Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ from flask import Flask
|
|
26 |
import json
|
27 |
from typing import Optional
|
28 |
import cv2
|
29 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler
|
30 |
|
31 |
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
32 |
|
@@ -185,6 +185,10 @@ class LLMService:
|
|
185 |
|
186 |
self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)
|
187 |
|
|
|
|
|
|
|
|
|
188 |
self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
|
189 |
self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
|
190 |
|
@@ -355,6 +359,13 @@ def generate(text_list, image_list, max_new_tokens, force_boi, force_bbox):
|
|
355 |
for img_idx in range(output['num_gen_imgs']):
|
356 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
357 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
image_base64 = encode_image(generated_image)
|
359 |
gen_imgs_base64_list.append(image_base64)
|
360 |
|
@@ -628,7 +639,7 @@ SEED-X-I can follow multimodal instruction (including images with **dynamic reso
|
|
628 |
|
629 |
SEED-X-I **does not support image manipulation**. If you want to experience **SEED-X-Edit** for high-precision image editing, please refer to [[Inference Code]](https://github.com/AILab-CVC/SEED-X).
|
630 |
|
631 |
-
|
632 |
|
633 |
|
634 |
## Tips:
|
|
|
26 |
import json
|
27 |
from typing import Optional
|
28 |
import cv2
|
29 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
|
30 |
|
31 |
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
32 |
|
|
|
185 |
|
186 |
self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)
|
187 |
|
188 |
+
model_id_or_path = "stablediffusionapi/realistic-vision-v51"
|
189 |
+
self.vae_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
|
190 |
+
self.vae_pipe = pipe.to(self.vit_sd_device)
|
191 |
+
|
192 |
self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
|
193 |
self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
|
194 |
|
|
|
359 |
for img_idx in range(output['num_gen_imgs']):
|
360 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
361 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
362 |
+
|
363 |
+
init_image = generated_image.resize((1024, 1024))
|
364 |
+
prompt = ""
|
365 |
+
images = service.vae_pipe(prompt=prompt, image=init_image,
|
366 |
+
num_inference_steps=50, guidance_scale=8.0, strength=0.38).images
|
367 |
+
generated_image = images[0]
|
368 |
+
|
369 |
image_base64 = encode_image(generated_image)
|
370 |
gen_imgs_base64_list.append(image_base64)
|
371 |
|
|
|
639 |
|
640 |
SEED-X-I **does not support image manipulation**. If you want to experience **SEED-X-Edit** for high-precision image editing, please refer to [[Inference Code]](https://github.com/AILab-CVC/SEED-X).
|
641 |
|
642 |
+
If you want to experience the normal model inference speed, you can run [[Inference Code]](https://github.com/AILab-CVC/SEED-X) locally.
|
643 |
|
644 |
|
645 |
## Tips:
|