File size: 10,988 Bytes
590af54
 
 
 
 
 
ddca281
590af54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddca281
 
590af54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import LogitsProcessorList
from .generation import AutoImageTokenGenerationProcessor
#from .utils import load_zero3_checkpoint


BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'


def cosine_loss(rec, target):
    target = target / target.norm(dim=-1, keepdim=True)
    rec = rec / rec.norm(dim=-1, keepdim=True)
    rec_loss = (1 - (target * rec).sum(-1)).mean()
    return rec_loss


class ContinuousLVLM(nn.Module):

    def __init__(self, llm, input_resampler, output_resampler, lm_loss_scale=1.0, rec_loss_scale=1.0, add_patch_pos=False, vit_down=False, mse=False) -> None:
        super().__init__()
        self.llm = llm
        self.input_resampler = input_resampler
        self.output_resampler = output_resampler
        self.lm_loss_scale = lm_loss_scale
        self.rec_loss_scale = rec_loss_scale
        self.add_patch_pos = add_patch_pos

        self.vit_down = vit_down
        if self.vit_down:
            self.pool_size = 4  
            self.stride = 4  
        
        self.mse = mse
        if self.mse:
            self.mse_loss = torch.nn.MSELoss() 

        self.add_patch_pos = add_patch_pos
        if self.add_patch_pos:
            patch_dim = self.input_resampler.embed_dim
            self.patch_pos_embed = nn.Parameter((patch_dim**-0.5) * torch.randn(4, patch_dim))


    def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask,
                ids_cmp_mask, patch_positions=None):

        input_embeds = self.llm.get_input_embeddings()(input_ids)  # bz x seq_len x dim, 4 x 160 x 4096

        bz, sq, dim = input_embeds.shape

        if image_embeds is not None:
            image_embeds_cmp = image_embeds[embeds_cmp_mask]  # num_imgs_in_batch x nq_in x dim_in, 4 x 64 x 4096
            if patch_positions is not None:
                patch_positions = patch_positions[embeds_cmp_mask]
        

        if image_embeds is not None and image_embeds_cmp.shape[0] > 0:
            image_embeds_lm = self.input_resampler(image_embeds_cmp)  # num_imgs_in_batch x nq x dim, 4 x 64 x 4096
            if self.add_patch_pos and patch_positions is not None:
                # assert patch_positions is not None
                patch_positions = patch_positions.to(
                                            image_embeds_lm
                                            ) 
                rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1)
                image_embeds_lm = image_embeds_lm + rel_pos_embed
            has_image_cmp = True
        else:
            image_embeds_cmp_fake = torch.randn(  1 , self.output_resampler.num_queries,
                                       self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
            
            # image_embeds = torch.randn(bz, self.output_resampler.num_queries,
            #                            self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
            image_embeds_lm = self.input_resampler(image_embeds_cmp_fake)
            if self.add_patch_pos:
                rel_pos_embed = self.patch_pos_embed.mean(0, keepdim=True).unsqueeze(1) # 1, 1, dim
                image_embeds_lm = image_embeds_lm + rel_pos_embed

            has_image_cmp = False

        has_image_input = image_embeds is not None and embeds_cmp_mask.sum().item() > 0
        has_image_output = image_embeds is not None and embeds_gen_mask.sum().item() > 0

        if has_image_input:
            input_embeds[ids_cmp_mask] = image_embeds_lm.reshape(-1, dim)  # eg, 128 x 4096
            # zero_loss = 0.0
        else:
            input_embeds[:1, :self.input_resampler.num_queries, :] += 0.0 * image_embeds_lm[:1, :, :]
            
        output_lm = self.llm(attention_mask=attention_mask,
                             inputs_embeds=input_embeds,
                             labels=labels,
                             output_hidden_states=True,
                             return_dict=True)
        lm_loss = output_lm['loss']

        last_hidden_state = output_lm.hidden_states[-1]  # 4 x 160 x 4096

        if has_image_output:
            target_embeds = image_embeds[embeds_gen_mask]  # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096

            if self.vit_down:
                target_embeds = target_embeds.permute(0, 2, 1) # NLD -> NDL
                target_embeds = F.avg_pool1d(target_embeds, kernel_size=self.pool_size, stride=self.stride)
                target_embeds = target_embeds.permute(0, 2, 1)

            num_imgs_for_rec = target_embeds.shape[0]
            output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1, dim)  # 128 x 4096 -> 2 x 64 x 4096

            recon_image_embeds = self.output_resampler(output_image_embeds)  # 2 x 256 x 4096

            if self.mse:
                # rec_loss = self.mse_loss(recon_image_embeds, target_embeds.detach())
                rec_loss = F.mse_loss(recon_image_embeds, target_embeds.detach()) # for zero3 compatibility
            else:
                rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach())
            
        else:
            output_image_embeds = torch.randn(1, self.input_resampler.num_queries,
                                              self.input_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) + 0.0 * last_hidden_state[0, :self.input_resampler.num_queries, :]
            recon_image_embeds = self.output_resampler(output_image_embeds)
            # target_embeds = torch.randn(1, self.output_resampler.num_queries,
            #                             self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
            # rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach) * 0.0
            rec_loss = 0.0 * recon_image_embeds.sum()

        total_loss = self.lm_loss_scale * lm_loss + self.rec_loss_scale * rec_loss

        return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss}

    def generate(self,
                 tokenizer,
                 prompt=None,
                 input_ids=None,
                 image_embeds=None,
                 embeds_cmp_mask=None,
                 ids_cmp_mask=None,
                 logits_processor=None,
                 num_img_gen_tokens=64,
                 temperature=0.7,
                 num_beams=1,
                 max_new_tokens=120,
                 top_p=0.5,
                 dtype=torch.float16,
                 device='cuda',
                 patch_positions=None):
        if logits_processor is None:
            logits_processor = LogitsProcessorList()
            logits_processor.append(
                AutoImageTokenGenerationProcessor(tokenizer=tokenizer, num_img_gen_tokens=num_img_gen_tokens))

        if prompt is not None:
            input_ids = tokenizer(prompt, return_tensors="pt").input_ids

        if isinstance(input_ids, list):
            input_ids = torch.tensor(input_ids)

        input_ids = input_ids.to(device=device)
        input_embeds = self.llm.get_input_embeddings()(input_ids)
        bz, sq, dim = input_embeds.shape

        if image_embeds is not None:
            assert embeds_cmp_mask is not None and ids_cmp_mask is not None
            with torch.no_grad():
                image_embeds_lm = self.input_resampler(image_embeds)
                if self.add_patch_pos:
                    assert patch_positions is not None
                    patch_positions = patch_positions.to(
                                                image_embeds_lm
                                                ) 
                    rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1)
                    image_embeds_lm = image_embeds_lm + rel_pos_embed
            #print(input_embeds.shape, ids_cmp_mask.shape, image_embeds_lm.shape, embeds_cmp_mask.shape)
            input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim)

        generation_config = {
            'temperature': temperature,
            'num_beams': num_beams,
            'max_new_tokens': max_new_tokens,
            'top_p': top_p,
            'do_sample': False
        }

        # generate_ids = self.llm.generate(input_ids=input_ids, **generation_config)
        output = self.llm.generate(input_ids=input_ids,
                                   inputs_embeds=input_embeds,
                                   output_hidden_states=True,
                                   return_dict_in_generate=True,
                                   logits_processor=logits_processor,
                                   **generation_config)

        generate_ids = output.sequences[0][input_ids.shape[1]:]
        generate_id_list = generate_ids.tolist()
        boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
        eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]

        last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states],
                                       dim=1)[0, input_ids.shape[1]:, :]

        eoi_indices = torch.where(generate_ids == eoi_token_id)[0].tolist()
        num_gen_imgs = len(eoi_indices)
        text_mask = torch.ones_like(generate_ids, dtype=torch.bool)
        has_img_output = num_gen_imgs > 0
        if has_img_output:
            img_gen_feats = []
            for eoi_idx in eoi_indices:
                img_gen_feats.append(last_hidden_states[eoi_idx - num_img_gen_tokens:eoi_idx])
                text_mask[eoi_idx - num_img_gen_tokens:eoi_idx] = False

            img_gen_feats = torch.stack(img_gen_feats)
            img_gen_feat = self.output_resampler(img_gen_feats)
        else:
            img_gen_feat = None

        text_mask[generate_ids == boi_token_id] = False
        generate_ids = generate_ids[text_mask]
        generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False)

        return {
            'text': generate_text,
            'has_img_output': has_img_output,
            'img_gen_feat': img_gen_feat,
            'num_gen_imgs': num_gen_imgs
        }

    @classmethod
    def from_pretrained(cls, llm, input_resampler, output_resampler, pretrained_model_path=None, **kwargs):
        model = cls(llm=llm, input_resampler=input_resampler, output_resampler=output_resampler, **kwargs)
        if os.environ.get('DEBUG_FLAG', 'False') == 'True':
            return model

        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            missing, unexpected = model.load_state_dict(ckpt, strict=False)
            #load_zero3_checkpoint(model, ckpt)
        return model