
return encoded_image
@dataclass
class Arguments:
image_transform: Optional[str] = field(default='configs/processer/qwen_448_transform.yaml', metadata={"help": "config path of image transform"})
tokenizer: Optional[str] = field(default='configs/tokenizer/clm_llama_tokenizer_224loc_anyres.yaml', metadata={"help": "config path of tokenizer used to initialize tokenizer"})
llm: Optional[str] = field(default='configs/clm_models/llm_seed_x_i.yaml', metadata={"help": "config path of llm"})
visual_encoder: Optional[str] = field(default='configs/visual_encoder/qwen_vitg_448.yaml', metadata={"help": "config path of visual encoder"})
sd_adapter: Optional[str] = field(default='configs/sdxl_adapter/sdxl_qwen_vit_resampler_l4_q64_pretrain_no_normalize.yaml', metadata={"help": "config path of sd adapter"})
agent: Optional[str] = field(default='configs/clm_models/agent_seed_x_i.yaml', metadata={"help": "config path of agent model"})
diffusion_path: Optional[str] = field(default='stabilityai/stable-diffusion-xl-base-1.0', metadata={"help": "diffusion model path"})
has_bbox: Optional[bool] = field(default=True, metadata={"help": "visualize the box"})
port: Optional[str] = field(default=80, metadata={"help": "network port"})
llm_device: Optional[str] = field(default='cuda:0', metadata={"help": "llm device"})
vit_sd_device: Optional[str] = field(default='cuda:0', metadata={"help": "sd and vit device"})
dtype: Optional[str] = field(default='fp16', metadata={"help": "mix percision"})
multi_resolution: Optional[bool] = field(default=True, metadata={"help": "multi resolution"})
parser = transformers.HfArgumentParser(Arguments)
args, = parser.parse_args_into_dataclasses()
def extract_box(output_str):
boxes = re.findall('(.*?)<box_end>', output_str)
if len(boxes) >0:
bboxes = [[int(num) for num in re.findall('<loc-(\d+)>', box)] for box in boxes]
else:
bboxes = None
return bboxes
def visualize_bbox(image, bboxes):
img_width, img_height = image.size
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for bbox in bboxes:
x_center, y_center, box_width, box_height = bbox
x_center = x_center / 224 * img_width
y_center = y_center / 224 * img_height
box_width = box_width /224 * img_width
box_height = box_height / 224 * img_height
x1 = int(x_center - box_width / 2)
y1 = int(y_center - box_height / 2)
x2 = int(x_center + box_width / 2)
y2 = int(y_center + box_height / 2)
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
return image
class LLMService:
def __init__(self, args) -> None:
self.llm_device = args.llm_device
self.vit_sd_device = args.vit_sd_device
dtype = args.dtype
if dtype == 'fp16':
self.dtype = torch.float16
elif dtype == 'bf16':
self.dtype = torch.bfloat16
else:
raise ValueError
image_transform_cfg = OmegaConf.load(args.image_transform)
self.image_transform = hydra.utils.instantiate(image_transform_cfg)
tokenizer_cfg = OmegaConf.load(args.tokenizer)
self.tokenizer = hydra.utils.instantiate(tokenizer_cfg)
visual_encoder_cfg = OmegaConf.load(args.visual_encoder)
self.visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
self.visual_encoder.eval().to(self.vit_sd_device, dtype=self.dtype)
print('Init visual encoder done')
llm_cfg = OmegaConf.load(args.llm)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=self.dtype)
print('Init llm done.')
agent_cfg = OmegaConf.load(args.agent)
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
self.agent.eval().to(self.llm_device, dtype=self.dtype)
print('Init agent mdoel Done')
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(args.diffusion_path, subfolder="vae").to(self.vit_sd_device, dtype=self.dtype)
unet = UNet2DConditionModel.from_pretrained(args.diffusion_path, subfolder="unet").to(self.vit_sd_device, dtype=self.dtype)
sd_adapter_cfg = OmegaConf.load(args.sd_adapter)
self.sd_adapter = hydra.utils.instantiate(sd_adapter_cfg, unet=unet).eval().to(self.vit_sd_device, dtype=self.dtype)
# self.sd_adapter.init_pipe(vae=vae,
# scheduler=noise_scheduler,
# visual_encoder=self.visual_encoder.cpu(),
# image_transform=self.image_transform,
# discrete_model=None,
# dtype=self.dtype,
# device="cpu")
self.sd_adapter.init_pipe(vae=vae,
scheduler=noise_scheduler,
visual_encoder=self.visual_encoder,
image_transform=self.image_transform,
discrete_model=None,
dtype=self.dtype,
device=self.vit_sd_device)
print('Init sd adapter pipe done.')
self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)
self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
self.bop_token_id = self.tokenizer.encode(BOP_TOKEN, add_special_tokens=False)[0]
self.eop_token_id = self.tokenizer.encode(EOP_TOKEN, add_special_tokens=False)[0]
self.multi_resolution = args.multi_resolution
if self.multi_resolution:
self.base_resolution = base_resolution
grid_pinpoints = []
for scale in resolution_grids:
s1, s2 = scale.split('x')
grid_pinpoints.append([int(s1)*base_resolution, int(s2)*base_resolution])
self.grid_pinpoints = grid_pinpoints
service = LLMService(args)
@spaces.GPU
def generate(text_list, image_list, max_new_tokens, force_boi, force_bbox):
with torch.no_grad():
text_list = text_list.split(IMG_FLAG)
top_p = 0.5
assert len(text_list) == len(image_list) + 1
image_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
input_images = []
if len(image_list) > 0:
image_tensor_list = []
embeds_cmp_mask = []
embeds_gen_mask = []
if service.multi_resolution:
patch_pos = []
image_patch_length = []
image_size_list = []
for idx, image_item in enumerate(image_list):
if isinstance(image_item, str):
image = decode_image(image_item)
print('after decode image size:', image.size)
input_images.append(image)
if service.multi_resolution:
image_size_list.append(image.size)
print('image size:', image.size)
image_tensor, patch_pos_tensor = process_anyres_image(image, service.image_transform, service.grid_pinpoints, service.base_resolution)
image_tensor_list.append(image_tensor)
patch_pos.append(patch_pos_tensor)
image_patch_length.append(image_tensor.shape[0])
print('image_patch_length', image_patch_length)
embeds_cmp_mask.extend([True]*image_tensor.shape[0])
embeds_gen_mask.extend([False]*image_tensor.shape[0])
else:
image_tensor = service.image_transform(image)
image_tensor_list.append(image_tensor)
embeds_cmp_mask.append(True)
embeds_gen_mask.append(False)
else:
raise ValueError
if service.multi_resolution:
pixel_values = torch.cat(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
patch_position = torch.cat(patch_pos, dim=0)
image_tokens_list = []
for patch_length in image_patch_length:
image_tokens = ''
for _ in range(patch_length-1):
image_tokens += BOP_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
image_tokens += BOI_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN
image_tokens_list.append(image_tokens)
else:
pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
image_embeds = service.visual_encoder(pixel_values)
image_embeds = image_embeds.to(service.llm_device)
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
embeds_gen_mask = torch.tensor(embeds_gen_mask, dtype=torch.bool).to(service.llm_device)
else:
image_embeds = None
patch_position = 0
embeds_cmp_mask = None
embeds_gen_mask = None
if service.multi_resolution:
input_text = ''
for i, c in enumerate(text_list[:-1]):
input_text += c + image_tokens_list[i]
input_text += text_list[-1]
else:
input_text = image_tokens.join(text_list)
if force_boi:
input_text = input_text + BOI_TOKEN
if force_bbox:
input_text = input_text + '[[ <box_start>'
print('input_text:', input_text)
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
input_ids = [service.tokenizer.bos_token_id] + input_ids
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
ids_gen_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
if service.multi_resolution:
boi_indices = torch.where(torch.logical_or(input_ids == service.boi_token_id, input_ids == service.bop_token_id))[0].tolist()
eoi_indices = torch.where(torch.logical_or(input_ids == service.eoi_token_id, input_ids == service.eop_token_id))[0].tolist()
else:
boi_indices = torch.where(input_ids == service.boi_token_id)[0].tolist()
eoi_indices = torch.where(input_ids == service.eoi_token_id)[0].tolist()
for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
ids_cmp_mask[boi_idx + 1:eoi_idx] = True
input_ids = input_ids.unsqueeze(0)
ids_cmp_mask = ids_cmp_mask.unsqueeze(0)
ids_gen_mask = ids_gen_mask.unsqueeze(0)
error_msg = []
if service.multi_resolution:
output = service.agent.generate(
tokenizer=service.tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
patch_positions=patch_position,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
num_img_gen_tokens=num_img_out_tokens,
max_new_tokens=max_new_tokens,
dtype=service.dtype,
device=service.llm_device,
top_p=top_p,
)
else:
output = service.agent.generate(
tokenizer=service.tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
num_img_gen_tokens=num_img_out_tokens,
max_new_tokens=max_new_tokens,
dtype=service.dtype,
device=service.llm_device,
top_p=top_p,
)
gen_imgs_base64_list = []
generated_text = output['text']
generated_text = generated_text.replace(EOI_TOKEN, IMG_FLAG).replace(service.tokenizer.eos_token, '')
if output['has_img_output']:
# print('loading visual encoder and llm to CPU, and sd to GPU')
# a = time.time()
# service.agent = service.agent.cpu()
# service.sd_adapter = service.sd_adapter.to(service.vit_sd_device, dtype=service.dtype)
# print("Loading finished: ", time.time() - a)
img_gen_feat = output['img_gen_feat'].to(service.vit_sd_device, dtype=service.dtype)
for img_idx in range(output['num_gen_imgs']):
img_feat = img_gen_feat[img_idx:img_idx + 1]
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
image_base64 = encode_image(generated_image)
gen_imgs_base64_list.append(image_base64)
# print('loading visual encoder and llm to GPU, and sd to CPU')
# a = time.time()
# service.sd_adapter = service.sd_adapter.cpu()
# service.visual_encoder = service.visual_encoder.to(service.vit_sd_device, dtype=service.dtype)
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
# print("Loading finished: ", time.time() - a)
if args.has_bbox:
bboxes = extract_box(generated_text)
if bboxes is not None and len(input_images) > 0:
image_viz = visualize_bbox(input_images[0], bboxes)
image_base64 = encode_image(image_viz)
gen_imgs_base64_list.append(image_base64)
generated_text = re.sub(r'\[\[ <box_start>.*?<box_end>.*?\]\]', 'the green bounding box', generated_text)
generated_text += IMG_FLAG
print(input_text + generated_text)
return {'text': generated_text, 'images': gen_imgs_base64_list, 'error_msg': error_msg}
def http_bot(dialog_state, input_state, max_new_tokens, max_turns, force_image_gen, force_bbox,
request: gr.Request):
print('input_state:', input_state)
if len(dialog_state.messages) == 0 or dialog_state.messages[-1]['role'] != dialog_state.roles[0] or len(
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
if len(dialog_state.messages) > max_turns * 2:
output_state = init_input_state()
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
input_state = init_input_state()
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 3 + (enable_btn,)
prompt = dialog_state.get_prompt()
text = prompt['text']
max_new_tokens = int(max_new_tokens)
images = prompt['images']
force_boi = force_image_gen
force_bbox = force_bbox
results = generate(text, images, max_new_tokens, force_boi, force_bbox)
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
output_state = init_input_state()
image_dir = get_conv_image_dir()
output_state['text'] = results['text']
for image_base64 in results['images']:
if image_base64 == '':
image_path = ''
else:
image = decode_image(image_base64)
image = image.convert('RGB')
image_path = get_image_name(image=image, image_dir=image_dir)
if not os.path.exists(image_path):
image.save(image_path)
output_state['images'].append(image_path)
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
vote_last_response(dialog_state, 'common', request)
input_state = init_input_state()
chatbot = update_error_msg(dialog_state.to_gradio_chatbot(), results['error_msg'])
return (dialog_state, input_state, chatbot) + (enable_btn,) * 4
IMG_FLAG = '<image>'
LOGDIR = 'log'
logger = build_logger("gradio_seed_x", LOGDIR)
headers = {"User-Agent": "SEED-X Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
conv_seed_llama = conv_seed_llama2
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_conv_image_dir():
name = os.path.join(LOGDIR, 'images')
os.makedirs(name, exist_ok=True)
return name
def get_image_name(image, image_dir=None):
buffer = io.BytesIO()
image.save(buffer, format='PNG')
image_bytes = buffer.getvalue()
md5 = hashlib.md5(image_bytes).hexdigest()
if image_dir is not None:
image_name = os.path.join(image_dir, md5 + '.png')
else:
image_name = md5 + '.png'
return image_name
def resize_image_square(image, target_size=448):
resized_image = image.resize((target_size, target_size))
return resized_image
def resize_image(image, max_size=512):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_height = max_size
new_width = int(new_height * aspect_ratio)
resized_image = image.resize((new_width, new_height))
return resized_image
def center_crop_image(image, max_aspect_ratio=1.5):
width, height = image.size
aspect_ratio = max(width, height) / min(width, height)
if aspect_ratio >= max_aspect_ratio:
if width > height:
new_width = int(height * max_aspect_ratio)
left = (width - new_width) // 2
right = (width + new_width) // 2
top = 0
bottom = height
else:
new_height = int(width * max_aspect_ratio)
left = 0
right = width
top = (height - new_height) // 2
bottom = (height + new_height) // 2
cropped_image = image.crop((left, top, right, bottom))
return cropped_image
else:
return image
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return (disable_btn,) * 2
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return (disable_btn,) * 2
def regenerate(dialog_state, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
if dialog_state.messages[-1]['role'] == dialog_state.roles[1]:
dialog_state.messages.pop()
return (
dialog_state,
dialog_state.to_gradio_chatbot(),
) + (disable_btn,) * 4
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
dialog_state = conv_seed_llama.copy()
input_state = init_input_state()
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def init_input_state():
return {'images': [], 'text': ''}
def add_text(dialog_state, input_state, text, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}.")
if text is None or len(text) == 0:
return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
input_state['text'] += text
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
dialog_state.messages[-1]['message'] = input_state
else:
dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})
print('add_text: ', dialog_state.to_gradio_chatbot())
return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def is_blank(image):
image_array = np.array(image)
unique_colors = np.unique(image_array)
print('unique_colors', len(unique_colors))
return len(unique_colors) == 1
def add_image(dialog_state, input_state, image, request: gr.Request):
logger.info(f"add_image. ip: {request.client.host}.")
if image is None:
return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
image = image.convert('RGB')
print('image size:', image.size)
image = center_crop_image(image, max_aspect_ratio=10)
image_dir = get_conv_image_dir()
image_path = get_image_name(image=image, image_dir=image_dir)
if not os.path.exists(image_path):
image.save(image_path)
input_state['images'].append(image_path)
input_state['text'] += IMG_FLAG
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
dialog_state.messages[-1]['message'] = input_state
else:
dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})
print('add_image:', dialog_state)
return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def update_error_msg(chatbot, error_msg):
if len(error_msg) > 0:
info = '\n-------------\nSome errors occurred during response, please clear history and restart.\n' + '\n'.join(
error_msg)
chatbot[-1][-1] = chatbot[-1][-1] + info
return chatbot
def load_demo(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
dialog_state = conv_seed_llama.copy()
input_state = init_input_state()
return dialog_state, input_state
title = ("""
# SEED-X-I
[[Paper]](https://arxiv.org/abs/2404.14396) [[Code]](https://github.com/AILab-CVC/SEED-X)
Demo of a general instruction-tuned model SEED-X-I (17B) from the foundation model SEED-X.
SEED-X-I can follow multimodal instruction (including images with **dynamic resolutions**) and make responses with **images, texts and bounding boxes** in multi-turn conversation.
SEED-X-I **does not support image manipulation**. If you want to experience **SEED-X-Edit** for high-precision image editing, please refer to [[Inference Code]](https://github.com/AILab-CVC/SEED-X).
Due to insufficient GPU memory, when generating images, we need to offload the LLM to the CPU and move the de-tokenizer to the CPU, which will **result in a long processing time**. If you want to experience the normal model inference speed, you can run [[Inference Code]](https://github.com/AILab-CVC/SEED-X) locally.
## Tips:
* Check out the conversation examples (at the bottom) for inspiration.
* You can adjust "Max History Rounds" to try a conversation with up to five rounds. For more turns, you can download our checkpoints from GitHub and deploy them locally for inference.
* Our demo supports a mix of images and texts as input. You can freely upload an image or enter text, and then click on "Add Image/Text". You can repeat the former step multiple times, and click on "Submit" for model inference at last.
* You can click "Force Image Generation" to compel the model to produce images when necessary. For example, our model might struggle to generate images when there is an excessive amount of text-only context.
* You can click "Force Bounding Box" to compel the model to produce bounding box for object detection.
* SEED-X was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
""")
css = """
img {
font-family: 'Helvetica';
font-weight: 300;
line-height: 2;
text-align: center;
width: auto;
height: auto;
display: block;
position: relative;
}
img:before {
content: " ";
display: block;
position: absolute;
top: -10px;
left: 0;
height: calc(100% + 10px);
width: 100%;
background-color: rgb(230, 230, 230);
border: 2px dotted rgb(200, 200, 200);
border-radius: 5px;
}
img:after {
content: " ";
display: block;
font-size: 16px;
font-style: normal;
font-family: FontAwesome;
color: rgb(100, 100, 100);
position: absolute;
top: 5px;
left: 0;
width: 100%;
text-align: center;
}
"""
if __name__ == '__main__':
examples_mix = [
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/bank.png?raw=true', 'Can I conntect with an advisor on Sunday?'],
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/ground.png?raw=true',
'Is there anything in the image that can protect me from catching the flu virus when I go out? Show me the location.'],
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/arrow.jpg?raw=true', 'What is the object pointed by the red arrow?'],
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/shanghai.png?raw=true', 'Where was this image taken? Explain your answer.'],
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/GPT4.png?raw=true', 'How long does it take to make GPT-4 safer?'],
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/twitter.png?raw=true',
'Please provide a comprehensive description of this image.'],
]
examples_text = [
['I want to build a two story cabin in the woods, with many commanding windows. Can you show me a picture?'],
['Use your imagination to design a concept image for Artificial General Intelligence (AGI). Show me an image.'],
[
'Can you design an illustration for “The Three-Body Problem” to depict a scene from the novel? Show me a picture.'],
[
'My four year old son loves toy trains. Can you design a fancy birthday cake for him? Please generate a picture.'],
[
'Generate an image of a portrait of young nordic girl, age 25, freckled skin, neck tatoo, blue eyes 35mm lens, photography, ultra details.'],
['Generate an impressionist painting of an astronaut in a jungle.']
]
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
dialog_state = gr.State()
input_state = gr.State()
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
image = gr.Image(type='pil', label='input_image')
with gr.Row():
text = gr.Textbox(lines=5,
show_label=False,
label='input_text',
elem_id='textbox',
placeholder="Enter text or add image, and press submit,", container=False)
with gr.Row():
add_image_btn = gr.Button("Add Image")
add_text_btn = gr.Button("Add Text")
submit_btn = gr.Button("Submit")
with gr.Row():
max_new_tokens = gr.Slider(minimum=64,
maximum=1024,
value=768,
step=64,
interactive=True,
label="Max Output Tokens")
max_turns = gr.Slider(minimum=1, maximum=9, value=3, step=1, interactive=True,
label="Max History Rounds")
force_img_gen = gr.Radio(choices=[True, False], value=False, label='Force Image Generation')
force_bbox = gr.Radio(choices=[True, False], value=False, label='Force Bounding Box')
with gr.Column(scale=7):
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-X-I", height=700)
with gr.Row():
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
with gr.Row():
with gr.Column(scale=0.7):
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
with gr.Column(scale=0.3):
gr.Examples(examples=examples_text, label='Input examples', inputs=[text], cache_examples=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
http_bot, [dialog_state, input_state, max_new_tokens, max_turns, force_img_gen, force_bbox],
[dialog_state, input_state, chatbot] + btn_list)
add_image_btn.click(add_image, [dialog_state, input_state, image],
[dialog_state, input_state, image, chatbot] + btn_list)
add_text_btn.click(add_text, [dialog_state, input_state, text],
[dialog_state, input_state, text, chatbot] + btn_list)
submit_btn.click(
add_image, [dialog_state, input_state, image], [dialog_state, input_state, image, chatbot] + btn_list).then(
add_text, [dialog_state, input_state, text],
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
http_bot,
[dialog_state, input_state, max_new_tokens, max_turns, force_img_gen, force_bbox],
[dialog_state, input_state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
demo.load(load_demo, None, [dialog_state, input_state])
demo.launch(debug=True)
|