tuandaodev commited on
Commit
c1bab10
·
verified ·
1 Parent(s): c959470

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. .gitignore +10 -0
  3. README.md +3 -9
  4. Readme.md +200 -0
  5. TTS/.models.json +938 -0
  6. TTS/VERSION +1 -0
  7. TTS/__init__.py +6 -0
  8. TTS/api.py +458 -0
  9. TTS/bin/__init__.py +0 -0
  10. TTS/bin/collect_env_info.py +48 -0
  11. TTS/bin/compute_attention_masks.py +165 -0
  12. TTS/bin/compute_embeddings.py +197 -0
  13. TTS/bin/compute_statistics.py +96 -0
  14. TTS/bin/eval_encoder.py +88 -0
  15. TTS/bin/extract_tts_spectrograms.py +287 -0
  16. TTS/bin/find_unique_chars.py +45 -0
  17. TTS/bin/find_unique_phonemes.py +74 -0
  18. TTS/bin/remove_silence_using_vad.py +124 -0
  19. TTS/bin/resample.py +90 -0
  20. TTS/bin/synthesize.py +494 -0
  21. TTS/bin/train_encoder.py +332 -0
  22. TTS/bin/train_tts.py +71 -0
  23. TTS/bin/train_vocoder.py +77 -0
  24. TTS/bin/tune_wavegrad.py +103 -0
  25. TTS/config/__init__.py +135 -0
  26. TTS/config/shared_configs.py +268 -0
  27. TTS/demos/xtts_ft_demo/requirements.txt +2 -0
  28. TTS/demos/xtts_ft_demo/utils/formatter.py +160 -0
  29. TTS/demos/xtts_ft_demo/utils/gpt_train.py +172 -0
  30. TTS/demos/xtts_ft_demo/xtts_demo.py +415 -0
  31. TTS/encoder/README.md +18 -0
  32. TTS/encoder/__init__.py +0 -0
  33. TTS/encoder/configs/base_encoder_config.py +61 -0
  34. TTS/encoder/configs/emotion_encoder_config.py +12 -0
  35. TTS/encoder/configs/speaker_encoder_config.py +11 -0
  36. TTS/encoder/dataset.py +147 -0
  37. TTS/encoder/losses.py +226 -0
  38. TTS/encoder/models/base_encoder.py +161 -0
  39. TTS/encoder/models/lstm.py +99 -0
  40. TTS/encoder/models/resnet.py +198 -0
  41. TTS/encoder/requirements.txt +2 -0
  42. TTS/encoder/utils/__init__.py +0 -0
  43. TTS/encoder/utils/generic_utils.py +136 -0
  44. TTS/encoder/utils/prepare_voxceleb.py +219 -0
  45. TTS/encoder/utils/training.py +99 -0
  46. TTS/encoder/utils/visual.py +50 -0
  47. TTS/model.py +59 -0
  48. TTS/server/README.md +18 -0
  49. TTS/server/__init__.py +0 -0
  50. TTS/server/conf.json +12 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/vi-man_kien-thuc-quan-su.wav filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ .venv/
2
+ hub/
3
+ *.pth
4
+ __pycache__/
5
+ checkpoints/
6
+ wandb/
7
+ *.ipynb
8
+ test.py
9
+ cps/
10
+ output/
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: XTTSv2 Finetuning Vi
3
- emoji: 📉
4
- colorFrom: blue
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 5.3.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: XTTSv2-Finetuning-Vi
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 4.25.0
6
  ---
 
 
Readme.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # XTTSv2 Finetuning Guide for New Languages
2
+
3
+ This guide provides instructions for finetuning XTTSv2 on a new language, using Vietnamese (`vi`) as an example.
4
+
5
+ [UPDATE] A finetuned model for Vietnamese is now available at [anhnh2002/vnTTS](https://huggingface.co/anhnh2002/vnTTS) on Hugging Face
6
+
7
+
8
+ ## Table of Contents
9
+ 1. [Installation](#1-installation)
10
+ 2. [Data Preparation](#2-data-preparation)
11
+ 3. [Pretrained Model Download](#3-pretrained-model-download)
12
+ 4. [Vocabulary Extension and Configuration Adjustment](#4-vocabulary-extension-and-configuration-adjustment)
13
+ 5. [DVAE Finetuning (Optional)](#5-dvae-finetuning-optional)
14
+ 6. [GPT Finetuning](#6-gpt-finetuning)
15
+ 7. [Usage Example](#7-usage-example)
16
+
17
+ ## 1. Installation
18
+
19
+ First, clone the repository and install the necessary dependencies:
20
+
21
+ ```
22
+ git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git
23
+ cd XTTSv2-Finetuning-for-New-Languages
24
+ pip install -r requirements.txt
25
+ ```
26
+
27
+ ## 2. Data Preparation
28
+
29
+ Ensure your data is organized as follows:
30
+
31
+ ```
32
+ project_root/
33
+ ├── datasets-1/
34
+ │ ├── wavs/
35
+ │ │ ├── xxx.wav
36
+ │ │ ├── yyy.wav
37
+ │ │ ├── zzz.wav
38
+ │ │ └── ...
39
+ │ ├── metadata_train.csv
40
+ │ ├── metadata_eval.csv
41
+ ├── datasets-2/
42
+ │ ├── wavs/
43
+ │ │ ├── xxx.wav
44
+ │ │ ├── yyy.wav
45
+ │ │ ├── zzz.wav
46
+ │ │ └── ...
47
+ │ ├── metadata_train.csv
48
+ │ ├── metadata_eval.csv
49
+ ...
50
+
51
+ ├── recipes/
52
+ ├── scripts/
53
+ ├── TTS/
54
+ └── README.md
55
+ ```
56
+
57
+ Format your `metadata_train.csv` and `metadata_eval.csv` files as follows:
58
+
59
+ ```
60
+ audio_file|text|speaker_name
61
+ wavs/xxx.wav|How do you do?|@X
62
+ wavs/yyy.wav|Nice to meet you.|@Y
63
+ wavs/zzz.wav|Good to see you.|@Z
64
+ ```
65
+
66
+ ## 3. Pretrained Model Download
67
+
68
+ Execute the following command to download the pretrained model:
69
+
70
+ ```bash
71
+ python download_checkpoint.py --output_path checkpoints/
72
+ ```
73
+
74
+ ## 4. Vocabulary Extension and Configuration Adjustment
75
+
76
+ Extend the vocabulary and adjust the configuration with:
77
+
78
+ ```bash
79
+ python extend_vocab_config.py --output_path=checkpoints/ --metadata_path datasets/metadata_train.csv --language vi --extended_vocab_size 2000
80
+ ```
81
+
82
+ ## 5. DVAE Finetuning (Optional)
83
+
84
+ To finetune the DVAE, run:
85
+
86
+ ```bash
87
+ CUDA_VISIBLE_DEVICES=0 python train_dvae_xtts.py \
88
+ --output_path=checkpoints/ \
89
+ --train_csv_path=datasets/metadata_train.csv \
90
+ --eval_csv_path=datasets/metadata_eval.csv \
91
+ --language="vi" \
92
+ --num_epochs=5 \
93
+ --batch_size=512 \
94
+ --lr=5e-6
95
+ ```
96
+
97
+ ## 6. GPT Finetuning
98
+
99
+ For GPT finetuning, execute:
100
+
101
+ [OUTDATED]
102
+ ```bash
103
+ CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
104
+ --output_path=checkpoints/ \
105
+ --train_csv_path=datasets/metadata_train.csv \
106
+ --eval_csv_path=datasets/metadata_eval.csv \
107
+ --language="vi" \
108
+ --num_epochs=5 \
109
+ --batch_size=8 \
110
+ --grad_acumm=2 \
111
+ --max_text_length=250 \
112
+ --max_audio_length=255995 \
113
+ --weight_decay=1e-2 \
114
+ --lr=5e-6 \
115
+ --save_step=2000
116
+ ```
117
+ [UPDATE - Supports training multiple datasets. Format metadatas parameter as follows: `path_to_train_csv_dataset-1,path_to_eval_csv_dataset-1,language_dataset-1 path_to_train_csv_dataset-2,path_to_eval_csv_dataset-2,language_dataset-2 ...`]
118
+ ```bash
119
+ CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
120
+ --output_path checkpoints/ \
121
+ --metadatas datasets-1/metadata_train.csv,datasets-1/metadata_eval.csv,vi datasets-2/metadata_train.csv,datasets-2/metadata_eval.csv,vi \
122
+ --num_epochs 5 \
123
+ --batch_size 8 \
124
+ --grad_acumm 4 \
125
+ --max_text_length 400 \
126
+ --max_audio_length 330750 \
127
+ --weight_decay 1e-2 \
128
+ --lr 5e-6 \
129
+ --save_step 50000
130
+ ```
131
+
132
+ ## 7. Usage Example
133
+
134
+ Here's a sample code snippet demonstrating how to use the finetuned model:
135
+
136
+ ```python
137
+ import torch
138
+ import torchaudio
139
+ from tqdm import tqdm
140
+ from underthesea import sent_tokenize
141
+
142
+ from TTS.tts.configs.xtts_config import XttsConfig
143
+ from TTS.tts.models.xtts import Xtts
144
+
145
+ # Device configuration
146
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
147
+
148
+ # Model paths
149
+ xtts_checkpoint = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/best_model_99875.pth"
150
+ xtts_config = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/config.json"
151
+ xtts_vocab = "checkpoints/XTTS_v2.0_original_model_files/vocab.json"
152
+
153
+ # Load model
154
+ config = XttsConfig()
155
+ config.load_json(xtts_config)
156
+ XTTS_MODEL = Xtts.init_from_config(config)
157
+ XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
158
+ XTTS_MODEL.to(device)
159
+
160
+ print("Model loaded successfully!")
161
+
162
+ # Inference
163
+ tts_text = "Good to see you."
164
+ speaker_audio_file = "ref.wav"
165
+ lang = "vi"
166
+
167
+ gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
168
+ audio_path=speaker_audio_file,
169
+ gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
170
+ max_ref_length=XTTS_MODEL.config.max_ref_len,
171
+ sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
172
+ )
173
+
174
+ tts_texts = sent_tokenize(tts_text)
175
+
176
+ wav_chunks = []
177
+ for text in tqdm(tts_texts):
178
+ wav_chunk = XTTS_MODEL.inference(
179
+ text=text,
180
+ language=lang,
181
+ gpt_cond_latent=gpt_cond_latent,
182
+ speaker_embedding=speaker_embedding,
183
+ temperature=0.1,
184
+ length_penalty=1.0,
185
+ repetition_penalty=10.0,
186
+ top_k=10,
187
+ top_p=0.3,
188
+ )
189
+ wav_chunks.append(torch.tensor(wav_chunk["wav"]))
190
+
191
+ out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu()
192
+
193
+ # Play audio (for Jupyter Notebook)
194
+ from IPython.display import Audio
195
+ Audio(out_wav, rate=24000)
196
+ ```
197
+
198
+ Note: Finetuning the HiFiGAN decoder was attempted but resulted in worse performance. DVAE and GPT finetuning are sufficient for optimal results.
199
+
200
+ Update: If you have enough short texts in your datasets (about 20 hours), you do not need to finetune DVAE.
TTS/.models.json ADDED
@@ -0,0 +1,938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tts_models": {
3
+ "multilingual": {
4
+ "multi-dataset": {
5
+ "xtts_v2": {
6
+ "description": "XTTS-v2.0.3 by Coqui with 17 languages.",
7
+ "hf_url": [
8
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth",
9
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json",
10
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json",
11
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/hash.md5",
12
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/speakers_xtts.pth"
13
+ ],
14
+ "model_hash": "10f92b55c512af7a8d39d650547a15a7",
15
+ "default_vocoder": null,
16
+ "commit": "480a6cdf7",
17
+ "license": "CPML",
18
+ "contact": "info@coqui.ai",
19
+ "tos_required": true
20
+ },
21
+ "xtts_v1.1": {
22
+ "description": "XTTS-v1.1 by Coqui with 14 languages, cross-language voice cloning and reference leak fixed.",
23
+ "hf_url": [
24
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/model.pth",
25
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/config.json",
26
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/vocab.json",
27
+ "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/hash.md5"
28
+ ],
29
+ "model_hash": "7c62beaf58d39b729de287330dc254e7b515677416839b649a50e7cf74c3df59",
30
+ "default_vocoder": null,
31
+ "commit": "82910a63",
32
+ "license": "CPML",
33
+ "contact": "info@coqui.ai",
34
+ "tos_required": true
35
+ },
36
+ "your_tts": {
37
+ "description": "Your TTS model accompanying the paper https://arxiv.org/abs/2112.02418",
38
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--multilingual--multi-dataset--your_tts.zip",
39
+ "default_vocoder": null,
40
+ "commit": "e9a1953e",
41
+ "license": "CC BY-NC-ND 4.0",
42
+ "contact": "egolge@coqui.ai"
43
+ },
44
+ "bark": {
45
+ "description": "🐶 Bark TTS model released by suno-ai. You can find the original implementation in https://github.com/suno-ai/bark.",
46
+ "hf_url": [
47
+ "https://coqui.gateway.scarf.sh/hf/bark/coarse_2.pt",
48
+ "https://coqui.gateway.scarf.sh/hf/bark/fine_2.pt",
49
+ "https://coqui.gateway.scarf.sh/hf/text_2.pt",
50
+ "https://coqui.gateway.scarf.sh/hf/bark/config.json",
51
+ "https://coqui.gateway.scarf.sh/hf/bark/hubert.pt",
52
+ "https://coqui.gateway.scarf.sh/hf/bark/tokenizer.pth"
53
+ ],
54
+ "default_vocoder": null,
55
+ "commit": "e9a1953e",
56
+ "license": "MIT",
57
+ "contact": "https://www.suno.ai/"
58
+ }
59
+ }
60
+ },
61
+ "bg": {
62
+ "cv": {
63
+ "vits": {
64
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--bg--cv--vits.zip",
65
+ "default_vocoder": null,
66
+ "commit": null,
67
+ "author": "@NeonGeckoCom",
68
+ "license": "bsd-3-clause"
69
+ }
70
+ }
71
+ },
72
+ "cs": {
73
+ "cv": {
74
+ "vits": {
75
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--cs--cv--vits.zip",
76
+ "default_vocoder": null,
77
+ "commit": null,
78
+ "author": "@NeonGeckoCom",
79
+ "license": "bsd-3-clause"
80
+ }
81
+ }
82
+ },
83
+ "da": {
84
+ "cv": {
85
+ "vits": {
86
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--da--cv--vits.zip",
87
+ "default_vocoder": null,
88
+ "commit": null,
89
+ "author": "@NeonGeckoCom",
90
+ "license": "bsd-3-clause"
91
+ }
92
+ }
93
+ },
94
+ "et": {
95
+ "cv": {
96
+ "vits": {
97
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--et--cv--vits.zip",
98
+ "default_vocoder": null,
99
+ "commit": null,
100
+ "author": "@NeonGeckoCom",
101
+ "license": "bsd-3-clause"
102
+ }
103
+ }
104
+ },
105
+ "ga": {
106
+ "cv": {
107
+ "vits": {
108
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--ga--cv--vits.zip",
109
+ "default_vocoder": null,
110
+ "commit": null,
111
+ "author": "@NeonGeckoCom",
112
+ "license": "bsd-3-clause"
113
+ }
114
+ }
115
+ },
116
+ "en": {
117
+ "ek1": {
118
+ "tacotron2": {
119
+ "description": "EK1 en-rp tacotron2 by NMStoker",
120
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ek1--tacotron2.zip",
121
+ "default_vocoder": "vocoder_models/en/ek1/wavegrad",
122
+ "commit": "c802255",
123
+ "license": "apache 2.0"
124
+ }
125
+ },
126
+ "ljspeech": {
127
+ "tacotron2-DDC": {
128
+ "description": "Tacotron2 with Double Decoder Consistency.",
129
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DDC.zip",
130
+ "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2",
131
+ "commit": "bae2ad0f",
132
+ "author": "Eren Gölge @erogol",
133
+ "license": "apache 2.0",
134
+ "contact": "egolge@coqui.com"
135
+ },
136
+ "tacotron2-DDC_ph": {
137
+ "description": "Tacotron2 with Double Decoder Consistency with phonemes.",
138
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DDC_ph.zip",
139
+ "default_vocoder": "vocoder_models/en/ljspeech/univnet",
140
+ "commit": "3900448",
141
+ "author": "Eren Gölge @erogol",
142
+ "license": "apache 2.0",
143
+ "contact": "egolge@coqui.com"
144
+ },
145
+ "glow-tts": {
146
+ "description": "",
147
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--glow-tts.zip",
148
+ "stats_file": null,
149
+ "default_vocoder": "vocoder_models/en/ljspeech/multiband-melgan",
150
+ "commit": "",
151
+ "author": "Eren Gölge @erogol",
152
+ "license": "MPL",
153
+ "contact": "egolge@coqui.com"
154
+ },
155
+ "speedy-speech": {
156
+ "description": "Speedy Speech model trained on LJSpeech dataset using the Alignment Network for learning the durations.",
157
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--speedy-speech.zip",
158
+ "stats_file": null,
159
+ "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2",
160
+ "commit": "4581e3d",
161
+ "author": "Eren Gölge @erogol",
162
+ "license": "apache 2.0",
163
+ "contact": "egolge@coqui.com"
164
+ },
165
+ "tacotron2-DCA": {
166
+ "description": "",
167
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--tacotron2-DCA.zip",
168
+ "default_vocoder": "vocoder_models/en/ljspeech/multiband-melgan",
169
+ "commit": "",
170
+ "author": "Eren Gölge @erogol",
171
+ "license": "MPL",
172
+ "contact": "egolge@coqui.com"
173
+ },
174
+ "vits": {
175
+ "description": "VITS is an End2End TTS model trained on LJSpeech dataset with phonemes.",
176
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--vits.zip",
177
+ "default_vocoder": null,
178
+ "commit": "3900448",
179
+ "author": "Eren Gölge @erogol",
180
+ "license": "apache 2.0",
181
+ "contact": "egolge@coqui.com"
182
+ },
183
+ "vits--neon": {
184
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--en--ljspeech--vits.zip",
185
+ "default_vocoder": null,
186
+ "author": "@NeonGeckoCom",
187
+ "license": "bsd-3-clause",
188
+ "contact": null,
189
+ "commit": null
190
+ },
191
+ "fast_pitch": {
192
+ "description": "FastPitch model trained on LJSpeech using the Aligner Network",
193
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--ljspeech--fast_pitch.zip",
194
+ "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2",
195
+ "commit": "b27b3ba",
196
+ "author": "Eren Gölge @erogol",
197
+ "license": "apache 2.0",
198
+ "contact": "egolge@coqui.com"
199
+ },
200
+ "overflow": {
201
+ "description": "Overflow model trained on LJSpeech",
202
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.0_models/tts_models--en--ljspeech--overflow.zip",
203
+ "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2",
204
+ "commit": "3b1a28f",
205
+ "author": "Eren Gölge @erogol",
206
+ "license": "apache 2.0",
207
+ "contact": "egolge@coqui.ai"
208
+ },
209
+ "neural_hmm": {
210
+ "description": "Neural HMM model trained on LJSpeech",
211
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.11.0_models/tts_models--en--ljspeech--neural_hmm.zip",
212
+ "default_vocoder": "vocoder_models/en/ljspeech/hifigan_v2",
213
+ "commit": "3b1a28f",
214
+ "author": "Shivam Metha @shivammehta25",
215
+ "license": "apache 2.0",
216
+ "contact": "d83ee8fe45e3c0d776d4a865aca21d7c2ac324c4"
217
+ }
218
+ },
219
+ "vctk": {
220
+ "vits": {
221
+ "description": "VITS End2End TTS model trained on VCTK dataset with 109 different speakers with EN accent.",
222
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--vctk--vits.zip",
223
+ "default_vocoder": null,
224
+ "commit": "3900448",
225
+ "author": "Eren @erogol",
226
+ "license": "apache 2.0",
227
+ "contact": "egolge@coqui.ai"
228
+ },
229
+ "fast_pitch": {
230
+ "description": "FastPitch model trained on VCTK dataseset.",
231
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--vctk--fast_pitch.zip",
232
+ "default_vocoder": null,
233
+ "commit": "bdab788d",
234
+ "author": "Eren @erogol",
235
+ "license": "CC BY-NC-ND 4.0",
236
+ "contact": "egolge@coqui.ai"
237
+ }
238
+ },
239
+ "sam": {
240
+ "tacotron-DDC": {
241
+ "description": "Tacotron2 with Double Decoder Consistency trained with Aceenture's Sam dataset.",
242
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--en--sam--tacotron-DDC.zip",
243
+ "default_vocoder": "vocoder_models/en/sam/hifigan_v2",
244
+ "commit": "bae2ad0f",
245
+ "author": "Eren Gölge @erogol",
246
+ "license": "apache 2.0",
247
+ "contact": "egolge@coqui.com"
248
+ }
249
+ },
250
+ "blizzard2013": {
251
+ "capacitron-t2-c50": {
252
+ "description": "Capacitron additions to Tacotron 2 with Capacity at 50 as in https://arxiv.org/pdf/1906.03402.pdf",
253
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/tts_models--en--blizzard2013--capacitron-t2-c50.zip",
254
+ "commit": "d6284e7",
255
+ "default_vocoder": "vocoder_models/en/blizzard2013/hifigan_v2",
256
+ "author": "Adam Froghyar @a-froghyar",
257
+ "license": "apache 2.0",
258
+ "contact": "adamfroghyar@gmail.com"
259
+ },
260
+ "capacitron-t2-c150_v2": {
261
+ "description": "Capacitron additions to Tacotron 2 with Capacity at 150 as in https://arxiv.org/pdf/1906.03402.pdf",
262
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.1_models/tts_models--en--blizzard2013--capacitron-t2-c150_v2.zip",
263
+ "commit": "a67039d",
264
+ "default_vocoder": "vocoder_models/en/blizzard2013/hifigan_v2",
265
+ "author": "Adam Froghyar @a-froghyar",
266
+ "license": "apache 2.0",
267
+ "contact": "adamfroghyar@gmail.com"
268
+ }
269
+ },
270
+ "multi-dataset": {
271
+ "tortoise-v2": {
272
+ "description": "Tortoise tts model https://github.com/neonbjb/tortoise-tts",
273
+ "github_rls_url": [
274
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/autoregressive.pth",
275
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/clvp2.pth",
276
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/cvvp.pth",
277
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/diffusion_decoder.pth",
278
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/rlg_auto.pth",
279
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/rlg_diffuser.pth",
280
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/vocoder.pth",
281
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/mel_norms.pth",
282
+ "https://coqui.gateway.scarf.sh/v0.14.1_models/config.json"
283
+ ],
284
+ "commit": "c1875f6",
285
+ "default_vocoder": null,
286
+ "author": "@neonbjb - James Betker, @manmay-nakhashi Manmay Nakhashi",
287
+ "license": "apache 2.0"
288
+ }
289
+ },
290
+ "jenny": {
291
+ "jenny": {
292
+ "description": "VITS model trained with Jenny(Dioco) dataset. Named as Jenny as demanded by the license. Original URL for the model https://www.kaggle.com/datasets/noml4u/tts-models--en--jenny-dioco--vits",
293
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.14.0_models/tts_models--en--jenny--jenny.zip",
294
+ "default_vocoder": null,
295
+ "commit": "ba40a1c",
296
+ "license": "custom - see https://github.com/dioco-group/jenny-tts-dataset#important",
297
+ "author": "@noml4u"
298
+ }
299
+ }
300
+ },
301
+ "es": {
302
+ "mai": {
303
+ "tacotron2-DDC": {
304
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--es--mai--tacotron2-DDC.zip",
305
+ "default_vocoder": "vocoder_models/universal/libri-tts/fullband-melgan",
306
+ "commit": "",
307
+ "author": "Eren Gölge @erogol",
308
+ "license": "MPL",
309
+ "contact": "egolge@coqui.com"
310
+ }
311
+ },
312
+ "css10": {
313
+ "vits": {
314
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--es--css10--vits.zip",
315
+ "default_vocoder": null,
316
+ "commit": null,
317
+ "author": "@NeonGeckoCom",
318
+ "license": "bsd-3-clause"
319
+ }
320
+ }
321
+ },
322
+ "fr": {
323
+ "mai": {
324
+ "tacotron2-DDC": {
325
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--fr--mai--tacotron2-DDC.zip",
326
+ "default_vocoder": "vocoder_models/universal/libri-tts/fullband-melgan",
327
+ "commit": null,
328
+ "author": "Eren Gölge @erogol",
329
+ "license": "MPL",
330
+ "contact": "egolge@coqui.com"
331
+ }
332
+ },
333
+ "css10": {
334
+ "vits": {
335
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--fr--css10--vits.zip",
336
+ "default_vocoder": null,
337
+ "commit": null,
338
+ "author": "@NeonGeckoCom",
339
+ "license": "bsd-3-clause"
340
+ }
341
+ }
342
+ },
343
+ "uk": {
344
+ "mai": {
345
+ "glow-tts": {
346
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--uk--mai--glow-tts.zip",
347
+ "author": "@robinhad",
348
+ "commit": "bdab788d",
349
+ "license": "MIT",
350
+ "contact": "",
351
+ "default_vocoder": "vocoder_models/uk/mai/multiband-melgan"
352
+ },
353
+ "vits": {
354
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--uk--mai--vits.zip",
355
+ "default_vocoder": null,
356
+ "commit": null,
357
+ "author": "@NeonGeckoCom",
358
+ "license": "bsd-3-clause"
359
+ }
360
+ }
361
+ },
362
+ "zh-CN": {
363
+ "baker": {
364
+ "tacotron2-DDC-GST": {
365
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--zh-CN--baker--tacotron2-DDC-GST.zip",
366
+ "commit": "unknown",
367
+ "author": "@kirianguiller",
368
+ "license": "apache 2.0",
369
+ "default_vocoder": null
370
+ }
371
+ }
372
+ },
373
+ "nl": {
374
+ "mai": {
375
+ "tacotron2-DDC": {
376
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--nl--mai--tacotron2-DDC.zip",
377
+ "author": "@r-dh",
378
+ "license": "apache 2.0",
379
+ "default_vocoder": "vocoder_models/nl/mai/parallel-wavegan",
380
+ "stats_file": null,
381
+ "commit": "540d811"
382
+ }
383
+ },
384
+ "css10": {
385
+ "vits": {
386
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--nl--css10--vits.zip",
387
+ "default_vocoder": null,
388
+ "commit": null,
389
+ "author": "@NeonGeckoCom",
390
+ "license": "bsd-3-clause"
391
+ }
392
+ }
393
+ },
394
+ "de": {
395
+ "thorsten": {
396
+ "tacotron2-DCA": {
397
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--de--thorsten--tacotron2-DCA.zip",
398
+ "default_vocoder": "vocoder_models/de/thorsten/fullband-melgan",
399
+ "author": "@thorstenMueller",
400
+ "license": "apache 2.0",
401
+ "commit": "unknown"
402
+ },
403
+ "vits": {
404
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/tts_models--de--thorsten--vits.zip",
405
+ "default_vocoder": null,
406
+ "author": "@thorstenMueller",
407
+ "license": "apache 2.0",
408
+ "commit": "unknown"
409
+ },
410
+ "tacotron2-DDC": {
411
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--de--thorsten--tacotron2-DDC.zip",
412
+ "default_vocoder": "vocoder_models/de/thorsten/hifigan_v1",
413
+ "description": "Thorsten-Dec2021-22k-DDC",
414
+ "author": "@thorstenMueller",
415
+ "license": "apache 2.0",
416
+ "commit": "unknown"
417
+ }
418
+ },
419
+ "css10": {
420
+ "vits-neon": {
421
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--de--css10--vits.zip",
422
+ "default_vocoder": null,
423
+ "author": "@NeonGeckoCom",
424
+ "license": "bsd-3-clause",
425
+ "commit": null
426
+ }
427
+ }
428
+ },
429
+ "ja": {
430
+ "kokoro": {
431
+ "tacotron2-DDC": {
432
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--ja--kokoro--tacotron2-DDC.zip",
433
+ "default_vocoder": "vocoder_models/ja/kokoro/hifigan_v1",
434
+ "description": "Tacotron2 with Double Decoder Consistency trained with Kokoro Speech Dataset.",
435
+ "author": "@kaiidams",
436
+ "license": "apache 2.0",
437
+ "commit": "401fbd89"
438
+ }
439
+ }
440
+ },
441
+ "tr": {
442
+ "common-voice": {
443
+ "glow-tts": {
444
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--tr--common-voice--glow-tts.zip",
445
+ "default_vocoder": "vocoder_models/tr/common-voice/hifigan",
446
+ "license": "MIT",
447
+ "description": "Turkish GlowTTS model using an unknown speaker from the Common-Voice dataset.",
448
+ "author": "Fatih Akademi",
449
+ "commit": null
450
+ }
451
+ }
452
+ },
453
+ "it": {
454
+ "mai_female": {
455
+ "glow-tts": {
456
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_female--glow-tts.zip",
457
+ "default_vocoder": null,
458
+ "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.",
459
+ "author": "@nicolalandro",
460
+ "license": "apache 2.0",
461
+ "commit": null
462
+ },
463
+ "vits": {
464
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_female--vits.zip",
465
+ "default_vocoder": null,
466
+ "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.",
467
+ "author": "@nicolalandro",
468
+ "license": "apache 2.0",
469
+ "commit": null
470
+ }
471
+ },
472
+ "mai_male": {
473
+ "glow-tts": {
474
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_male--glow-tts.zip",
475
+ "default_vocoder": null,
476
+ "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.",
477
+ "author": "@nicolalandro",
478
+ "license": "apache 2.0",
479
+ "commit": null
480
+ },
481
+ "vits": {
482
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/tts_models--it--mai_male--vits.zip",
483
+ "default_vocoder": null,
484
+ "description": "GlowTTS model as explained on https://github.com/coqui-ai/TTS/issues/1148.",
485
+ "author": "@nicolalandro",
486
+ "license": "apache 2.0",
487
+ "commit": null
488
+ }
489
+ }
490
+ },
491
+ "ewe": {
492
+ "openbible": {
493
+ "vits": {
494
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--ewe--openbible--vits.zip",
495
+ "default_vocoder": null,
496
+ "license": "CC-BY-SA 4.0",
497
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
498
+ "author": "@coqui_ai",
499
+ "commit": "1b22f03"
500
+ }
501
+ }
502
+ },
503
+ "hau": {
504
+ "openbible": {
505
+ "vits": {
506
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--hau--openbible--vits.zip",
507
+ "default_vocoder": null,
508
+ "license": "CC-BY-SA 4.0",
509
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
510
+ "author": "@coqui_ai",
511
+ "commit": "1b22f03"
512
+ }
513
+ }
514
+ },
515
+ "lin": {
516
+ "openbible": {
517
+ "vits": {
518
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--lin--openbible--vits.zip",
519
+ "default_vocoder": null,
520
+ "license": "CC-BY-SA 4.0",
521
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
522
+ "author": "@coqui_ai",
523
+ "commit": "1b22f03"
524
+ }
525
+ }
526
+ },
527
+ "tw_akuapem": {
528
+ "openbible": {
529
+ "vits": {
530
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--tw_akuapem--openbible--vits.zip",
531
+ "default_vocoder": null,
532
+ "license": "CC-BY-SA 4.0",
533
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
534
+ "author": "@coqui_ai",
535
+ "commit": "1b22f03"
536
+ }
537
+ }
538
+ },
539
+ "tw_asante": {
540
+ "openbible": {
541
+ "vits": {
542
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--tw_asante--openbible--vits.zip",
543
+ "default_vocoder": null,
544
+ "license": "CC-BY-SA 4.0",
545
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
546
+ "author": "@coqui_ai",
547
+ "commit": "1b22f03"
548
+ }
549
+ }
550
+ },
551
+ "yor": {
552
+ "openbible": {
553
+ "vits": {
554
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.2_models/tts_models--yor--openbible--vits.zip",
555
+ "default_vocoder": null,
556
+ "license": "CC-BY-SA 4.0",
557
+ "description": "Original work (audio and text) by Biblica available for free at www.biblica.com and open.bible.",
558
+ "author": "@coqui_ai",
559
+ "commit": "1b22f03"
560
+ }
561
+ }
562
+ },
563
+ "hu": {
564
+ "css10": {
565
+ "vits": {
566
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--hu--css10--vits.zip",
567
+ "default_vocoder": null,
568
+ "commit": null,
569
+ "author": "@NeonGeckoCom",
570
+ "license": "bsd-3-clause"
571
+ }
572
+ }
573
+ },
574
+ "el": {
575
+ "cv": {
576
+ "vits": {
577
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--el--cv--vits.zip",
578
+ "default_vocoder": null,
579
+ "commit": null,
580
+ "author": "@NeonGeckoCom",
581
+ "license": "bsd-3-clause"
582
+ }
583
+ }
584
+ },
585
+ "fi": {
586
+ "css10": {
587
+ "vits": {
588
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--fi--css10--vits.zip",
589
+ "default_vocoder": null,
590
+ "commit": null,
591
+ "author": "@NeonGeckoCom",
592
+ "license": "bsd-3-clause"
593
+ }
594
+ }
595
+ },
596
+ "hr": {
597
+ "cv": {
598
+ "vits": {
599
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--hr--cv--vits.zip",
600
+ "default_vocoder": null,
601
+ "commit": null,
602
+ "author": "@NeonGeckoCom",
603
+ "license": "bsd-3-clause"
604
+ }
605
+ }
606
+ },
607
+ "lt": {
608
+ "cv": {
609
+ "vits": {
610
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--lt--cv--vits.zip",
611
+ "default_vocoder": null,
612
+ "commit": null,
613
+ "author": "@NeonGeckoCom",
614
+ "license": "bsd-3-clause"
615
+ }
616
+ }
617
+ },
618
+ "lv": {
619
+ "cv": {
620
+ "vits": {
621
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--lv--cv--vits.zip",
622
+ "default_vocoder": null,
623
+ "commit": null,
624
+ "author": "@NeonGeckoCom",
625
+ "license": "bsd-3-clause"
626
+ }
627
+ }
628
+ },
629
+ "mt": {
630
+ "cv": {
631
+ "vits": {
632
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--mt--cv--vits.zip",
633
+ "default_vocoder": null,
634
+ "commit": null,
635
+ "author": "@NeonGeckoCom",
636
+ "license": "bsd-3-clause"
637
+ }
638
+ }
639
+ },
640
+ "pl": {
641
+ "mai_female": {
642
+ "vits": {
643
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--pl--mai_female--vits.zip",
644
+ "default_vocoder": null,
645
+ "commit": null,
646
+ "author": "@NeonGeckoCom",
647
+ "license": "bsd-3-clause"
648
+ }
649
+ }
650
+ },
651
+ "pt": {
652
+ "cv": {
653
+ "vits": {
654
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--pt--cv--vits.zip",
655
+ "default_vocoder": null,
656
+ "commit": null,
657
+ "author": "@NeonGeckoCom",
658
+ "license": "bsd-3-clause"
659
+ }
660
+ }
661
+ },
662
+ "ro": {
663
+ "cv": {
664
+ "vits": {
665
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--ro--cv--vits.zip",
666
+ "default_vocoder": null,
667
+ "commit": null,
668
+ "author": "@NeonGeckoCom",
669
+ "license": "bsd-3-clause"
670
+ }
671
+ }
672
+ },
673
+ "sk": {
674
+ "cv": {
675
+ "vits": {
676
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sk--cv--vits.zip",
677
+ "default_vocoder": null,
678
+ "commit": null,
679
+ "author": "@NeonGeckoCom",
680
+ "license": "bsd-3-clause"
681
+ }
682
+ }
683
+ },
684
+ "sl": {
685
+ "cv": {
686
+ "vits": {
687
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sl--cv--vits.zip",
688
+ "default_vocoder": null,
689
+ "commit": null,
690
+ "author": "@NeonGeckoCom",
691
+ "license": "bsd-3-clause"
692
+ }
693
+ }
694
+ },
695
+ "sv": {
696
+ "cv": {
697
+ "vits": {
698
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/tts_models--sv--cv--vits.zip",
699
+ "default_vocoder": null,
700
+ "commit": null,
701
+ "author": "@NeonGeckoCom",
702
+ "license": "bsd-3-clause"
703
+ }
704
+ }
705
+ },
706
+ "ca": {
707
+ "custom": {
708
+ "vits": {
709
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--ca--custom--vits.zip",
710
+ "default_vocoder": null,
711
+ "commit": null,
712
+ "description": " It is trained from zero with 101460 utterances consisting of 257 speakers, approx 138 hours of speech. We used three datasets;\nFestcat and Google Catalan TTS (both TTS datasets) and also a part of Common Voice 8. It is trained with TTS v0.8.0.\nhttps://github.com/coqui-ai/TTS/discussions/930#discussioncomment-4466345",
713
+ "author": "@gullabi",
714
+ "license": "CC-BY-4.0"
715
+ }
716
+ }
717
+ },
718
+ "fa": {
719
+ "custom": {
720
+ "glow-tts": {
721
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--fa--custom--glow-tts.zip",
722
+ "default_vocoder": null,
723
+ "commit": null,
724
+ "description": "persian-tts-female-glow_tts model for text to speech purposes. Single-speaker female voice Trained on persian-tts-dataset-famale. \nThis model has no compatible vocoder thus the output quality is not very good. \nDataset: https://www.kaggle.com/datasets/magnoliasis/persian-tts-dataset-famale.",
725
+ "author": "@karim23657",
726
+ "license": "CC-BY-4.0"
727
+ }
728
+ }
729
+ },
730
+ "bn": {
731
+ "custom": {
732
+ "vits-male": {
733
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.3_models/tts_models--bn--custom--vits_male.zip",
734
+ "default_vocoder": null,
735
+ "commit": null,
736
+ "description": "Single speaker Bangla male model. For more information -> https://github.com/mobassir94/comprehensive-bangla-tts",
737
+ "author": "@mobassir94",
738
+ "license": "Apache 2.0"
739
+ },
740
+ "vits-female": {
741
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.3_models/tts_models--bn--custom--vits_female.zip",
742
+ "default_vocoder": null,
743
+ "commit": null,
744
+ "description": "Single speaker Bangla female model. For more information -> https://github.com/mobassir94/comprehensive-bangla-tts",
745
+ "author": "@mobassir94",
746
+ "license": "Apache 2.0"
747
+ }
748
+ }
749
+ },
750
+ "be": {
751
+ "common-voice": {
752
+ "glow-tts":{
753
+ "description": "Belarusian GlowTTS model created by @alex73 (Github).",
754
+ "github_rls_url":"https://coqui.gateway.scarf.sh/v0.16.6/tts_models--be--common-voice--glow-tts.zip",
755
+ "default_vocoder": "vocoder_models/be/common-voice/hifigan",
756
+ "commit": "c0aabb85",
757
+ "license": "CC-BY-SA 4.0",
758
+ "contact": "alex73mail@gmail.com"
759
+ }
760
+ }
761
+ }
762
+ },
763
+ "vocoder_models": {
764
+ "universal": {
765
+ "libri-tts": {
766
+ "wavegrad": {
767
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--universal--libri-tts--wavegrad.zip",
768
+ "commit": "ea976b0",
769
+ "author": "Eren Gölge @erogol",
770
+ "license": "MPL",
771
+ "contact": "egolge@coqui.com"
772
+ },
773
+ "fullband-melgan": {
774
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--universal--libri-tts--fullband-melgan.zip",
775
+ "commit": "4132240",
776
+ "author": "Eren Gölge @erogol",
777
+ "license": "MPL",
778
+ "contact": "egolge@coqui.com"
779
+ }
780
+ }
781
+ },
782
+ "en": {
783
+ "ek1": {
784
+ "wavegrad": {
785
+ "description": "EK1 en-rp wavegrad by NMStoker",
786
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ek1--wavegrad.zip",
787
+ "commit": "c802255",
788
+ "license": "apache 2.0"
789
+ }
790
+ },
791
+ "ljspeech": {
792
+ "multiband-melgan": {
793
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--multiband-melgan.zip",
794
+ "commit": "ea976b0",
795
+ "author": "Eren Gölge @erogol",
796
+ "license": "MPL",
797
+ "contact": "egolge@coqui.com"
798
+ },
799
+ "hifigan_v2": {
800
+ "description": "HiFiGAN_v2 LJSpeech vocoder from https://arxiv.org/abs/2010.05646.",
801
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--hifigan_v2.zip",
802
+ "commit": "bae2ad0f",
803
+ "author": "@erogol",
804
+ "license": "apache 2.0",
805
+ "contact": "egolge@coqui.ai"
806
+ },
807
+ "univnet": {
808
+ "description": "UnivNet model finetuned on TacotronDDC_ph spectrograms for better compatibility.",
809
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--ljspeech--univnet_v2.zip",
810
+ "commit": "4581e3d",
811
+ "author": "Eren @erogol",
812
+ "license": "apache 2.0",
813
+ "contact": "egolge@coqui.ai"
814
+ }
815
+ },
816
+ "blizzard2013": {
817
+ "hifigan_v2": {
818
+ "description": "HiFiGAN_v2 LJSpeech vocoder from https://arxiv.org/abs/2010.05646.",
819
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.7.0_models/vocoder_models--en--blizzard2013--hifigan_v2.zip",
820
+ "commit": "d6284e7",
821
+ "author": "Adam Froghyar @a-froghyar",
822
+ "license": "apache 2.0",
823
+ "contact": "adamfroghyar@gmail.com"
824
+ }
825
+ },
826
+ "vctk": {
827
+ "hifigan_v2": {
828
+ "description": "Finetuned and intended to be used with tts_models/en/vctk/sc-glow-tts",
829
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--vctk--hifigan_v2.zip",
830
+ "commit": "2f07160",
831
+ "author": "Edresson Casanova",
832
+ "license": "apache 2.0",
833
+ "contact": ""
834
+ }
835
+ },
836
+ "sam": {
837
+ "hifigan_v2": {
838
+ "description": "Finetuned and intended to be used with tts_models/en/sam/tacotron_DDC",
839
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--en--sam--hifigan_v2.zip",
840
+ "commit": "2f07160",
841
+ "author": "Eren Gölge @erogol",
842
+ "license": "apache 2.0",
843
+ "contact": "egolge@coqui.ai"
844
+ }
845
+ }
846
+ },
847
+ "nl": {
848
+ "mai": {
849
+ "parallel-wavegan": {
850
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--nl--mai--parallel-wavegan.zip",
851
+ "author": "@r-dh",
852
+ "license": "apache 2.0",
853
+ "commit": "unknown"
854
+ }
855
+ }
856
+ },
857
+ "de": {
858
+ "thorsten": {
859
+ "wavegrad": {
860
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--de--thorsten--wavegrad.zip",
861
+ "author": "@thorstenMueller",
862
+ "license": "apache 2.0",
863
+ "commit": "unknown"
864
+ },
865
+ "fullband-melgan": {
866
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--de--thorsten--fullband-melgan.zip",
867
+ "author": "@thorstenMueller",
868
+ "license": "apache 2.0",
869
+ "commit": "unknown"
870
+ },
871
+ "hifigan_v1": {
872
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.8.0_models/vocoder_models--de--thorsten--hifigan_v1.zip",
873
+ "description": "HifiGAN vocoder model for Thorsten Neutral Dec2021 22k Samplerate Tacotron2 DDC model",
874
+ "author": "@thorstenMueller",
875
+ "license": "apache 2.0",
876
+ "commit": "unknown"
877
+ }
878
+ }
879
+ },
880
+ "ja": {
881
+ "kokoro": {
882
+ "hifigan_v1": {
883
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--ja--kokoro--hifigan_v1.zip",
884
+ "description": "HifiGAN model trained for kokoro dataset by @kaiidams",
885
+ "author": "@kaiidams",
886
+ "license": "apache 2.0",
887
+ "commit": "3900448"
888
+ }
889
+ }
890
+ },
891
+ "uk": {
892
+ "mai": {
893
+ "multiband-melgan": {
894
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--uk--mai--multiband-melgan.zip",
895
+ "author": "@robinhad",
896
+ "commit": "bdab788d",
897
+ "license": "MIT",
898
+ "contact": ""
899
+ }
900
+ }
901
+ },
902
+ "tr": {
903
+ "common-voice": {
904
+ "hifigan": {
905
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.6.1_models/vocoder_models--tr--common-voice--hifigan.zip",
906
+ "description": "HifiGAN model using an unknown speaker from the Common-Voice dataset.",
907
+ "author": "Fatih Akademi",
908
+ "license": "MIT",
909
+ "commit": null
910
+ }
911
+ }
912
+ },
913
+ "be": {
914
+ "common-voice": {
915
+ "hifigan": {
916
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.16.6/vocoder_models--be--common-voice--hifigan.zip",
917
+ "description": "Belarusian HiFiGAN model created by @alex73 (Github).",
918
+ "author": "@alex73",
919
+ "license": "CC-BY-SA 4.0",
920
+ "commit": "c0aabb85"
921
+ }
922
+ }
923
+ }
924
+ },
925
+ "voice_conversion_models": {
926
+ "multilingual": {
927
+ "vctk": {
928
+ "freevc24": {
929
+ "github_rls_url": "https://coqui.gateway.scarf.sh/v0.13.0_models/voice_conversion_models--multilingual--vctk--freevc24.zip",
930
+ "description": "FreeVC model trained on VCTK dataset from https://github.com/OlaWod/FreeVC",
931
+ "author": "Jing-Yi Li @OlaWod",
932
+ "license": "MIT",
933
+ "commit": null
934
+ }
935
+ }
936
+ }
937
+ }
938
+ }
TTS/VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.22.0
TTS/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ with open(os.path.join(os.path.dirname(__file__), "VERSION"), "r", encoding="utf-8") as f:
4
+ version = f.read().strip()
5
+
6
+ __version__ = version
TTS/api.py ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tempfile
2
+ import warnings
3
+ from pathlib import Path
4
+ from typing import Union
5
+
6
+ import numpy as np
7
+ from torch import nn
8
+
9
+ from TTS.utils.audio.numpy_transforms import save_wav
10
+ from TTS.utils.manage import ModelManager
11
+ from TTS.utils.synthesizer import Synthesizer
12
+ from TTS.config import load_config
13
+
14
+
15
+ class TTS(nn.Module):
16
+ """TODO: Add voice conversion and Capacitron support."""
17
+
18
+ def __init__(
19
+ self,
20
+ model_name: str = "",
21
+ model_path: str = None,
22
+ config_path: str = None,
23
+ vocoder_path: str = None,
24
+ vocoder_config_path: str = None,
25
+ progress_bar: bool = True,
26
+ gpu=False,
27
+ ):
28
+ """🐸TTS python interface that allows to load and use the released models.
29
+
30
+ Example with a multi-speaker model:
31
+ >>> from TTS.api import TTS
32
+ >>> tts = TTS(TTS.list_models()[0])
33
+ >>> wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
34
+ >>> tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
35
+
36
+ Example with a single-speaker model:
37
+ >>> tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False)
38
+ >>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
39
+
40
+ Example loading a model from a path:
41
+ >>> tts = TTS(model_path="/path/to/checkpoint_100000.pth", config_path="/path/to/config.json", progress_bar=False, gpu=False)
42
+ >>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
43
+
44
+ Example voice cloning with YourTTS in English, French and Portuguese:
45
+ >>> tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
46
+ >>> tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="thisisit.wav")
47
+ >>> tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="thisisit.wav")
48
+ >>> tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="thisisit.wav")
49
+
50
+ Example Fairseq TTS models (uses ISO language codes in https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html):
51
+ >>> tts = TTS(model_name="tts_models/eng/fairseq/vits", progress_bar=False, gpu=True)
52
+ >>> tts.tts_to_file("This is a test.", file_path="output.wav")
53
+
54
+ Args:
55
+ model_name (str, optional): Model name to load. You can list models by ```tts.models```. Defaults to None.
56
+ model_path (str, optional): Path to the model checkpoint. Defaults to None.
57
+ config_path (str, optional): Path to the model config. Defaults to None.
58
+ vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
59
+ vocoder_config_path (str, optional): Path to the vocoder config. Defaults to None.
60
+ progress_bar (bool, optional): Whether to pring a progress bar while downloading a model. Defaults to True.
61
+ gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
62
+ """
63
+ super().__init__()
64
+ self.manager = ModelManager(models_file=self.get_models_file_path(), progress_bar=progress_bar, verbose=False)
65
+ self.config = load_config(config_path) if config_path else None
66
+ self.synthesizer = None
67
+ self.voice_converter = None
68
+ self.model_name = ""
69
+ if gpu:
70
+ warnings.warn("`gpu` will be deprecated. Please use `tts.to(device)` instead.")
71
+
72
+ if model_name is not None and len(model_name) > 0:
73
+ if "tts_models" in model_name:
74
+ self.load_tts_model_by_name(model_name, gpu)
75
+ elif "voice_conversion_models" in model_name:
76
+ self.load_vc_model_by_name(model_name, gpu)
77
+ else:
78
+ self.load_model_by_name(model_name, gpu)
79
+
80
+ if model_path:
81
+ self.load_tts_model_by_path(
82
+ model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu
83
+ )
84
+
85
+ @property
86
+ def models(self):
87
+ return self.manager.list_tts_models()
88
+
89
+ @property
90
+ def is_multi_speaker(self):
91
+ if hasattr(self.synthesizer.tts_model, "speaker_manager") and self.synthesizer.tts_model.speaker_manager:
92
+ return self.synthesizer.tts_model.speaker_manager.num_speakers > 1
93
+ return False
94
+
95
+ @property
96
+ def is_multi_lingual(self):
97
+ # Not sure what sets this to None, but applied a fix to prevent crashing.
98
+ if (
99
+ isinstance(self.model_name, str)
100
+ and "xtts" in self.model_name
101
+ or self.config
102
+ and ("xtts" in self.config.model or len(self.config.languages) > 1)
103
+ ):
104
+ return True
105
+ if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
106
+ return self.synthesizer.tts_model.language_manager.num_languages > 1
107
+ return False
108
+
109
+ @property
110
+ def speakers(self):
111
+ if not self.is_multi_speaker:
112
+ return None
113
+ return self.synthesizer.tts_model.speaker_manager.speaker_names
114
+
115
+ @property
116
+ def languages(self):
117
+ if not self.is_multi_lingual:
118
+ return None
119
+ return self.synthesizer.tts_model.language_manager.language_names
120
+
121
+ @staticmethod
122
+ def get_models_file_path():
123
+ return Path(__file__).parent / ".models.json"
124
+
125
+ def list_models(self):
126
+ return ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False)
127
+
128
+ def download_model_by_name(self, model_name: str):
129
+ model_path, config_path, model_item = self.manager.download_model(model_name)
130
+ if "fairseq" in model_name or (model_item is not None and isinstance(model_item["model_url"], list)):
131
+ # return model directory if there are multiple files
132
+ # we assume that the model knows how to load itself
133
+ return None, None, None, None, model_path
134
+ if model_item.get("default_vocoder") is None:
135
+ return model_path, config_path, None, None, None
136
+ vocoder_path, vocoder_config_path, _ = self.manager.download_model(model_item["default_vocoder"])
137
+ return model_path, config_path, vocoder_path, vocoder_config_path, None
138
+
139
+ def load_model_by_name(self, model_name: str, gpu: bool = False):
140
+ """Load one of the 🐸TTS models by name.
141
+
142
+ Args:
143
+ model_name (str): Model name to load. You can list models by ```tts.models```.
144
+ gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
145
+ """
146
+ self.load_tts_model_by_name(model_name, gpu)
147
+
148
+ def load_vc_model_by_name(self, model_name: str, gpu: bool = False):
149
+ """Load one of the voice conversion models by name.
150
+
151
+ Args:
152
+ model_name (str): Model name to load. You can list models by ```tts.models```.
153
+ gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
154
+ """
155
+ self.model_name = model_name
156
+ model_path, config_path, _, _, _ = self.download_model_by_name(model_name)
157
+ self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu)
158
+
159
+ def load_tts_model_by_name(self, model_name: str, gpu: bool = False):
160
+ """Load one of 🐸TTS models by name.
161
+
162
+ Args:
163
+ model_name (str): Model name to load. You can list models by ```tts.models```.
164
+ gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
165
+
166
+ TODO: Add tests
167
+ """
168
+ self.synthesizer = None
169
+ self.model_name = model_name
170
+
171
+ model_path, config_path, vocoder_path, vocoder_config_path, model_dir = self.download_model_by_name(
172
+ model_name
173
+ )
174
+
175
+ # init synthesizer
176
+ # None values are fetch from the model
177
+ self.synthesizer = Synthesizer(
178
+ tts_checkpoint=model_path,
179
+ tts_config_path=config_path,
180
+ tts_speakers_file=None,
181
+ tts_languages_file=None,
182
+ vocoder_checkpoint=vocoder_path,
183
+ vocoder_config=vocoder_config_path,
184
+ encoder_checkpoint=None,
185
+ encoder_config=None,
186
+ model_dir=model_dir,
187
+ use_cuda=gpu,
188
+ )
189
+
190
+ def load_tts_model_by_path(
191
+ self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False
192
+ ):
193
+ """Load a model from a path.
194
+
195
+ Args:
196
+ model_path (str): Path to the model checkpoint.
197
+ config_path (str): Path to the model config.
198
+ vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
199
+ vocoder_config (str, optional): Path to the vocoder config. Defaults to None.
200
+ gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
201
+ """
202
+
203
+ self.synthesizer = Synthesizer(
204
+ tts_checkpoint=model_path,
205
+ tts_config_path=config_path,
206
+ tts_speakers_file=None,
207
+ tts_languages_file=None,
208
+ vocoder_checkpoint=vocoder_path,
209
+ vocoder_config=vocoder_config,
210
+ encoder_checkpoint=None,
211
+ encoder_config=None,
212
+ use_cuda=gpu,
213
+ )
214
+
215
+ def _check_arguments(
216
+ self,
217
+ speaker: str = None,
218
+ language: str = None,
219
+ speaker_wav: str = None,
220
+ emotion: str = None,
221
+ speed: float = None,
222
+ **kwargs,
223
+ ) -> None:
224
+ """Check if the arguments are valid for the model."""
225
+ # check for the coqui tts models
226
+ if self.is_multi_speaker and (speaker is None and speaker_wav is None):
227
+ raise ValueError("Model is multi-speaker but no `speaker` is provided.")
228
+ if self.is_multi_lingual and language is None:
229
+ raise ValueError("Model is multi-lingual but no `language` is provided.")
230
+ if not self.is_multi_speaker and speaker is not None and "voice_dir" not in kwargs:
231
+ raise ValueError("Model is not multi-speaker but `speaker` is provided.")
232
+ if not self.is_multi_lingual and language is not None:
233
+ raise ValueError("Model is not multi-lingual but `language` is provided.")
234
+ if not emotion is None and not speed is None:
235
+ raise ValueError("Emotion and speed can only be used with Coqui Studio models. Which is discontinued.")
236
+
237
+ def tts(
238
+ self,
239
+ text: str,
240
+ speaker: str = None,
241
+ language: str = None,
242
+ speaker_wav: str = None,
243
+ emotion: str = None,
244
+ speed: float = None,
245
+ split_sentences: bool = True,
246
+ **kwargs,
247
+ ):
248
+ """Convert text to speech.
249
+
250
+ Args:
251
+ text (str):
252
+ Input text to synthesize.
253
+ speaker (str, optional):
254
+ Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
255
+ `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
256
+ language (str): Language of the text. If None, the default language of the speaker is used. Language is only
257
+ supported by `XTTS` model.
258
+ speaker_wav (str, optional):
259
+ Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
260
+ Defaults to None.
261
+ emotion (str, optional):
262
+ Emotion to use for 🐸Coqui Studio models. If None, Studio models use "Neutral". Defaults to None.
263
+ speed (float, optional):
264
+ Speed factor to use for 🐸Coqui Studio models, between 0 and 2.0. If None, Studio models use 1.0.
265
+ Defaults to None.
266
+ split_sentences (bool, optional):
267
+ Split text into sentences, synthesize them separately and concatenate the file audio.
268
+ Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only
269
+ applicable to the 🐸TTS models. Defaults to True.
270
+ kwargs (dict, optional):
271
+ Additional arguments for the model.
272
+ """
273
+ self._check_arguments(
274
+ speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed, **kwargs
275
+ )
276
+ wav = self.synthesizer.tts(
277
+ text=text,
278
+ speaker_name=speaker,
279
+ language_name=language,
280
+ speaker_wav=speaker_wav,
281
+ reference_wav=None,
282
+ style_wav=None,
283
+ style_text=None,
284
+ reference_speaker_name=None,
285
+ split_sentences=split_sentences,
286
+ **kwargs,
287
+ )
288
+ return wav
289
+
290
+ def tts_to_file(
291
+ self,
292
+ text: str,
293
+ speaker: str = None,
294
+ language: str = None,
295
+ speaker_wav: str = None,
296
+ emotion: str = None,
297
+ speed: float = 1.0,
298
+ pipe_out=None,
299
+ file_path: str = "output.wav",
300
+ split_sentences: bool = True,
301
+ **kwargs,
302
+ ):
303
+ """Convert text to speech.
304
+
305
+ Args:
306
+ text (str):
307
+ Input text to synthesize.
308
+ speaker (str, optional):
309
+ Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
310
+ `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
311
+ language (str, optional):
312
+ Language code for multi-lingual models. You can check whether loaded model is multi-lingual
313
+ `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
314
+ speaker_wav (str, optional):
315
+ Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
316
+ Defaults to None.
317
+ emotion (str, optional):
318
+ Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
319
+ speed (float, optional):
320
+ Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
321
+ pipe_out (BytesIO, optional):
322
+ Flag to stdout the generated TTS wav file for shell pipe.
323
+ file_path (str, optional):
324
+ Output file path. Defaults to "output.wav".
325
+ split_sentences (bool, optional):
326
+ Split text into sentences, synthesize them separately and concatenate the file audio.
327
+ Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only
328
+ applicable to the 🐸TTS models. Defaults to True.
329
+ kwargs (dict, optional):
330
+ Additional arguments for the model.
331
+ """
332
+ self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
333
+
334
+ wav = self.tts(
335
+ text=text,
336
+ speaker=speaker,
337
+ language=language,
338
+ speaker_wav=speaker_wav,
339
+ split_sentences=split_sentences,
340
+ **kwargs,
341
+ )
342
+ self.synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out)
343
+ return file_path
344
+
345
+ def voice_conversion(
346
+ self,
347
+ source_wav: str,
348
+ target_wav: str,
349
+ ):
350
+ """Voice conversion with FreeVC. Convert source wav to target speaker.
351
+
352
+ Args:``
353
+ source_wav (str):
354
+ Path to the source wav file.
355
+ target_wav (str):`
356
+ Path to the target wav file.
357
+ """
358
+ wav = self.voice_converter.voice_conversion(source_wav=source_wav, target_wav=target_wav)
359
+ return wav
360
+
361
+ def voice_conversion_to_file(
362
+ self,
363
+ source_wav: str,
364
+ target_wav: str,
365
+ file_path: str = "output.wav",
366
+ ):
367
+ """Voice conversion with FreeVC. Convert source wav to target speaker.
368
+
369
+ Args:
370
+ source_wav (str):
371
+ Path to the source wav file.
372
+ target_wav (str):
373
+ Path to the target wav file.
374
+ file_path (str, optional):
375
+ Output file path. Defaults to "output.wav".
376
+ """
377
+ wav = self.voice_conversion(source_wav=source_wav, target_wav=target_wav)
378
+ save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)
379
+ return file_path
380
+
381
+ def tts_with_vc(
382
+ self,
383
+ text: str,
384
+ language: str = None,
385
+ speaker_wav: str = None,
386
+ speaker: str = None,
387
+ split_sentences: bool = True,
388
+ ):
389
+ """Convert text to speech with voice conversion.
390
+
391
+ It combines tts with voice conversion to fake voice cloning.
392
+
393
+ - Convert text to speech with tts.
394
+ - Convert the output wav to target speaker with voice conversion.
395
+
396
+ Args:
397
+ text (str):
398
+ Input text to synthesize.
399
+ language (str, optional):
400
+ Language code for multi-lingual models. You can check whether loaded model is multi-lingual
401
+ `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
402
+ speaker_wav (str, optional):
403
+ Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
404
+ Defaults to None.
405
+ speaker (str, optional):
406
+ Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
407
+ `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
408
+ split_sentences (bool, optional):
409
+ Split text into sentences, synthesize them separately and concatenate the file audio.
410
+ Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only
411
+ applicable to the 🐸TTS models. Defaults to True.
412
+ """
413
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
414
+ # Lazy code... save it to a temp file to resample it while reading it for VC
415
+ self.tts_to_file(
416
+ text=text, speaker=speaker, language=language, file_path=fp.name, split_sentences=split_sentences
417
+ )
418
+ if self.voice_converter is None:
419
+ self.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24")
420
+ wav = self.voice_converter.voice_conversion(source_wav=fp.name, target_wav=speaker_wav)
421
+ return wav
422
+
423
+ def tts_with_vc_to_file(
424
+ self,
425
+ text: str,
426
+ language: str = None,
427
+ speaker_wav: str = None,
428
+ file_path: str = "output.wav",
429
+ speaker: str = None,
430
+ split_sentences: bool = True,
431
+ ):
432
+ """Convert text to speech with voice conversion and save to file.
433
+
434
+ Check `tts_with_vc` for more details.
435
+
436
+ Args:
437
+ text (str):
438
+ Input text to synthesize.
439
+ language (str, optional):
440
+ Language code for multi-lingual models. You can check whether loaded model is multi-lingual
441
+ `tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
442
+ speaker_wav (str, optional):
443
+ Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
444
+ Defaults to None.
445
+ file_path (str, optional):
446
+ Output file path. Defaults to "output.wav".
447
+ speaker (str, optional):
448
+ Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
449
+ `tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
450
+ split_sentences (bool, optional):
451
+ Split text into sentences, synthesize them separately and concatenate the file audio.
452
+ Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only
453
+ applicable to the 🐸TTS models. Defaults to True.
454
+ """
455
+ wav = self.tts_with_vc(
456
+ text=text, language=language, speaker_wav=speaker_wav, speaker=speaker, split_sentences=split_sentences
457
+ )
458
+ save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)
TTS/bin/__init__.py ADDED
File without changes
TTS/bin/collect_env_info.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Get detailed info about the working environment."""
2
+ import os
3
+ import platform
4
+ import sys
5
+
6
+ import numpy
7
+ import torch
8
+
9
+ sys.path += [os.path.abspath(".."), os.path.abspath(".")]
10
+ import json
11
+
12
+ import TTS
13
+
14
+
15
+ def system_info():
16
+ return {
17
+ "OS": platform.system(),
18
+ "architecture": platform.architecture(),
19
+ "version": platform.version(),
20
+ "processor": platform.processor(),
21
+ "python": platform.python_version(),
22
+ }
23
+
24
+
25
+ def cuda_info():
26
+ return {
27
+ "GPU": [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())],
28
+ "available": torch.cuda.is_available(),
29
+ "version": torch.version.cuda,
30
+ }
31
+
32
+
33
+ def package_info():
34
+ return {
35
+ "numpy": numpy.__version__,
36
+ "PyTorch_version": torch.__version__,
37
+ "PyTorch_debug": torch.version.debug,
38
+ "TTS": TTS.__version__,
39
+ }
40
+
41
+
42
+ def main():
43
+ details = {"System": system_info(), "CUDA": cuda_info(), "Packages": package_info()}
44
+ print(json.dumps(details, indent=4, sort_keys=True))
45
+
46
+
47
+ if __name__ == "__main__":
48
+ main()
TTS/bin/compute_attention_masks.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import importlib
3
+ import os
4
+ from argparse import RawTextHelpFormatter
5
+
6
+ import numpy as np
7
+ import torch
8
+ from torch.utils.data import DataLoader
9
+ from tqdm import tqdm
10
+
11
+ from TTS.config import load_config
12
+ from TTS.tts.datasets.TTSDataset import TTSDataset
13
+ from TTS.tts.models import setup_model
14
+ from TTS.tts.utils.text.characters import make_symbols, phonemes, symbols
15
+ from TTS.utils.audio import AudioProcessor
16
+ from TTS.utils.io import load_checkpoint
17
+
18
+ if __name__ == "__main__":
19
+ # pylint: disable=bad-option-value
20
+ parser = argparse.ArgumentParser(
21
+ description="""Extract attention masks from trained Tacotron/Tacotron2 models.
22
+ These masks can be used for different purposes including training a TTS model with a Duration Predictor.\n\n"""
23
+ """Each attention mask is written to the same path as the input wav file with ".npy" file extension.
24
+ (e.g. path/bla.wav (wav file) --> path/bla.npy (attention mask))\n"""
25
+ """
26
+ Example run:
27
+ CUDA_VISIBLE_DEVICE="0" python TTS/bin/compute_attention_masks.py
28
+ --model_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_200000.pth
29
+ --config_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json
30
+ --dataset_metafile metadata.csv
31
+ --data_path /root/LJSpeech-1.1/
32
+ --batch_size 32
33
+ --dataset ljspeech
34
+ --use_cuda True
35
+ """,
36
+ formatter_class=RawTextHelpFormatter,
37
+ )
38
+ parser.add_argument("--model_path", type=str, required=True, help="Path to Tacotron/Tacotron2 model file ")
39
+ parser.add_argument(
40
+ "--config_path",
41
+ type=str,
42
+ required=True,
43
+ help="Path to Tacotron/Tacotron2 config file.",
44
+ )
45
+ parser.add_argument(
46
+ "--dataset",
47
+ type=str,
48
+ default="",
49
+ required=True,
50
+ help="Target dataset processor name from TTS.tts.dataset.preprocess.",
51
+ )
52
+
53
+ parser.add_argument(
54
+ "--dataset_metafile",
55
+ type=str,
56
+ default="",
57
+ required=True,
58
+ help="Dataset metafile inclusing file paths with transcripts.",
59
+ )
60
+ parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.")
61
+ parser.add_argument("--use_cuda", type=bool, default=False, help="enable/disable cuda.")
62
+
63
+ parser.add_argument(
64
+ "--batch_size", default=16, type=int, help="Batch size for the model. Use batch_size=1 if you have no CUDA."
65
+ )
66
+ args = parser.parse_args()
67
+
68
+ C = load_config(args.config_path)
69
+ ap = AudioProcessor(**C.audio)
70
+
71
+ # if the vocabulary was passed, replace the default
72
+ if "characters" in C.keys():
73
+ symbols, phonemes = make_symbols(**C.characters)
74
+
75
+ # load the model
76
+ num_chars = len(phonemes) if C.use_phonemes else len(symbols)
77
+ # TODO: handle multi-speaker
78
+ model = setup_model(C)
79
+ model, _ = load_checkpoint(model, args.model_path, args.use_cuda, True)
80
+
81
+ # data loader
82
+ preprocessor = importlib.import_module("TTS.tts.datasets.formatters")
83
+ preprocessor = getattr(preprocessor, args.dataset)
84
+ meta_data = preprocessor(args.data_path, args.dataset_metafile)
85
+ dataset = TTSDataset(
86
+ model.decoder.r,
87
+ C.text_cleaner,
88
+ compute_linear_spec=False,
89
+ ap=ap,
90
+ meta_data=meta_data,
91
+ characters=C.characters if "characters" in C.keys() else None,
92
+ add_blank=C["add_blank"] if "add_blank" in C.keys() else False,
93
+ use_phonemes=C.use_phonemes,
94
+ phoneme_cache_path=C.phoneme_cache_path,
95
+ phoneme_language=C.phoneme_language,
96
+ enable_eos_bos=C.enable_eos_bos_chars,
97
+ )
98
+
99
+ dataset.sort_and_filter_items(C.get("sort_by_audio_len", default=False))
100
+ loader = DataLoader(
101
+ dataset,
102
+ batch_size=args.batch_size,
103
+ num_workers=4,
104
+ collate_fn=dataset.collate_fn,
105
+ shuffle=False,
106
+ drop_last=False,
107
+ )
108
+
109
+ # compute attentions
110
+ file_paths = []
111
+ with torch.no_grad():
112
+ for data in tqdm(loader):
113
+ # setup input data
114
+ text_input = data[0]
115
+ text_lengths = data[1]
116
+ linear_input = data[3]
117
+ mel_input = data[4]
118
+ mel_lengths = data[5]
119
+ stop_targets = data[6]
120
+ item_idxs = data[7]
121
+
122
+ # dispatch data to GPU
123
+ if args.use_cuda:
124
+ text_input = text_input.cuda()
125
+ text_lengths = text_lengths.cuda()
126
+ mel_input = mel_input.cuda()
127
+ mel_lengths = mel_lengths.cuda()
128
+
129
+ model_outputs = model.forward(text_input, text_lengths, mel_input)
130
+
131
+ alignments = model_outputs["alignments"].detach()
132
+ for idx, alignment in enumerate(alignments):
133
+ item_idx = item_idxs[idx]
134
+ # interpolate if r > 1
135
+ alignment = (
136
+ torch.nn.functional.interpolate(
137
+ alignment.transpose(0, 1).unsqueeze(0),
138
+ size=None,
139
+ scale_factor=model.decoder.r,
140
+ mode="nearest",
141
+ align_corners=None,
142
+ recompute_scale_factor=None,
143
+ )
144
+ .squeeze(0)
145
+ .transpose(0, 1)
146
+ )
147
+ # remove paddings
148
+ alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy()
149
+ # set file paths
150
+ wav_file_name = os.path.basename(item_idx)
151
+ align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy"
152
+ file_path = item_idx.replace(wav_file_name, align_file_name)
153
+ # save output
154
+ wav_file_abs_path = os.path.abspath(item_idx)
155
+ file_abs_path = os.path.abspath(file_path)
156
+ file_paths.append([wav_file_abs_path, file_abs_path])
157
+ np.save(file_path, alignment)
158
+
159
+ # ourput metafile
160
+ metafile = os.path.join(args.data_path, "metadata_attn_mask.txt")
161
+
162
+ with open(metafile, "w", encoding="utf-8") as f:
163
+ for p in file_paths:
164
+ f.write(f"{p[0]}|{p[1]}\n")
165
+ print(f" >> Metafile created: {metafile}")
TTS/bin/compute_embeddings.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ from argparse import RawTextHelpFormatter
4
+
5
+ import torch
6
+ from tqdm import tqdm
7
+
8
+ from TTS.config import load_config
9
+ from TTS.config.shared_configs import BaseDatasetConfig
10
+ from TTS.tts.datasets import load_tts_samples
11
+ from TTS.tts.utils.managers import save_file
12
+ from TTS.tts.utils.speakers import SpeakerManager
13
+
14
+
15
+ def compute_embeddings(
16
+ model_path,
17
+ config_path,
18
+ output_path,
19
+ old_speakers_file=None,
20
+ old_append=False,
21
+ config_dataset_path=None,
22
+ formatter_name=None,
23
+ dataset_name=None,
24
+ dataset_path=None,
25
+ meta_file_train=None,
26
+ meta_file_val=None,
27
+ disable_cuda=False,
28
+ no_eval=False,
29
+ ):
30
+ use_cuda = torch.cuda.is_available() and not disable_cuda
31
+
32
+ if config_dataset_path is not None:
33
+ c_dataset = load_config(config_dataset_path)
34
+ meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval)
35
+ else:
36
+ c_dataset = BaseDatasetConfig()
37
+ c_dataset.formatter = formatter_name
38
+ c_dataset.dataset_name = dataset_name
39
+ c_dataset.path = dataset_path
40
+ if meta_file_train is not None:
41
+ c_dataset.meta_file_train = meta_file_train
42
+ if meta_file_val is not None:
43
+ c_dataset.meta_file_val = meta_file_val
44
+ meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval)
45
+
46
+ if meta_data_eval is None:
47
+ samples = meta_data_train
48
+ else:
49
+ samples = meta_data_train + meta_data_eval
50
+
51
+ encoder_manager = SpeakerManager(
52
+ encoder_model_path=model_path,
53
+ encoder_config_path=config_path,
54
+ d_vectors_file_path=old_speakers_file,
55
+ use_cuda=use_cuda,
56
+ )
57
+
58
+ class_name_key = encoder_manager.encoder_config.class_name_key
59
+
60
+ # compute speaker embeddings
61
+ if old_speakers_file is not None and old_append:
62
+ speaker_mapping = encoder_manager.embeddings
63
+ else:
64
+ speaker_mapping = {}
65
+
66
+ for fields in tqdm(samples):
67
+ class_name = fields[class_name_key]
68
+ audio_file = fields["audio_file"]
69
+ embedding_key = fields["audio_unique_name"]
70
+
71
+ # Only update the speaker name when the embedding is already in the old file.
72
+ if embedding_key in speaker_mapping:
73
+ speaker_mapping[embedding_key]["name"] = class_name
74
+ continue
75
+
76
+ if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids:
77
+ # get the embedding from the old file
78
+ embedd = encoder_manager.get_embedding_by_clip(embedding_key)
79
+ else:
80
+ # extract the embedding
81
+ embedd = encoder_manager.compute_embedding_from_clip(audio_file)
82
+
83
+ # create speaker_mapping if target dataset is defined
84
+ speaker_mapping[embedding_key] = {}
85
+ speaker_mapping[embedding_key]["name"] = class_name
86
+ speaker_mapping[embedding_key]["embedding"] = embedd
87
+
88
+ if speaker_mapping:
89
+ # save speaker_mapping if target dataset is defined
90
+ if os.path.isdir(output_path):
91
+ mapping_file_path = os.path.join(output_path, "speakers.pth")
92
+ else:
93
+ mapping_file_path = output_path
94
+
95
+ if os.path.dirname(mapping_file_path) != "":
96
+ os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
97
+
98
+ save_file(speaker_mapping, mapping_file_path)
99
+ print("Speaker embeddings saved at:", mapping_file_path)
100
+
101
+
102
+ if __name__ == "__main__":
103
+ parser = argparse.ArgumentParser(
104
+ description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n"""
105
+ """
106
+ Example runs:
107
+ python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json
108
+
109
+ python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv
110
+ """,
111
+ formatter_class=RawTextHelpFormatter,
112
+ )
113
+ parser.add_argument(
114
+ "--model_path",
115
+ type=str,
116
+ help="Path to model checkpoint file. It defaults to the released speaker encoder.",
117
+ default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar",
118
+ )
119
+ parser.add_argument(
120
+ "--config_path",
121
+ type=str,
122
+ help="Path to model config file. It defaults to the released speaker encoder config.",
123
+ default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json",
124
+ )
125
+ parser.add_argument(
126
+ "--config_dataset_path",
127
+ type=str,
128
+ help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.",
129
+ default=None,
130
+ )
131
+ parser.add_argument(
132
+ "--output_path",
133
+ type=str,
134
+ help="Path for output `pth` or `json` file.",
135
+ default="speakers.pth",
136
+ )
137
+ parser.add_argument(
138
+ "--old_file",
139
+ type=str,
140
+ help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.",
141
+ default=None,
142
+ )
143
+ parser.add_argument(
144
+ "--old_append",
145
+ help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False",
146
+ default=False,
147
+ action="store_true",
148
+ )
149
+ parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
150
+ parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true")
151
+ parser.add_argument(
152
+ "--formatter_name",
153
+ type=str,
154
+ help="Name of the formatter to use. You either need to provide this or `config_dataset_path`",
155
+ default=None,
156
+ )
157
+ parser.add_argument(
158
+ "--dataset_name",
159
+ type=str,
160
+ help="Name of the dataset to use. You either need to provide this or `config_dataset_path`",
161
+ default=None,
162
+ )
163
+ parser.add_argument(
164
+ "--dataset_path",
165
+ type=str,
166
+ help="Path to the dataset. You either need to provide this or `config_dataset_path`",
167
+ default=None,
168
+ )
169
+ parser.add_argument(
170
+ "--meta_file_train",
171
+ type=str,
172
+ help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
173
+ default=None,
174
+ )
175
+ parser.add_argument(
176
+ "--meta_file_val",
177
+ type=str,
178
+ help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
179
+ default=None,
180
+ )
181
+ args = parser.parse_args()
182
+
183
+ compute_embeddings(
184
+ args.model_path,
185
+ args.config_path,
186
+ args.output_path,
187
+ old_speakers_file=args.old_file,
188
+ old_append=args.old_append,
189
+ config_dataset_path=args.config_dataset_path,
190
+ formatter_name=args.formatter_name,
191
+ dataset_name=args.dataset_name,
192
+ dataset_path=args.dataset_path,
193
+ meta_file_train=args.meta_file_train,
194
+ meta_file_val=args.meta_file_val,
195
+ disable_cuda=args.disable_cuda,
196
+ no_eval=args.no_eval,
197
+ )
TTS/bin/compute_statistics.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import argparse
5
+ import glob
6
+ import os
7
+
8
+ import numpy as np
9
+ from tqdm import tqdm
10
+
11
+ # from TTS.utils.io import load_config
12
+ from TTS.config import load_config
13
+ from TTS.tts.datasets import load_tts_samples
14
+ from TTS.utils.audio import AudioProcessor
15
+
16
+
17
+ def main():
18
+ """Run preprocessing process."""
19
+ parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.")
20
+ parser.add_argument("config_path", type=str, help="TTS config file path to define audio processin parameters.")
21
+ parser.add_argument("out_path", type=str, help="save path (directory and filename).")
22
+ parser.add_argument(
23
+ "--data_path",
24
+ type=str,
25
+ required=False,
26
+ help="folder including the target set of wavs overriding dataset config.",
27
+ )
28
+ args, overrides = parser.parse_known_args()
29
+
30
+ CONFIG = load_config(args.config_path)
31
+ CONFIG.parse_known_args(overrides, relaxed_parser=True)
32
+
33
+ # load config
34
+ CONFIG.audio.signal_norm = False # do not apply earlier normalization
35
+ CONFIG.audio.stats_path = None # discard pre-defined stats
36
+
37
+ # load audio processor
38
+ ap = AudioProcessor(**CONFIG.audio.to_dict())
39
+
40
+ # load the meta data of target dataset
41
+ if args.data_path:
42
+ dataset_items = glob.glob(os.path.join(args.data_path, "**", "*.wav"), recursive=True)
43
+ else:
44
+ dataset_items = load_tts_samples(CONFIG.datasets)[0] # take only train data
45
+ print(f" > There are {len(dataset_items)} files.")
46
+
47
+ mel_sum = 0
48
+ mel_square_sum = 0
49
+ linear_sum = 0
50
+ linear_square_sum = 0
51
+ N = 0
52
+ for item in tqdm(dataset_items):
53
+ # compute features
54
+ wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"])
55
+ linear = ap.spectrogram(wav)
56
+ mel = ap.melspectrogram(wav)
57
+
58
+ # compute stats
59
+ N += mel.shape[1]
60
+ mel_sum += mel.sum(1)
61
+ linear_sum += linear.sum(1)
62
+ mel_square_sum += (mel**2).sum(axis=1)
63
+ linear_square_sum += (linear**2).sum(axis=1)
64
+
65
+ mel_mean = mel_sum / N
66
+ mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2)
67
+ linear_mean = linear_sum / N
68
+ linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2)
69
+
70
+ output_file_path = args.out_path
71
+ stats = {}
72
+ stats["mel_mean"] = mel_mean
73
+ stats["mel_std"] = mel_scale
74
+ stats["linear_mean"] = linear_mean
75
+ stats["linear_std"] = linear_scale
76
+
77
+ print(f" > Avg mel spec mean: {mel_mean.mean()}")
78
+ print(f" > Avg mel spec scale: {mel_scale.mean()}")
79
+ print(f" > Avg linear spec mean: {linear_mean.mean()}")
80
+ print(f" > Avg linear spec scale: {linear_scale.mean()}")
81
+
82
+ # set default config values for mean-var scaling
83
+ CONFIG.audio.stats_path = output_file_path
84
+ CONFIG.audio.signal_norm = True
85
+ # remove redundant values
86
+ del CONFIG.audio.max_norm
87
+ del CONFIG.audio.min_level_db
88
+ del CONFIG.audio.symmetric_norm
89
+ del CONFIG.audio.clip_norm
90
+ stats["audio_config"] = CONFIG.audio.to_dict()
91
+ np.save(output_file_path, stats, allow_pickle=True)
92
+ print(f" > stats saved to {output_file_path}")
93
+
94
+
95
+ if __name__ == "__main__":
96
+ main()
TTS/bin/eval_encoder.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from argparse import RawTextHelpFormatter
3
+
4
+ import torch
5
+ from tqdm import tqdm
6
+
7
+ from TTS.config import load_config
8
+ from TTS.tts.datasets import load_tts_samples
9
+ from TTS.tts.utils.speakers import SpeakerManager
10
+
11
+
12
+ def compute_encoder_accuracy(dataset_items, encoder_manager):
13
+ class_name_key = encoder_manager.encoder_config.class_name_key
14
+ map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None)
15
+
16
+ class_acc_dict = {}
17
+
18
+ # compute embeddings for all wav_files
19
+ for item in tqdm(dataset_items):
20
+ class_name = item[class_name_key]
21
+ wav_file = item["audio_file"]
22
+
23
+ # extract the embedding
24
+ embedd = encoder_manager.compute_embedding_from_clip(wav_file)
25
+ if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None:
26
+ embedding = torch.FloatTensor(embedd).unsqueeze(0)
27
+ if encoder_manager.use_cuda:
28
+ embedding = embedding.cuda()
29
+
30
+ class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item()
31
+ predicted_label = map_classid_to_classname[str(class_id)]
32
+ else:
33
+ predicted_label = None
34
+
35
+ if class_name is not None and predicted_label is not None:
36
+ is_equal = int(class_name == predicted_label)
37
+ if class_name not in class_acc_dict:
38
+ class_acc_dict[class_name] = [is_equal]
39
+ else:
40
+ class_acc_dict[class_name].append(is_equal)
41
+ else:
42
+ raise RuntimeError("Error: class_name or/and predicted_label are None")
43
+
44
+ acc_avg = 0
45
+ for key, values in class_acc_dict.items():
46
+ acc = sum(values) / len(values)
47
+ print("Class", key, "Accuracy:", acc)
48
+ acc_avg += acc
49
+
50
+ print("Average Accuracy:", acc_avg / len(class_acc_dict))
51
+
52
+
53
+ if __name__ == "__main__":
54
+ parser = argparse.ArgumentParser(
55
+ description="""Compute the accuracy of the encoder.\n\n"""
56
+ """
57
+ Example runs:
58
+ python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json
59
+ """,
60
+ formatter_class=RawTextHelpFormatter,
61
+ )
62
+ parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
63
+ parser.add_argument(
64
+ "config_path",
65
+ type=str,
66
+ help="Path to model config file.",
67
+ )
68
+
69
+ parser.add_argument(
70
+ "config_dataset_path",
71
+ type=str,
72
+ help="Path to dataset config file.",
73
+ )
74
+ parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
75
+ parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
76
+
77
+ args = parser.parse_args()
78
+
79
+ c_dataset = load_config(args.config_dataset_path)
80
+
81
+ meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
82
+ items = meta_data_train + meta_data_eval
83
+
84
+ enc_manager = SpeakerManager(
85
+ encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
86
+ )
87
+
88
+ compute_encoder_accuracy(items, enc_manager)
TTS/bin/extract_tts_spectrograms.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """Extract Mel spectrograms with teacher forcing."""
3
+
4
+ import argparse
5
+ import os
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch.utils.data import DataLoader
10
+ from tqdm import tqdm
11
+
12
+ from TTS.config import load_config
13
+ from TTS.tts.datasets import TTSDataset, load_tts_samples
14
+ from TTS.tts.models import setup_model
15
+ from TTS.tts.utils.speakers import SpeakerManager
16
+ from TTS.tts.utils.text.tokenizer import TTSTokenizer
17
+ from TTS.utils.audio import AudioProcessor
18
+ from TTS.utils.audio.numpy_transforms import quantize
19
+ from TTS.utils.generic_utils import count_parameters
20
+
21
+ use_cuda = torch.cuda.is_available()
22
+
23
+
24
+ def setup_loader(ap, r, verbose=False):
25
+ tokenizer, _ = TTSTokenizer.init_from_config(c)
26
+ dataset = TTSDataset(
27
+ outputs_per_step=r,
28
+ compute_linear_spec=False,
29
+ samples=meta_data,
30
+ tokenizer=tokenizer,
31
+ ap=ap,
32
+ batch_group_size=0,
33
+ min_text_len=c.min_text_len,
34
+ max_text_len=c.max_text_len,
35
+ min_audio_len=c.min_audio_len,
36
+ max_audio_len=c.max_audio_len,
37
+ phoneme_cache_path=c.phoneme_cache_path,
38
+ precompute_num_workers=0,
39
+ use_noise_augment=False,
40
+ verbose=verbose,
41
+ speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None,
42
+ d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None,
43
+ )
44
+
45
+ if c.use_phonemes and c.compute_input_seq_cache:
46
+ # precompute phonemes to have a better estimate of sequence lengths.
47
+ dataset.compute_input_seq(c.num_loader_workers)
48
+ dataset.preprocess_samples()
49
+
50
+ loader = DataLoader(
51
+ dataset,
52
+ batch_size=c.batch_size,
53
+ shuffle=False,
54
+ collate_fn=dataset.collate_fn,
55
+ drop_last=False,
56
+ sampler=None,
57
+ num_workers=c.num_loader_workers,
58
+ pin_memory=False,
59
+ )
60
+ return loader
61
+
62
+
63
+ def set_filename(wav_path, out_path):
64
+ wav_file = os.path.basename(wav_path)
65
+ file_name = wav_file.split(".")[0]
66
+ os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
67
+ os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
68
+ os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
69
+ os.makedirs(os.path.join(out_path, "wav"), exist_ok=True)
70
+ wavq_path = os.path.join(out_path, "quant", file_name)
71
+ mel_path = os.path.join(out_path, "mel", file_name)
72
+ wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav")
73
+ wav_path = os.path.join(out_path, "wav", file_name + ".wav")
74
+ return file_name, wavq_path, mel_path, wav_gl_path, wav_path
75
+
76
+
77
+ def format_data(data):
78
+ # setup input data
79
+ text_input = data["token_id"]
80
+ text_lengths = data["token_id_lengths"]
81
+ mel_input = data["mel"]
82
+ mel_lengths = data["mel_lengths"]
83
+ item_idx = data["item_idxs"]
84
+ d_vectors = data["d_vectors"]
85
+ speaker_ids = data["speaker_ids"]
86
+ attn_mask = data["attns"]
87
+ avg_text_length = torch.mean(text_lengths.float())
88
+ avg_spec_length = torch.mean(mel_lengths.float())
89
+
90
+ # dispatch data to GPU
91
+ if use_cuda:
92
+ text_input = text_input.cuda(non_blocking=True)
93
+ text_lengths = text_lengths.cuda(non_blocking=True)
94
+ mel_input = mel_input.cuda(non_blocking=True)
95
+ mel_lengths = mel_lengths.cuda(non_blocking=True)
96
+ if speaker_ids is not None:
97
+ speaker_ids = speaker_ids.cuda(non_blocking=True)
98
+ if d_vectors is not None:
99
+ d_vectors = d_vectors.cuda(non_blocking=True)
100
+ if attn_mask is not None:
101
+ attn_mask = attn_mask.cuda(non_blocking=True)
102
+ return (
103
+ text_input,
104
+ text_lengths,
105
+ mel_input,
106
+ mel_lengths,
107
+ speaker_ids,
108
+ d_vectors,
109
+ avg_text_length,
110
+ avg_spec_length,
111
+ attn_mask,
112
+ item_idx,
113
+ )
114
+
115
+
116
+ @torch.no_grad()
117
+ def inference(
118
+ model_name,
119
+ model,
120
+ ap,
121
+ text_input,
122
+ text_lengths,
123
+ mel_input,
124
+ mel_lengths,
125
+ speaker_ids=None,
126
+ d_vectors=None,
127
+ ):
128
+ if model_name == "glow_tts":
129
+ speaker_c = None
130
+ if speaker_ids is not None:
131
+ speaker_c = speaker_ids
132
+ elif d_vectors is not None:
133
+ speaker_c = d_vectors
134
+ outputs = model.inference_with_MAS(
135
+ text_input,
136
+ text_lengths,
137
+ mel_input,
138
+ mel_lengths,
139
+ aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids},
140
+ )
141
+ model_output = outputs["model_outputs"]
142
+ model_output = model_output.detach().cpu().numpy()
143
+
144
+ elif "tacotron" in model_name:
145
+ aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
146
+ outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input)
147
+ postnet_outputs = outputs["model_outputs"]
148
+ # normalize tacotron output
149
+ if model_name == "tacotron":
150
+ mel_specs = []
151
+ postnet_outputs = postnet_outputs.data.cpu().numpy()
152
+ for b in range(postnet_outputs.shape[0]):
153
+ postnet_output = postnet_outputs[b]
154
+ mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T))
155
+ model_output = torch.stack(mel_specs).cpu().numpy()
156
+
157
+ elif model_name == "tacotron2":
158
+ model_output = postnet_outputs.detach().cpu().numpy()
159
+ return model_output
160
+
161
+
162
+ def extract_spectrograms(
163
+ data_loader, model, ap, output_path, quantize_bits=0, save_audio=False, debug=False, metada_name="metada.txt"
164
+ ):
165
+ model.eval()
166
+ export_metadata = []
167
+ for _, data in tqdm(enumerate(data_loader), total=len(data_loader)):
168
+ # format data
169
+ (
170
+ text_input,
171
+ text_lengths,
172
+ mel_input,
173
+ mel_lengths,
174
+ speaker_ids,
175
+ d_vectors,
176
+ _,
177
+ _,
178
+ _,
179
+ item_idx,
180
+ ) = format_data(data)
181
+
182
+ model_output = inference(
183
+ c.model.lower(),
184
+ model,
185
+ ap,
186
+ text_input,
187
+ text_lengths,
188
+ mel_input,
189
+ mel_lengths,
190
+ speaker_ids,
191
+ d_vectors,
192
+ )
193
+
194
+ for idx in range(text_input.shape[0]):
195
+ wav_file_path = item_idx[idx]
196
+ wav = ap.load_wav(wav_file_path)
197
+ _, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path)
198
+
199
+ # quantize and save wav
200
+ if quantize_bits > 0:
201
+ wavq = quantize(wav, quantize_bits)
202
+ np.save(wavq_path, wavq)
203
+
204
+ # save TTS mel
205
+ mel = model_output[idx]
206
+ mel_length = mel_lengths[idx]
207
+ mel = mel[:mel_length, :].T
208
+ np.save(mel_path, mel)
209
+
210
+ export_metadata.append([wav_file_path, mel_path])
211
+ if save_audio:
212
+ ap.save_wav(wav, wav_path)
213
+
214
+ if debug:
215
+ print("Audio for debug saved at:", wav_gl_path)
216
+ wav = ap.inv_melspectrogram(mel)
217
+ ap.save_wav(wav, wav_gl_path)
218
+
219
+ with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f:
220
+ for data in export_metadata:
221
+ f.write(f"{data[0]}|{data[1]+'.npy'}\n")
222
+
223
+
224
+ def main(args): # pylint: disable=redefined-outer-name
225
+ # pylint: disable=global-variable-undefined
226
+ global meta_data, speaker_manager
227
+
228
+ # Audio processor
229
+ ap = AudioProcessor(**c.audio)
230
+
231
+ # load data instances
232
+ meta_data_train, meta_data_eval = load_tts_samples(
233
+ c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
234
+ )
235
+
236
+ # use eval and training partitions
237
+ meta_data = meta_data_train + meta_data_eval
238
+
239
+ # init speaker manager
240
+ if c.use_speaker_embedding:
241
+ speaker_manager = SpeakerManager(data_items=meta_data)
242
+ elif c.use_d_vector_file:
243
+ speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file)
244
+ else:
245
+ speaker_manager = None
246
+
247
+ # setup model
248
+ model = setup_model(c)
249
+
250
+ # restore model
251
+ model.load_checkpoint(c, args.checkpoint_path, eval=True)
252
+
253
+ if use_cuda:
254
+ model.cuda()
255
+
256
+ num_params = count_parameters(model)
257
+ print("\n > Model has {} parameters".format(num_params), flush=True)
258
+ # set r
259
+ r = 1 if c.model.lower() == "glow_tts" else model.decoder.r
260
+ own_loader = setup_loader(ap, r, verbose=True)
261
+
262
+ extract_spectrograms(
263
+ own_loader,
264
+ model,
265
+ ap,
266
+ args.output_path,
267
+ quantize_bits=args.quantize_bits,
268
+ save_audio=args.save_audio,
269
+ debug=args.debug,
270
+ metada_name="metada.txt",
271
+ )
272
+
273
+
274
+ if __name__ == "__main__":
275
+ parser = argparse.ArgumentParser()
276
+ parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True)
277
+ parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True)
278
+ parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True)
279
+ parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug")
280
+ parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files")
281
+ parser.add_argument("--quantize_bits", type=int, default=0, help="Save quantized audio files if non-zero")
282
+ parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
283
+ args = parser.parse_args()
284
+
285
+ c = load_config(args.config_path)
286
+ c.audio.trim_silence = False
287
+ main(args)
TTS/bin/find_unique_chars.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Find all the unique characters in a dataset"""
2
+ import argparse
3
+ from argparse import RawTextHelpFormatter
4
+
5
+ from TTS.config import load_config
6
+ from TTS.tts.datasets import load_tts_samples
7
+
8
+
9
+ def main():
10
+ # pylint: disable=bad-option-value
11
+ parser = argparse.ArgumentParser(
12
+ description="""Find all the unique characters or phonemes in a dataset.\n\n"""
13
+ """
14
+ Example runs:
15
+
16
+ python TTS/bin/find_unique_chars.py --config_path config.json
17
+ """,
18
+ formatter_class=RawTextHelpFormatter,
19
+ )
20
+ parser.add_argument("--config_path", type=str, help="Path to dataset config file.", required=True)
21
+ args = parser.parse_args()
22
+
23
+ c = load_config(args.config_path)
24
+
25
+ # load all datasets
26
+ train_items, eval_items = load_tts_samples(
27
+ c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
28
+ )
29
+
30
+ items = train_items + eval_items
31
+
32
+ texts = "".join(item["text"] for item in items)
33
+ chars = set(texts)
34
+ lower_chars = filter(lambda c: c.islower(), chars)
35
+ chars_force_lower = [c.lower() for c in chars]
36
+ chars_force_lower = set(chars_force_lower)
37
+
38
+ print(f" > Number of unique characters: {len(chars)}")
39
+ print(f" > Unique characters: {''.join(sorted(chars))}")
40
+ print(f" > Unique lower characters: {''.join(sorted(lower_chars))}")
41
+ print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}")
42
+
43
+
44
+ if __name__ == "__main__":
45
+ main()
TTS/bin/find_unique_phonemes.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Find all the unique characters in a dataset"""
2
+ import argparse
3
+ import multiprocessing
4
+ from argparse import RawTextHelpFormatter
5
+
6
+ from tqdm.contrib.concurrent import process_map
7
+
8
+ from TTS.config import load_config
9
+ from TTS.tts.datasets import load_tts_samples
10
+ from TTS.tts.utils.text.phonemizers import Gruut
11
+
12
+
13
+ def compute_phonemes(item):
14
+ text = item["text"]
15
+ ph = phonemizer.phonemize(text).replace("|", "")
16
+ return set(list(ph))
17
+
18
+
19
+ def main():
20
+ # pylint: disable=W0601
21
+ global c, phonemizer
22
+ # pylint: disable=bad-option-value
23
+ parser = argparse.ArgumentParser(
24
+ description="""Find all the unique characters or phonemes in a dataset.\n\n"""
25
+ """
26
+ Example runs:
27
+
28
+ python TTS/bin/find_unique_phonemes.py --config_path config.json
29
+ """,
30
+ formatter_class=RawTextHelpFormatter,
31
+ )
32
+ parser.add_argument("--config_path", type=str, help="Path to dataset config file.", required=True)
33
+ args = parser.parse_args()
34
+
35
+ c = load_config(args.config_path)
36
+
37
+ # load all datasets
38
+ train_items, eval_items = load_tts_samples(
39
+ c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
40
+ )
41
+ items = train_items + eval_items
42
+ print("Num items:", len(items))
43
+
44
+ language_list = [item["language"] for item in items]
45
+ is_lang_def = all(language_list)
46
+
47
+ if not c.phoneme_language or not is_lang_def:
48
+ raise ValueError("Phoneme language must be defined in config.")
49
+
50
+ if not language_list.count(language_list[0]) == len(language_list):
51
+ raise ValueError(
52
+ "Currently, just one phoneme language per config file is supported !! Please split the dataset config into different configs and run it individually for each language !!"
53
+ )
54
+
55
+ phonemizer = Gruut(language=language_list[0], keep_puncs=True)
56
+
57
+ phonemes = process_map(compute_phonemes, items, max_workers=multiprocessing.cpu_count(), chunksize=15)
58
+ phones = []
59
+ for ph in phonemes:
60
+ phones.extend(ph)
61
+
62
+ phones = set(phones)
63
+ lower_phones = filter(lambda c: c.islower(), phones)
64
+ phones_force_lower = [c.lower() for c in phones]
65
+ phones_force_lower = set(phones_force_lower)
66
+
67
+ print(f" > Number of unique phonemes: {len(phones)}")
68
+ print(f" > Unique phonemes: {''.join(sorted(phones))}")
69
+ print(f" > Unique lower phonemes: {''.join(sorted(lower_phones))}")
70
+ print(f" > Unique all forced to lower phonemes: {''.join(sorted(phones_force_lower))}")
71
+
72
+
73
+ if __name__ == "__main__":
74
+ main()
TTS/bin/remove_silence_using_vad.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import multiprocessing
4
+ import os
5
+ import pathlib
6
+
7
+ import torch
8
+ from tqdm import tqdm
9
+
10
+ from TTS.utils.vad import get_vad_model_and_utils, remove_silence
11
+
12
+ torch.set_num_threads(1)
13
+
14
+
15
+ def adjust_path_and_remove_silence(audio_path):
16
+ output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
17
+ # ignore if the file exists
18
+ if os.path.exists(output_path) and not args.force:
19
+ return output_path, False
20
+
21
+ # create all directory structure
22
+ pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
23
+ # remove the silence and save the audio
24
+ output_path, is_speech = remove_silence(
25
+ model_and_utils,
26
+ audio_path,
27
+ output_path,
28
+ trim_just_beginning_and_end=args.trim_just_beginning_and_end,
29
+ use_cuda=args.use_cuda,
30
+ )
31
+ return output_path, is_speech
32
+
33
+
34
+ def preprocess_audios():
35
+ files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True))
36
+ print("> Number of files: ", len(files))
37
+ if not args.force:
38
+ print("> Ignoring files that already exist in the output idrectory.")
39
+
40
+ if args.trim_just_beginning_and_end:
41
+ print("> Trimming just the beginning and the end with nonspeech parts.")
42
+ else:
43
+ print("> Trimming all nonspeech parts.")
44
+
45
+ filtered_files = []
46
+ if files:
47
+ # create threads
48
+ # num_threads = multiprocessing.cpu_count()
49
+ # process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15)
50
+
51
+ if args.num_processes > 1:
52
+ with multiprocessing.Pool(processes=args.num_processes) as pool:
53
+ results = list(
54
+ tqdm(
55
+ pool.imap_unordered(adjust_path_and_remove_silence, files),
56
+ total=len(files),
57
+ desc="Processing audio files",
58
+ )
59
+ )
60
+ for output_path, is_speech in results:
61
+ if not is_speech:
62
+ filtered_files.append(output_path)
63
+ else:
64
+ for f in tqdm(files):
65
+ output_path, is_speech = adjust_path_and_remove_silence(f)
66
+ if not is_speech:
67
+ filtered_files.append(output_path)
68
+
69
+ # write files that do not have speech
70
+ with open(os.path.join(args.output_dir, "filtered_files.txt"), "w", encoding="utf-8") as f:
71
+ for file in filtered_files:
72
+ f.write(str(file) + "\n")
73
+ else:
74
+ print("> No files Found !")
75
+
76
+
77
+ if __name__ == "__main__":
78
+ parser = argparse.ArgumentParser(
79
+ description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True"
80
+ )
81
+ parser.add_argument("-i", "--input_dir", type=str, help="Dataset root dir", required=True)
82
+ parser.add_argument("-o", "--output_dir", type=str, help="Output Dataset dir", default="")
83
+ parser.add_argument("-f", "--force", default=False, action="store_true", help="Force the replace of exists files")
84
+ parser.add_argument(
85
+ "-g",
86
+ "--glob",
87
+ type=str,
88
+ default="**/*.wav",
89
+ help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav",
90
+ )
91
+ parser.add_argument(
92
+ "-t",
93
+ "--trim_just_beginning_and_end",
94
+ type=bool,
95
+ default=True,
96
+ help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True",
97
+ )
98
+ parser.add_argument(
99
+ "-c",
100
+ "--use_cuda",
101
+ type=bool,
102
+ default=False,
103
+ help="If True use cuda",
104
+ )
105
+ parser.add_argument(
106
+ "--use_onnx",
107
+ type=bool,
108
+ default=False,
109
+ help="If True use onnx",
110
+ )
111
+ parser.add_argument(
112
+ "--num_processes",
113
+ type=int,
114
+ default=1,
115
+ help="Number of processes to use",
116
+ )
117
+ args = parser.parse_args()
118
+
119
+ if args.output_dir == "":
120
+ args.output_dir = args.input_dir
121
+
122
+ # load the model and utils
123
+ model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda, use_onnx=args.use_onnx)
124
+ preprocess_audios()
TTS/bin/resample.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ from argparse import RawTextHelpFormatter
5
+ from multiprocessing import Pool
6
+ from shutil import copytree
7
+
8
+ import librosa
9
+ import soundfile as sf
10
+ from tqdm import tqdm
11
+
12
+
13
+ def resample_file(func_args):
14
+ filename, output_sr = func_args
15
+ y, sr = librosa.load(filename, sr=output_sr)
16
+ sf.write(filename, y, sr)
17
+
18
+
19
+ def resample_files(input_dir, output_sr, output_dir=None, file_ext="wav", n_jobs=10):
20
+ if output_dir:
21
+ print("Recursively copying the input folder...")
22
+ copytree(input_dir, output_dir)
23
+ input_dir = output_dir
24
+
25
+ print("Resampling the audio files...")
26
+ audio_files = glob.glob(os.path.join(input_dir, f"**/*.{file_ext}"), recursive=True)
27
+ print(f"Found {len(audio_files)} files...")
28
+ audio_files = list(zip(audio_files, len(audio_files) * [output_sr]))
29
+ with Pool(processes=n_jobs) as p:
30
+ with tqdm(total=len(audio_files)) as pbar:
31
+ for _, _ in enumerate(p.imap_unordered(resample_file, audio_files)):
32
+ pbar.update()
33
+
34
+ print("Done !")
35
+
36
+
37
+ if __name__ == "__main__":
38
+ parser = argparse.ArgumentParser(
39
+ description="""Resample a folder recusively with librosa
40
+ Can be used in place or create a copy of the folder as an output.\n\n
41
+ Example run:
42
+ python TTS/bin/resample.py
43
+ --input_dir /root/LJSpeech-1.1/
44
+ --output_sr 22050
45
+ --output_dir /root/resampled_LJSpeech-1.1/
46
+ --file_ext wav
47
+ --n_jobs 24
48
+ """,
49
+ formatter_class=RawTextHelpFormatter,
50
+ )
51
+
52
+ parser.add_argument(
53
+ "--input_dir",
54
+ type=str,
55
+ default=None,
56
+ required=True,
57
+ help="Path of the folder containing the audio files to resample",
58
+ )
59
+
60
+ parser.add_argument(
61
+ "--output_sr",
62
+ type=int,
63
+ default=22050,
64
+ required=False,
65
+ help="Samlple rate to which the audio files should be resampled",
66
+ )
67
+
68
+ parser.add_argument(
69
+ "--output_dir",
70
+ type=str,
71
+ default=None,
72
+ required=False,
73
+ help="Path of the destination folder. If not defined, the operation is done in place",
74
+ )
75
+
76
+ parser.add_argument(
77
+ "--file_ext",
78
+ type=str,
79
+ default="wav",
80
+ required=False,
81
+ help="Extension of the audio files to resample",
82
+ )
83
+
84
+ parser.add_argument(
85
+ "--n_jobs", type=int, default=None, help="Number of threads to use, by default it uses all cores"
86
+ )
87
+
88
+ args = parser.parse_args()
89
+
90
+ resample_files(args.input_dir, args.output_sr, args.output_dir, args.file_ext, args.n_jobs)
TTS/bin/synthesize.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import argparse
5
+ import contextlib
6
+ import sys
7
+ from argparse import RawTextHelpFormatter
8
+
9
+ # pylint: disable=redefined-outer-name, unused-argument
10
+ from pathlib import Path
11
+
12
+ description = """
13
+ Synthesize speech on command line.
14
+
15
+ You can either use your trained model or choose a model from the provided list.
16
+
17
+ If you don't specify any models, then it uses LJSpeech based English model.
18
+
19
+ #### Single Speaker Models
20
+
21
+ - List provided models:
22
+
23
+ ```
24
+ $ tts --list_models
25
+ ```
26
+
27
+ - Get model info (for both tts_models and vocoder_models):
28
+
29
+ - Query by type/name:
30
+ The model_info_by_name uses the name as it from the --list_models.
31
+ ```
32
+ $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
33
+ ```
34
+ For example:
35
+ ```
36
+ $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
37
+ $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
38
+ ```
39
+ - Query by type/idx:
40
+ The model_query_idx uses the corresponding idx from --list_models.
41
+
42
+ ```
43
+ $ tts --model_info_by_idx "<model_type>/<model_query_idx>"
44
+ ```
45
+
46
+ For example:
47
+
48
+ ```
49
+ $ tts --model_info_by_idx tts_models/3
50
+ ```
51
+
52
+ - Query info for model info by full name:
53
+ ```
54
+ $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
55
+ ```
56
+
57
+ - Run TTS with default models:
58
+
59
+ ```
60
+ $ tts --text "Text for TTS" --out_path output/path/speech.wav
61
+ ```
62
+
63
+ - Run TTS and pipe out the generated TTS wav file data:
64
+
65
+ ```
66
+ $ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
67
+ ```
68
+
69
+ - Run a TTS model with its default vocoder model:
70
+
71
+ ```
72
+ $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
73
+ ```
74
+
75
+ For example:
76
+
77
+ ```
78
+ $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
79
+ ```
80
+
81
+ - Run with specific TTS and vocoder models from the list:
82
+
83
+ ```
84
+ $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
85
+ ```
86
+
87
+ For example:
88
+
89
+ ```
90
+ $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
91
+ ```
92
+
93
+ - Run your own TTS model (Using Griffin-Lim Vocoder):
94
+
95
+ ```
96
+ $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
97
+ ```
98
+
99
+ - Run your own TTS and Vocoder models:
100
+
101
+ ```
102
+ $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
103
+ --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
104
+ ```
105
+
106
+ #### Multi-speaker Models
107
+
108
+ - List the available speakers and choose a <speaker_id> among them:
109
+
110
+ ```
111
+ $ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
112
+ ```
113
+
114
+ - Run the multi-speaker TTS model with the target speaker ID:
115
+
116
+ ```
117
+ $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
118
+ ```
119
+
120
+ - Run your own multi-speaker TTS model:
121
+
122
+ ```
123
+ $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
124
+ ```
125
+
126
+ ### Voice Conversion Models
127
+
128
+ ```
129
+ $ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
130
+ ```
131
+ """
132
+
133
+
134
+ def str2bool(v):
135
+ if isinstance(v, bool):
136
+ return v
137
+ if v.lower() in ("yes", "true", "t", "y", "1"):
138
+ return True
139
+ if v.lower() in ("no", "false", "f", "n", "0"):
140
+ return False
141
+ raise argparse.ArgumentTypeError("Boolean value expected.")
142
+
143
+
144
+ def main():
145
+ parser = argparse.ArgumentParser(
146
+ description=description.replace(" ```\n", ""),
147
+ formatter_class=RawTextHelpFormatter,
148
+ )
149
+
150
+ parser.add_argument(
151
+ "--list_models",
152
+ type=str2bool,
153
+ nargs="?",
154
+ const=True,
155
+ default=False,
156
+ help="list available pre-trained TTS and vocoder models.",
157
+ )
158
+
159
+ parser.add_argument(
160
+ "--model_info_by_idx",
161
+ type=str,
162
+ default=None,
163
+ help="model info using query format: <model_type>/<model_query_idx>",
164
+ )
165
+
166
+ parser.add_argument(
167
+ "--model_info_by_name",
168
+ type=str,
169
+ default=None,
170
+ help="model info using query format: <model_type>/<language>/<dataset>/<model_name>",
171
+ )
172
+
173
+ parser.add_argument("--text", type=str, default=None, help="Text to generate speech.")
174
+
175
+ # Args for running pre-trained TTS models.
176
+ parser.add_argument(
177
+ "--model_name",
178
+ type=str,
179
+ default="tts_models/en/ljspeech/tacotron2-DDC",
180
+ help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>",
181
+ )
182
+ parser.add_argument(
183
+ "--vocoder_name",
184
+ type=str,
185
+ default=None,
186
+ help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>",
187
+ )
188
+
189
+ # Args for running custom models
190
+ parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
191
+ parser.add_argument(
192
+ "--model_path",
193
+ type=str,
194
+ default=None,
195
+ help="Path to model file.",
196
+ )
197
+ parser.add_argument(
198
+ "--out_path",
199
+ type=str,
200
+ default="tts_output.wav",
201
+ help="Output wav file path.",
202
+ )
203
+ parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False)
204
+ parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu")
205
+ parser.add_argument(
206
+ "--vocoder_path",
207
+ type=str,
208
+ help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
209
+ default=None,
210
+ )
211
+ parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
212
+ parser.add_argument(
213
+ "--encoder_path",
214
+ type=str,
215
+ help="Path to speaker encoder model file.",
216
+ default=None,
217
+ )
218
+ parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None)
219
+ parser.add_argument(
220
+ "--pipe_out",
221
+ help="stdout the generated TTS wav file for shell pipe.",
222
+ type=str2bool,
223
+ nargs="?",
224
+ const=True,
225
+ default=False,
226
+ )
227
+
228
+ # args for multi-speaker synthesis
229
+ parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
230
+ parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None)
231
+ parser.add_argument(
232
+ "--speaker_idx",
233
+ type=str,
234
+ help="Target speaker ID for a multi-speaker TTS model.",
235
+ default=None,
236
+ )
237
+ parser.add_argument(
238
+ "--language_idx",
239
+ type=str,
240
+ help="Target language ID for a multi-lingual TTS model.",
241
+ default=None,
242
+ )
243
+ parser.add_argument(
244
+ "--speaker_wav",
245
+ nargs="+",
246
+ help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.",
247
+ default=None,
248
+ )
249
+ parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None)
250
+ parser.add_argument(
251
+ "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None
252
+ )
253
+ parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None)
254
+ parser.add_argument(
255
+ "--list_speaker_idxs",
256
+ help="List available speaker ids for the defined multi-speaker model.",
257
+ type=str2bool,
258
+ nargs="?",
259
+ const=True,
260
+ default=False,
261
+ )
262
+ parser.add_argument(
263
+ "--list_language_idxs",
264
+ help="List available language ids for the defined multi-lingual model.",
265
+ type=str2bool,
266
+ nargs="?",
267
+ const=True,
268
+ default=False,
269
+ )
270
+ # aux args
271
+ parser.add_argument(
272
+ "--save_spectogram",
273
+ type=bool,
274
+ help="If true save raw spectogram for further (vocoder) processing in out_path.",
275
+ default=False,
276
+ )
277
+ parser.add_argument(
278
+ "--reference_wav",
279
+ type=str,
280
+ help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav",
281
+ default=None,
282
+ )
283
+ parser.add_argument(
284
+ "--reference_speaker_idx",
285
+ type=str,
286
+ help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).",
287
+ default=None,
288
+ )
289
+ parser.add_argument(
290
+ "--progress_bar",
291
+ type=str2bool,
292
+ help="If true shows a progress bar for the model download. Defaults to True",
293
+ default=True,
294
+ )
295
+
296
+ # voice conversion args
297
+ parser.add_argument(
298
+ "--source_wav",
299
+ type=str,
300
+ default=None,
301
+ help="Original audio file to convert in the voice of the target_wav",
302
+ )
303
+ parser.add_argument(
304
+ "--target_wav",
305
+ type=str,
306
+ default=None,
307
+ help="Target audio file to convert in the voice of the source_wav",
308
+ )
309
+
310
+ parser.add_argument(
311
+ "--voice_dir",
312
+ type=str,
313
+ default=None,
314
+ help="Voice dir for tortoise model",
315
+ )
316
+
317
+ args = parser.parse_args()
318
+
319
+ # print the description if either text or list_models is not set
320
+ check_args = [
321
+ args.text,
322
+ args.list_models,
323
+ args.list_speaker_idxs,
324
+ args.list_language_idxs,
325
+ args.reference_wav,
326
+ args.model_info_by_idx,
327
+ args.model_info_by_name,
328
+ args.source_wav,
329
+ args.target_wav,
330
+ ]
331
+ if not any(check_args):
332
+ parser.parse_args(["-h"])
333
+
334
+ pipe_out = sys.stdout if args.pipe_out else None
335
+
336
+ with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout):
337
+ # Late-import to make things load faster
338
+ from TTS.api import TTS
339
+ from TTS.utils.manage import ModelManager
340
+ from TTS.utils.synthesizer import Synthesizer
341
+
342
+ # load model manager
343
+ path = Path(__file__).parent / "../.models.json"
344
+ manager = ModelManager(path, progress_bar=args.progress_bar)
345
+ api = TTS()
346
+
347
+ tts_path = None
348
+ tts_config_path = None
349
+ speakers_file_path = None
350
+ language_ids_file_path = None
351
+ vocoder_path = None
352
+ vocoder_config_path = None
353
+ encoder_path = None
354
+ encoder_config_path = None
355
+ vc_path = None
356
+ vc_config_path = None
357
+ model_dir = None
358
+
359
+ # CASE1 #list : list pre-trained TTS models
360
+ if args.list_models:
361
+ manager.list_models()
362
+ sys.exit()
363
+
364
+ # CASE2 #info : model info for pre-trained TTS models
365
+ if args.model_info_by_idx:
366
+ model_query = args.model_info_by_idx
367
+ manager.model_info_by_idx(model_query)
368
+ sys.exit()
369
+
370
+ if args.model_info_by_name:
371
+ model_query_full_name = args.model_info_by_name
372
+ manager.model_info_by_full_name(model_query_full_name)
373
+ sys.exit()
374
+
375
+ # CASE3: load pre-trained model paths
376
+ if args.model_name is not None and not args.model_path:
377
+ model_path, config_path, model_item = manager.download_model(args.model_name)
378
+ # tts model
379
+ if model_item["model_type"] == "tts_models":
380
+ tts_path = model_path
381
+ tts_config_path = config_path
382
+ if "default_vocoder" in model_item:
383
+ args.vocoder_name = (
384
+ model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name
385
+ )
386
+
387
+ # voice conversion model
388
+ if model_item["model_type"] == "voice_conversion_models":
389
+ vc_path = model_path
390
+ vc_config_path = config_path
391
+
392
+ # tts model with multiple files to be loaded from the directory path
393
+ if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list):
394
+ model_dir = model_path
395
+ tts_path = None
396
+ tts_config_path = None
397
+ args.vocoder_name = None
398
+
399
+ # load vocoder
400
+ if args.vocoder_name is not None and not args.vocoder_path:
401
+ vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)
402
+
403
+ # CASE4: set custom model paths
404
+ if args.model_path is not None:
405
+ tts_path = args.model_path
406
+ tts_config_path = args.config_path
407
+ speakers_file_path = args.speakers_file_path
408
+ language_ids_file_path = args.language_ids_file_path
409
+
410
+ if args.vocoder_path is not None:
411
+ vocoder_path = args.vocoder_path
412
+ vocoder_config_path = args.vocoder_config_path
413
+
414
+ if args.encoder_path is not None:
415
+ encoder_path = args.encoder_path
416
+ encoder_config_path = args.encoder_config_path
417
+
418
+ device = args.device
419
+ if args.use_cuda:
420
+ device = "cuda"
421
+
422
+ # load models
423
+ synthesizer = Synthesizer(
424
+ tts_path,
425
+ tts_config_path,
426
+ speakers_file_path,
427
+ language_ids_file_path,
428
+ vocoder_path,
429
+ vocoder_config_path,
430
+ encoder_path,
431
+ encoder_config_path,
432
+ vc_path,
433
+ vc_config_path,
434
+ model_dir,
435
+ args.voice_dir,
436
+ ).to(device)
437
+
438
+ # query speaker ids of a multi-speaker model.
439
+ if args.list_speaker_idxs:
440
+ print(
441
+ " > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model."
442
+ )
443
+ print(synthesizer.tts_model.speaker_manager.name_to_id)
444
+ return
445
+
446
+ # query langauge ids of a multi-lingual model.
447
+ if args.list_language_idxs:
448
+ print(
449
+ " > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model."
450
+ )
451
+ print(synthesizer.tts_model.language_manager.name_to_id)
452
+ return
453
+
454
+ # check the arguments against a multi-speaker model.
455
+ if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav):
456
+ print(
457
+ " [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to "
458
+ "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`."
459
+ )
460
+ return
461
+
462
+ # RUN THE SYNTHESIS
463
+ if args.text:
464
+ print(" > Text: {}".format(args.text))
465
+
466
+ # kick it
467
+ if tts_path is not None:
468
+ wav = synthesizer.tts(
469
+ args.text,
470
+ speaker_name=args.speaker_idx,
471
+ language_name=args.language_idx,
472
+ speaker_wav=args.speaker_wav,
473
+ reference_wav=args.reference_wav,
474
+ style_wav=args.capacitron_style_wav,
475
+ style_text=args.capacitron_style_text,
476
+ reference_speaker_name=args.reference_speaker_idx,
477
+ )
478
+ elif vc_path is not None:
479
+ wav = synthesizer.voice_conversion(
480
+ source_wav=args.source_wav,
481
+ target_wav=args.target_wav,
482
+ )
483
+ elif model_dir is not None:
484
+ wav = synthesizer.tts(
485
+ args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav
486
+ )
487
+
488
+ # save the results
489
+ print(" > Saving output to {}".format(args.out_path))
490
+ synthesizer.save_wav(wav, args.out_path, pipe_out=pipe_out)
491
+
492
+
493
+ if __name__ == "__main__":
494
+ main()
TTS/bin/train_encoder.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import os
5
+ import sys
6
+ import time
7
+ import traceback
8
+
9
+ import torch
10
+ from torch.utils.data import DataLoader
11
+ from trainer.io import copy_model_files, save_best_model, save_checkpoint
12
+ from trainer.torch import NoamLR
13
+ from trainer.trainer_utils import get_optimizer
14
+
15
+ from TTS.encoder.dataset import EncoderDataset
16
+ from TTS.encoder.utils.generic_utils import setup_encoder_model
17
+ from TTS.encoder.utils.training import init_training
18
+ from TTS.encoder.utils.visual import plot_embeddings
19
+ from TTS.tts.datasets import load_tts_samples
20
+ from TTS.utils.audio import AudioProcessor
21
+ from TTS.utils.generic_utils import count_parameters, remove_experiment_folder
22
+ from TTS.utils.samplers import PerfectBatchSampler
23
+ from TTS.utils.training import check_update
24
+
25
+ torch.backends.cudnn.enabled = True
26
+ torch.backends.cudnn.benchmark = True
27
+ torch.manual_seed(54321)
28
+ use_cuda = torch.cuda.is_available()
29
+ num_gpus = torch.cuda.device_count()
30
+ print(" > Using CUDA: ", use_cuda)
31
+ print(" > Number of GPUs: ", num_gpus)
32
+
33
+
34
+ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
35
+ num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class
36
+ num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch
37
+
38
+ dataset = EncoderDataset(
39
+ c,
40
+ ap,
41
+ meta_data_eval if is_val else meta_data_train,
42
+ voice_len=c.voice_len,
43
+ num_utter_per_class=num_utter_per_class,
44
+ num_classes_in_batch=num_classes_in_batch,
45
+ verbose=verbose,
46
+ augmentation_config=c.audio_augmentation if not is_val else None,
47
+ use_torch_spec=c.model_params.get("use_torch_spec", False),
48
+ )
49
+ # get classes list
50
+ classes = dataset.get_class_list()
51
+
52
+ sampler = PerfectBatchSampler(
53
+ dataset.items,
54
+ classes,
55
+ batch_size=num_classes_in_batch * num_utter_per_class, # total batch size
56
+ num_classes_in_batch=num_classes_in_batch,
57
+ num_gpus=1,
58
+ shuffle=not is_val,
59
+ drop_last=True,
60
+ )
61
+
62
+ if len(classes) < num_classes_in_batch:
63
+ if is_val:
64
+ raise RuntimeError(
65
+ f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !"
66
+ )
67
+ raise RuntimeError(
68
+ f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !"
69
+ )
70
+
71
+ # set the classes to avoid get wrong class_id when the number of training and eval classes are not equal
72
+ if is_val:
73
+ dataset.set_classes(train_classes)
74
+
75
+ loader = DataLoader(
76
+ dataset,
77
+ num_workers=c.num_loader_workers,
78
+ batch_sampler=sampler,
79
+ collate_fn=dataset.collate_fn,
80
+ )
81
+
82
+ return loader, classes, dataset.get_map_classid_to_classname()
83
+
84
+
85
+ def evaluation(model, criterion, data_loader, global_step):
86
+ eval_loss = 0
87
+ for _, data in enumerate(data_loader):
88
+ with torch.no_grad():
89
+ # setup input data
90
+ inputs, labels = data
91
+
92
+ # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
93
+ labels = torch.transpose(
94
+ labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1
95
+ ).reshape(labels.shape)
96
+ inputs = torch.transpose(
97
+ inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1
98
+ ).reshape(inputs.shape)
99
+
100
+ # dispatch data to GPU
101
+ if use_cuda:
102
+ inputs = inputs.cuda(non_blocking=True)
103
+ labels = labels.cuda(non_blocking=True)
104
+
105
+ # forward pass model
106
+ outputs = model(inputs)
107
+
108
+ # loss computation
109
+ loss = criterion(
110
+ outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels
111
+ )
112
+
113
+ eval_loss += loss.item()
114
+
115
+ eval_avg_loss = eval_loss / len(data_loader)
116
+ # save stats
117
+ dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss})
118
+ # plot the last batch in the evaluation
119
+ figures = {
120
+ "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
121
+ }
122
+ dashboard_logger.eval_figures(global_step, figures)
123
+ return eval_avg_loss
124
+
125
+
126
+ def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step):
127
+ model.train()
128
+ best_loss = {"train_loss": None, "eval_loss": float("inf")}
129
+ avg_loader_time = 0
130
+ end_time = time.time()
131
+ for epoch in range(c.epochs):
132
+ tot_loss = 0
133
+ epoch_time = 0
134
+ for _, data in enumerate(data_loader):
135
+ start_time = time.time()
136
+
137
+ # setup input data
138
+ inputs, labels = data
139
+ # agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
140
+ labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(
141
+ labels.shape
142
+ )
143
+ inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(
144
+ inputs.shape
145
+ )
146
+ # ToDo: move it to a unit test
147
+ # labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
148
+ # inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
149
+ # idx = 0
150
+ # for j in range(0, c.num_classes_in_batch, 1):
151
+ # for i in range(j, len(labels), c.num_classes_in_batch):
152
+ # if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
153
+ # print("Invalid")
154
+ # print(labels)
155
+ # exit()
156
+ # idx += 1
157
+ # labels = labels_converted
158
+ # inputs = inputs_converted
159
+
160
+ loader_time = time.time() - end_time
161
+ global_step += 1
162
+
163
+ # setup lr
164
+ if c.lr_decay:
165
+ scheduler.step()
166
+ optimizer.zero_grad()
167
+
168
+ # dispatch data to GPU
169
+ if use_cuda:
170
+ inputs = inputs.cuda(non_blocking=True)
171
+ labels = labels.cuda(non_blocking=True)
172
+
173
+ # forward pass model
174
+ outputs = model(inputs)
175
+
176
+ # loss computation
177
+ loss = criterion(
178
+ outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels
179
+ )
180
+ loss.backward()
181
+ grad_norm, _ = check_update(model, c.grad_clip)
182
+ optimizer.step()
183
+
184
+ step_time = time.time() - start_time
185
+ epoch_time += step_time
186
+
187
+ # acumulate the total epoch loss
188
+ tot_loss += loss.item()
189
+
190
+ # Averaged Loader Time
191
+ num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
192
+ avg_loader_time = (
193
+ 1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
194
+ if avg_loader_time != 0
195
+ else loader_time
196
+ )
197
+ current_lr = optimizer.param_groups[0]["lr"]
198
+
199
+ if global_step % c.steps_plot_stats == 0:
200
+ # Plot Training Epoch Stats
201
+ train_stats = {
202
+ "loss": loss.item(),
203
+ "lr": current_lr,
204
+ "grad_norm": grad_norm,
205
+ "step_time": step_time,
206
+ "avg_loader_time": avg_loader_time,
207
+ }
208
+ dashboard_logger.train_epoch_stats(global_step, train_stats)
209
+ figures = {
210
+ "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
211
+ }
212
+ dashboard_logger.train_figures(global_step, figures)
213
+
214
+ if global_step % c.print_step == 0:
215
+ print(
216
+ " | > Step:{} Loss:{:.5f} GradNorm:{:.5f} "
217
+ "StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
218
+ global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr
219
+ ),
220
+ flush=True,
221
+ )
222
+
223
+ if global_step % c.save_step == 0:
224
+ # save model
225
+ save_checkpoint(
226
+ c, model, optimizer, None, global_step, epoch, OUT_PATH, criterion=criterion.state_dict()
227
+ )
228
+
229
+ end_time = time.time()
230
+
231
+ print("")
232
+ print(
233
+ ">>> Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} "
234
+ "EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format(
235
+ epoch, tot_loss / len(data_loader), grad_norm, epoch_time, avg_loader_time
236
+ ),
237
+ flush=True,
238
+ )
239
+ # evaluation
240
+ if c.run_eval:
241
+ model.eval()
242
+ eval_loss = evaluation(model, criterion, eval_data_loader, global_step)
243
+ print("\n\n")
244
+ print("--> EVAL PERFORMANCE")
245
+ print(
246
+ " | > Epoch:{} AvgLoss: {:.5f} ".format(epoch, eval_loss),
247
+ flush=True,
248
+ )
249
+ # save the best checkpoint
250
+ best_loss = save_best_model(
251
+ {"train_loss": None, "eval_loss": eval_loss},
252
+ best_loss,
253
+ c,
254
+ model,
255
+ optimizer,
256
+ None,
257
+ global_step,
258
+ epoch,
259
+ OUT_PATH,
260
+ criterion=criterion.state_dict(),
261
+ )
262
+ model.train()
263
+
264
+ return best_loss, global_step
265
+
266
+
267
+ def main(args): # pylint: disable=redefined-outer-name
268
+ # pylint: disable=global-variable-undefined
269
+ global meta_data_train
270
+ global meta_data_eval
271
+ global train_classes
272
+
273
+ ap = AudioProcessor(**c.audio)
274
+ model = setup_encoder_model(c)
275
+
276
+ optimizer = get_optimizer(c.optimizer, c.optimizer_params, c.lr, model)
277
+
278
+ # pylint: disable=redefined-outer-name
279
+ meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)
280
+
281
+ train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
282
+ if c.run_eval:
283
+ eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
284
+ else:
285
+ eval_data_loader = None
286
+
287
+ num_classes = len(train_classes)
288
+ criterion = model.get_criterion(c, num_classes)
289
+
290
+ if c.loss == "softmaxproto" and c.model != "speaker_encoder":
291
+ c.map_classid_to_classname = map_classid_to_classname
292
+ copy_model_files(c, OUT_PATH, new_fields={})
293
+
294
+ if args.restore_path:
295
+ criterion, args.restore_step = model.load_checkpoint(
296
+ c, args.restore_path, eval=False, use_cuda=use_cuda, criterion=criterion
297
+ )
298
+ print(" > Model restored from step %d" % args.restore_step, flush=True)
299
+ else:
300
+ args.restore_step = 0
301
+
302
+ if c.lr_decay:
303
+ scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
304
+ else:
305
+ scheduler = None
306
+
307
+ num_params = count_parameters(model)
308
+ print("\n > Model has {} parameters".format(num_params), flush=True)
309
+
310
+ if use_cuda:
311
+ model = model.cuda()
312
+ criterion.cuda()
313
+
314
+ global_step = args.restore_step
315
+ _, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step)
316
+
317
+
318
+ if __name__ == "__main__":
319
+ args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training()
320
+
321
+ try:
322
+ main(args)
323
+ except KeyboardInterrupt:
324
+ remove_experiment_folder(OUT_PATH)
325
+ try:
326
+ sys.exit(0)
327
+ except SystemExit:
328
+ os._exit(0) # pylint: disable=protected-access
329
+ except Exception: # pylint: disable=broad-except
330
+ remove_experiment_folder(OUT_PATH)
331
+ traceback.print_exc()
332
+ sys.exit(1)
TTS/bin/train_tts.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dataclasses import dataclass, field
3
+
4
+ from trainer import Trainer, TrainerArgs
5
+
6
+ from TTS.config import load_config, register_config
7
+ from TTS.tts.datasets import load_tts_samples
8
+ from TTS.tts.models import setup_model
9
+
10
+
11
+ @dataclass
12
+ class TrainTTSArgs(TrainerArgs):
13
+ config_path: str = field(default=None, metadata={"help": "Path to the config file."})
14
+
15
+
16
+ def main():
17
+ """Run `tts` model training directly by a `config.json` file."""
18
+ # init trainer args
19
+ train_args = TrainTTSArgs()
20
+ parser = train_args.init_argparse(arg_prefix="")
21
+
22
+ # override trainer args from comman-line args
23
+ args, config_overrides = parser.parse_known_args()
24
+ train_args.parse_args(args)
25
+
26
+ # load config.json and register
27
+ if args.config_path or args.continue_path:
28
+ if args.config_path:
29
+ # init from a file
30
+ config = load_config(args.config_path)
31
+ if len(config_overrides) > 0:
32
+ config.parse_known_args(config_overrides, relaxed_parser=True)
33
+ elif args.continue_path:
34
+ # continue from a prev experiment
35
+ config = load_config(os.path.join(args.continue_path, "config.json"))
36
+ if len(config_overrides) > 0:
37
+ config.parse_known_args(config_overrides, relaxed_parser=True)
38
+ else:
39
+ # init from console args
40
+ from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel
41
+
42
+ config_base = BaseTrainingConfig()
43
+ config_base.parse_known_args(config_overrides)
44
+ config = register_config(config_base.model)()
45
+
46
+ # load training samples
47
+ train_samples, eval_samples = load_tts_samples(
48
+ config.datasets,
49
+ eval_split=True,
50
+ eval_split_max_size=config.eval_split_max_size,
51
+ eval_split_size=config.eval_split_size,
52
+ )
53
+
54
+ # init the model from config
55
+ model = setup_model(config, train_samples + eval_samples)
56
+
57
+ # init the trainer and 🚀
58
+ trainer = Trainer(
59
+ train_args,
60
+ model.config,
61
+ config.output_path,
62
+ model=model,
63
+ train_samples=train_samples,
64
+ eval_samples=eval_samples,
65
+ parse_command_line_args=False,
66
+ )
67
+ trainer.fit()
68
+
69
+
70
+ if __name__ == "__main__":
71
+ main()
TTS/bin/train_vocoder.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dataclasses import dataclass, field
3
+
4
+ from trainer import Trainer, TrainerArgs
5
+
6
+ from TTS.config import load_config, register_config
7
+ from TTS.utils.audio import AudioProcessor
8
+ from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
9
+ from TTS.vocoder.models import setup_model
10
+
11
+
12
+ @dataclass
13
+ class TrainVocoderArgs(TrainerArgs):
14
+ config_path: str = field(default=None, metadata={"help": "Path to the config file."})
15
+
16
+
17
+ def main():
18
+ """Run `tts` model training directly by a `config.json` file."""
19
+ # init trainer args
20
+ train_args = TrainVocoderArgs()
21
+ parser = train_args.init_argparse(arg_prefix="")
22
+
23
+ # override trainer args from comman-line args
24
+ args, config_overrides = parser.parse_known_args()
25
+ train_args.parse_args(args)
26
+
27
+ # load config.json and register
28
+ if args.config_path or args.continue_path:
29
+ if args.config_path:
30
+ # init from a file
31
+ config = load_config(args.config_path)
32
+ if len(config_overrides) > 0:
33
+ config.parse_known_args(config_overrides, relaxed_parser=True)
34
+ elif args.continue_path:
35
+ # continue from a prev experiment
36
+ config = load_config(os.path.join(args.continue_path, "config.json"))
37
+ if len(config_overrides) > 0:
38
+ config.parse_known_args(config_overrides, relaxed_parser=True)
39
+ else:
40
+ # init from console args
41
+ from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel
42
+
43
+ config_base = BaseTrainingConfig()
44
+ config_base.parse_known_args(config_overrides)
45
+ config = register_config(config_base.model)()
46
+
47
+ # load training samples
48
+ if "feature_path" in config and config.feature_path:
49
+ # load pre-computed features
50
+ print(f" > Loading features from: {config.feature_path}")
51
+ eval_samples, train_samples = load_wav_feat_data(config.data_path, config.feature_path, config.eval_split_size)
52
+ else:
53
+ # load data raw wav files
54
+ eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
55
+
56
+ # setup audio processor
57
+ ap = AudioProcessor(**config.audio)
58
+
59
+ # init the model from config
60
+ model = setup_model(config)
61
+
62
+ # init the trainer and 🚀
63
+ trainer = Trainer(
64
+ train_args,
65
+ config,
66
+ config.output_path,
67
+ model=model,
68
+ train_samples=train_samples,
69
+ eval_samples=eval_samples,
70
+ training_assets={"audio_processor": ap},
71
+ parse_command_line_args=False,
72
+ )
73
+ trainer.fit()
74
+
75
+
76
+ if __name__ == "__main__":
77
+ main()
TTS/bin/tune_wavegrad.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Search a good noise schedule for WaveGrad for a given number of inference iterations"""
2
+ import argparse
3
+ from itertools import product as cartesian_product
4
+
5
+ import numpy as np
6
+ import torch
7
+ from torch.utils.data import DataLoader
8
+ from tqdm import tqdm
9
+
10
+ from TTS.config import load_config
11
+ from TTS.utils.audio import AudioProcessor
12
+ from TTS.vocoder.datasets.preprocess import load_wav_data
13
+ from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
14
+ from TTS.vocoder.models import setup_model
15
+
16
+ if __name__ == "__main__":
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument("--model_path", type=str, help="Path to model checkpoint.")
19
+ parser.add_argument("--config_path", type=str, help="Path to model config file.")
20
+ parser.add_argument("--data_path", type=str, help="Path to data directory.")
21
+ parser.add_argument("--output_path", type=str, help="path for output file including file name and extension.")
22
+ parser.add_argument(
23
+ "--num_iter",
24
+ type=int,
25
+ help="Number of model inference iterations that you like to optimize noise schedule for.",
26
+ )
27
+ parser.add_argument("--use_cuda", action="store_true", help="enable CUDA.")
28
+ parser.add_argument("--num_samples", type=int, default=1, help="Number of datasamples used for inference.")
29
+ parser.add_argument(
30
+ "--search_depth",
31
+ type=int,
32
+ default=3,
33
+ help="Search granularity. Increasing this increases the run-time exponentially.",
34
+ )
35
+
36
+ # load config
37
+ args = parser.parse_args()
38
+ config = load_config(args.config_path)
39
+
40
+ # setup audio processor
41
+ ap = AudioProcessor(**config.audio)
42
+
43
+ # load dataset
44
+ _, train_data = load_wav_data(args.data_path, 0)
45
+ train_data = train_data[: args.num_samples]
46
+ dataset = WaveGradDataset(
47
+ ap=ap,
48
+ items=train_data,
49
+ seq_len=-1,
50
+ hop_len=ap.hop_length,
51
+ pad_short=config.pad_short,
52
+ conv_pad=config.conv_pad,
53
+ is_training=True,
54
+ return_segments=False,
55
+ use_noise_augment=False,
56
+ use_cache=False,
57
+ verbose=True,
58
+ )
59
+ loader = DataLoader(
60
+ dataset,
61
+ batch_size=1,
62
+ shuffle=False,
63
+ collate_fn=dataset.collate_full_clips,
64
+ drop_last=False,
65
+ num_workers=config.num_loader_workers,
66
+ pin_memory=False,
67
+ )
68
+
69
+ # setup the model
70
+ model = setup_model(config)
71
+ if args.use_cuda:
72
+ model.cuda()
73
+
74
+ # setup optimization parameters
75
+ base_values = sorted(10 * np.random.uniform(size=args.search_depth))
76
+ print(f" > base values: {base_values}")
77
+ exponents = 10 ** np.linspace(-6, -1, num=args.num_iter)
78
+ best_error = float("inf")
79
+ best_schedule = None # pylint: disable=C0103
80
+ total_search_iter = len(base_values) ** args.num_iter
81
+ for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter):
82
+ beta = exponents * base
83
+ model.compute_noise_level(beta)
84
+ for data in loader:
85
+ mel, audio = data
86
+ y_hat = model.inference(mel.cuda() if args.use_cuda else mel)
87
+
88
+ if args.use_cuda:
89
+ y_hat = y_hat.cpu()
90
+ y_hat = y_hat.numpy()
91
+
92
+ mel_hat = []
93
+ for i in range(y_hat.shape[0]):
94
+ m = ap.melspectrogram(y_hat[i, 0])[:, :-1]
95
+ mel_hat.append(torch.from_numpy(m))
96
+
97
+ mel_hat = torch.stack(mel_hat)
98
+ mse = torch.sum((mel - mel_hat) ** 2).mean()
99
+ if mse.item() < best_error:
100
+ best_error = mse.item()
101
+ best_schedule = {"beta": beta}
102
+ print(f" > Found a better schedule. - MSE: {mse.item()}")
103
+ np.save(args.output_path, best_schedule)
TTS/config/__init__.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from typing import Dict
5
+
6
+ import fsspec
7
+ import yaml
8
+ from coqpit import Coqpit
9
+
10
+ from TTS.config.shared_configs import *
11
+ from TTS.utils.generic_utils import find_module
12
+
13
+
14
+ def read_json_with_comments(json_path):
15
+ """for backward compat."""
16
+ # fallback to json
17
+ with fsspec.open(json_path, "r", encoding="utf-8") as f:
18
+ input_str = f.read()
19
+ # handle comments but not urls with //
20
+ input_str = re.sub(r"(\"(?:[^\"\\]|\\.)*\")|(/\*(?:.|[\\n\\r])*?\*/)|(//.*)", lambda m: m.group(1) or m.group(2) or "", input_str)
21
+ return json.loads(input_str)
22
+
23
+ def register_config(model_name: str) -> Coqpit:
24
+ """Find the right config for the given model name.
25
+
26
+ Args:
27
+ model_name (str): Model name.
28
+
29
+ Raises:
30
+ ModuleNotFoundError: No matching config for the model name.
31
+
32
+ Returns:
33
+ Coqpit: config class.
34
+ """
35
+ config_class = None
36
+ config_name = model_name + "_config"
37
+
38
+ # TODO: fix this
39
+ if model_name == "xtts":
40
+ from TTS.tts.configs.xtts_config import XttsConfig
41
+
42
+ config_class = XttsConfig
43
+ paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.encoder.configs", "TTS.vc.configs"]
44
+ for path in paths:
45
+ try:
46
+ config_class = find_module(path, config_name)
47
+ except ModuleNotFoundError:
48
+ pass
49
+ if config_class is None:
50
+ raise ModuleNotFoundError(f" [!] Config for {model_name} cannot be found.")
51
+ return config_class
52
+
53
+
54
+ def _process_model_name(config_dict: Dict) -> str:
55
+ """Format the model name as expected. It is a band-aid for the old `vocoder` model names.
56
+
57
+ Args:
58
+ config_dict (Dict): A dictionary including the config fields.
59
+
60
+ Returns:
61
+ str: Formatted modelname.
62
+ """
63
+ model_name = config_dict["model"] if "model" in config_dict else config_dict["generator_model"]
64
+ model_name = model_name.replace("_generator", "").replace("_discriminator", "")
65
+ return model_name
66
+
67
+
68
+ def load_config(config_path: str) -> Coqpit:
69
+ """Import `json` or `yaml` files as TTS configs. First, load the input file as a `dict` and check the model name
70
+ to find the corresponding Config class. Then initialize the Config.
71
+
72
+ Args:
73
+ config_path (str): path to the config file.
74
+
75
+ Raises:
76
+ TypeError: given config file has an unknown type.
77
+
78
+ Returns:
79
+ Coqpit: TTS config object.
80
+ """
81
+ config_dict = {}
82
+ ext = os.path.splitext(config_path)[1]
83
+ if ext in (".yml", ".yaml"):
84
+ with fsspec.open(config_path, "r", encoding="utf-8") as f:
85
+ data = yaml.safe_load(f)
86
+ elif ext == ".json":
87
+ try:
88
+ with fsspec.open(config_path, "r", encoding="utf-8") as f:
89
+ data = json.load(f)
90
+ except json.decoder.JSONDecodeError:
91
+ # backwards compat.
92
+ data = read_json_with_comments(config_path)
93
+ else:
94
+ raise TypeError(f" [!] Unknown config file type {ext}")
95
+ config_dict.update(data)
96
+ model_name = _process_model_name(config_dict)
97
+ config_class = register_config(model_name.lower())
98
+ config = config_class()
99
+ config.from_dict(config_dict)
100
+ return config
101
+
102
+
103
+ def check_config_and_model_args(config, arg_name, value):
104
+ """Check the give argument in `config.model_args` if exist or in `config` for
105
+ the given value.
106
+
107
+ Return False if the argument does not exist in `config.model_args` or `config`.
108
+ This is to patch up the compatibility between models with and without `model_args`.
109
+
110
+ TODO: Remove this in the future with a unified approach.
111
+ """
112
+ if hasattr(config, "model_args"):
113
+ if arg_name in config.model_args:
114
+ return config.model_args[arg_name] == value
115
+ if hasattr(config, arg_name):
116
+ return config[arg_name] == value
117
+ return False
118
+
119
+
120
+ def get_from_config_or_model_args(config, arg_name):
121
+ """Get the given argument from `config.model_args` if exist or in `config`."""
122
+ if hasattr(config, "model_args"):
123
+ if arg_name in config.model_args:
124
+ return config.model_args[arg_name]
125
+ return config[arg_name]
126
+
127
+
128
+ def get_from_config_or_model_args_with_default(config, arg_name, def_val):
129
+ """Get the given argument from `config.model_args` if exist or in `config`."""
130
+ if hasattr(config, "model_args"):
131
+ if arg_name in config.model_args:
132
+ return config.model_args[arg_name]
133
+ if hasattr(config, arg_name):
134
+ return config[arg_name]
135
+ return def_val
TTS/config/shared_configs.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import asdict, dataclass
2
+ from typing import List
3
+
4
+ from coqpit import Coqpit, check_argument
5
+ from trainer import TrainerConfig
6
+
7
+
8
+ @dataclass
9
+ class BaseAudioConfig(Coqpit):
10
+ """Base config to definge audio processing parameters. It is used to initialize
11
+ ```TTS.utils.audio.AudioProcessor.```
12
+
13
+ Args:
14
+ fft_size (int):
15
+ Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024.
16
+
17
+ win_length (int):
18
+ Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match
19
+ ```fft_size```. Defaults to 1024.
20
+
21
+ hop_length (int):
22
+ Number of audio samples between adjacent STFT columns. Defaults to 1024.
23
+
24
+ frame_shift_ms (int):
25
+ Set ```hop_length``` based on milliseconds and sampling rate.
26
+
27
+ frame_length_ms (int):
28
+ Set ```win_length``` based on milliseconds and sampling rate.
29
+
30
+ stft_pad_mode (str):
31
+ Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'.
32
+
33
+ sample_rate (int):
34
+ Audio sampling rate. Defaults to 22050.
35
+
36
+ resample (bool):
37
+ Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```.
38
+
39
+ preemphasis (float):
40
+ Preemphasis coefficient. Defaults to 0.0.
41
+
42
+ ref_level_db (int): 20
43
+ Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air.
44
+ Defaults to 20.
45
+
46
+ do_sound_norm (bool):
47
+ Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False.
48
+
49
+ log_func (str):
50
+ Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'.
51
+
52
+ do_trim_silence (bool):
53
+ Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```.
54
+
55
+ do_amp_to_db_linear (bool, optional):
56
+ enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
57
+
58
+ do_amp_to_db_mel (bool, optional):
59
+ enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
60
+
61
+ pitch_fmax (float, optional):
62
+ Maximum frequency of the F0 frames. Defaults to ```640```.
63
+
64
+ pitch_fmin (float, optional):
65
+ Minimum frequency of the F0 frames. Defaults to ```1```.
66
+
67
+ trim_db (int):
68
+ Silence threshold used for silence trimming. Defaults to 45.
69
+
70
+ do_rms_norm (bool, optional):
71
+ enable/disable RMS volume normalization when loading an audio file. Defaults to False.
72
+
73
+ db_level (int, optional):
74
+ dB level used for rms normalization. The range is -99 to 0. Defaults to None.
75
+
76
+ power (float):
77
+ Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the
78
+ artifacts in the synthesized voice. Defaults to 1.5.
79
+
80
+ griffin_lim_iters (int):
81
+ Number of Griffing Lim iterations. Defaults to 60.
82
+
83
+ num_mels (int):
84
+ Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80.
85
+
86
+ mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices.
87
+ It needs to be adjusted for a dataset. Defaults to 0.
88
+
89
+ mel_fmax (float):
90
+ Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset.
91
+
92
+ spec_gain (int):
93
+ Gain applied when converting amplitude to DB. Defaults to 20.
94
+
95
+ signal_norm (bool):
96
+ enable/disable signal normalization. Defaults to True.
97
+
98
+ min_level_db (int):
99
+ minimum db threshold for the computed melspectrograms. Defaults to -100.
100
+
101
+ symmetric_norm (bool):
102
+ enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else
103
+ [0, k], Defaults to True.
104
+
105
+ max_norm (float):
106
+ ```k``` defining the normalization range. Defaults to 4.0.
107
+
108
+ clip_norm (bool):
109
+ enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
110
+
111
+ stats_path (str):
112
+ Path to the computed stats file. Defaults to None.
113
+ """
114
+
115
+ # stft parameters
116
+ fft_size: int = 1024
117
+ win_length: int = 1024
118
+ hop_length: int = 256
119
+ frame_shift_ms: int = None
120
+ frame_length_ms: int = None
121
+ stft_pad_mode: str = "reflect"
122
+ # audio processing parameters
123
+ sample_rate: int = 22050
124
+ resample: bool = False
125
+ preemphasis: float = 0.0
126
+ ref_level_db: int = 20
127
+ do_sound_norm: bool = False
128
+ log_func: str = "np.log10"
129
+ # silence trimming
130
+ do_trim_silence: bool = True
131
+ trim_db: int = 45
132
+ # rms volume normalization
133
+ do_rms_norm: bool = False
134
+ db_level: float = None
135
+ # griffin-lim params
136
+ power: float = 1.5
137
+ griffin_lim_iters: int = 60
138
+ # mel-spec params
139
+ num_mels: int = 80
140
+ mel_fmin: float = 0.0
141
+ mel_fmax: float = None
142
+ spec_gain: int = 20
143
+ do_amp_to_db_linear: bool = True
144
+ do_amp_to_db_mel: bool = True
145
+ # f0 params
146
+ pitch_fmax: float = 640.0
147
+ pitch_fmin: float = 1.0
148
+ # normalization params
149
+ signal_norm: bool = True
150
+ min_level_db: int = -100
151
+ symmetric_norm: bool = True
152
+ max_norm: float = 4.0
153
+ clip_norm: bool = True
154
+ stats_path: str = None
155
+
156
+ def check_values(
157
+ self,
158
+ ):
159
+ """Check config fields"""
160
+ c = asdict(self)
161
+ check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056)
162
+ check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058)
163
+ check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000)
164
+ check_argument(
165
+ "frame_length_ms",
166
+ c,
167
+ restricted=True,
168
+ min_val=10,
169
+ max_val=1000,
170
+ alternative="win_length",
171
+ )
172
+ check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length")
173
+ check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1)
174
+ check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10)
175
+ check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000)
176
+ check_argument("power", c, restricted=True, min_val=1, max_val=5)
177
+ check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000)
178
+
179
+ # normalization parameters
180
+ check_argument("signal_norm", c, restricted=True)
181
+ check_argument("symmetric_norm", c, restricted=True)
182
+ check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000)
183
+ check_argument("clip_norm", c, restricted=True)
184
+ check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000)
185
+ check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True)
186
+ check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100)
187
+ check_argument("do_trim_silence", c, restricted=True)
188
+ check_argument("trim_db", c, restricted=True)
189
+
190
+
191
+ @dataclass
192
+ class BaseDatasetConfig(Coqpit):
193
+ """Base config for TTS datasets.
194
+
195
+ Args:
196
+ formatter (str):
197
+ Formatter name that defines used formatter in ```TTS.tts.datasets.formatter```. Defaults to `""`.
198
+
199
+ dataset_name (str):
200
+ Unique name for the dataset. Defaults to `""`.
201
+
202
+ path (str):
203
+ Root path to the dataset files. Defaults to `""`.
204
+
205
+ meta_file_train (str):
206
+ Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets.
207
+ Defaults to `""`.
208
+
209
+ ignored_speakers (List):
210
+ List of speakers IDs that are not used at the training. Default None.
211
+
212
+ language (str):
213
+ Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to `""`.
214
+
215
+ phonemizer (str):
216
+ Phonemizer used for that dataset's language. By default it uses `DEF_LANG_TO_PHONEMIZER`. Defaults to `""`.
217
+
218
+ meta_file_val (str):
219
+ Name of the dataset meta file that defines the instances used at validation.
220
+
221
+ meta_file_attn_mask (str):
222
+ Path to the file that lists the attention mask files used with models that require attention masks to
223
+ train the duration predictor.
224
+ """
225
+
226
+ formatter: str = ""
227
+ dataset_name: str = ""
228
+ path: str = ""
229
+ meta_file_train: str = ""
230
+ ignored_speakers: List[str] = None
231
+ language: str = ""
232
+ phonemizer: str = ""
233
+ meta_file_val: str = ""
234
+ meta_file_attn_mask: str = ""
235
+
236
+ def check_values(
237
+ self,
238
+ ):
239
+ """Check config fields"""
240
+ c = asdict(self)
241
+ check_argument("formatter", c, restricted=True)
242
+ check_argument("path", c, restricted=True)
243
+ check_argument("meta_file_train", c, restricted=True)
244
+ check_argument("meta_file_val", c, restricted=False)
245
+ check_argument("meta_file_attn_mask", c, restricted=False)
246
+
247
+
248
+ @dataclass
249
+ class BaseTrainingConfig(TrainerConfig):
250
+ """Base config to define the basic 🐸TTS training parameters that are shared
251
+ among all the models. It is based on ```Trainer.TrainingConfig```.
252
+
253
+ Args:
254
+ model (str):
255
+ Name of the model that is used in the training.
256
+
257
+ num_loader_workers (int):
258
+ Number of workers for training time dataloader.
259
+
260
+ num_eval_loader_workers (int):
261
+ Number of workers for evaluation time dataloader.
262
+ """
263
+
264
+ model: str = None
265
+ # dataloading
266
+ num_loader_workers: int = 0
267
+ num_eval_loader_workers: int = 0
268
+ use_noise_augment: bool = False
TTS/demos/xtts_ft_demo/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ faster_whisper==0.9.0
2
+ gradio==4.7.1
TTS/demos/xtts_ft_demo/utils/formatter.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+ import torchaudio
4
+ import pandas
5
+ from faster_whisper import WhisperModel
6
+ from glob import glob
7
+
8
+ from tqdm import tqdm
9
+
10
+ import torch
11
+ import torchaudio
12
+ # torch.set_num_threads(1)
13
+
14
+ from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
15
+
16
+ torch.set_num_threads(16)
17
+
18
+
19
+ import os
20
+
21
+ audio_types = (".wav", ".mp3", ".flac")
22
+
23
+
24
+ def list_audios(basePath, contains=None):
25
+ # return the set of files that are valid
26
+ return list_files(basePath, validExts=audio_types, contains=contains)
27
+
28
+ def list_files(basePath, validExts=None, contains=None):
29
+ # loop over the directory structure
30
+ for (rootDir, dirNames, filenames) in os.walk(basePath):
31
+ # loop over the filenames in the current directory
32
+ for filename in filenames:
33
+ # if the contains string is not none and the filename does not contain
34
+ # the supplied string, then ignore the file
35
+ if contains is not None and filename.find(contains) == -1:
36
+ continue
37
+
38
+ # determine the file extension of the current file
39
+ ext = filename[filename.rfind("."):].lower()
40
+
41
+ # check to see if the file is an audio and should be processed
42
+ if validExts is None or ext.endswith(validExts):
43
+ # construct the path to the audio and yield it
44
+ audioPath = os.path.join(rootDir, filename)
45
+ yield audioPath
46
+
47
+ def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
48
+ audio_total_size = 0
49
+ # make sure that ooutput file exists
50
+ os.makedirs(out_path, exist_ok=True)
51
+
52
+ # Loading Whisper
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+
55
+ print("Loading Whisper Model!")
56
+ asr_model = WhisperModel("large-v2", device=device, compute_type="float16")
57
+
58
+ metadata = {"audio_file": [], "text": [], "speaker_name": []}
59
+
60
+ if gradio_progress is not None:
61
+ tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
62
+ else:
63
+ tqdm_object = tqdm(audio_files)
64
+
65
+ for audio_path in tqdm_object:
66
+ wav, sr = torchaudio.load(audio_path)
67
+ # stereo to mono if needed
68
+ if wav.size(0) != 1:
69
+ wav = torch.mean(wav, dim=0, keepdim=True)
70
+
71
+ wav = wav.squeeze()
72
+ audio_total_size += (wav.size(-1) / sr)
73
+
74
+ segments, _ = asr_model.transcribe(audio_path, word_timestamps=True, language=target_language)
75
+ segments = list(segments)
76
+ i = 0
77
+ sentence = ""
78
+ sentence_start = None
79
+ first_word = True
80
+ # added all segments words in a unique list
81
+ words_list = []
82
+ for _, segment in enumerate(segments):
83
+ words = list(segment.words)
84
+ words_list.extend(words)
85
+
86
+ # process each word
87
+ for word_idx, word in enumerate(words_list):
88
+ if first_word:
89
+ sentence_start = word.start
90
+ # If it is the first sentence, add buffer or get the begining of the file
91
+ if word_idx == 0:
92
+ sentence_start = max(sentence_start - buffer, 0) # Add buffer to the sentence start
93
+ else:
94
+ # get previous sentence end
95
+ previous_word_end = words_list[word_idx - 1].end
96
+ # add buffer or get the silence midle between the previous sentence and the current one
97
+ sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start)/2)
98
+
99
+ sentence = word.word
100
+ first_word = False
101
+ else:
102
+ sentence += word.word
103
+
104
+ if word.word[-1] in ["!", ".", "?"]:
105
+ sentence = sentence[1:]
106
+ # Expand number and abbreviations plus normalization
107
+ sentence = multilingual_cleaners(sentence, target_language)
108
+ audio_file_name, _ = os.path.splitext(os.path.basename(audio_path))
109
+
110
+ audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav"
111
+
112
+ # Check for the next word's existence
113
+ if word_idx + 1 < len(words_list):
114
+ next_word_start = words_list[word_idx + 1].start
115
+ else:
116
+ # If don't have more words it means that it is the last sentence then use the audio len as next word start
117
+ next_word_start = (wav.shape[0] - 1) / sr
118
+
119
+ # Average the current word end and next word start
120
+ word_end = min((word.end + next_word_start) / 2, word.end + buffer)
121
+
122
+ absoulte_path = os.path.join(out_path, audio_file)
123
+ os.makedirs(os.path.dirname(absoulte_path), exist_ok=True)
124
+ i += 1
125
+ first_word = True
126
+
127
+ audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0)
128
+ # if the audio is too short ignore it (i.e < 0.33 seconds)
129
+ if audio.size(-1) >= sr/3:
130
+ torchaudio.save(absoulte_path,
131
+ audio,
132
+ sr
133
+ )
134
+ else:
135
+ continue
136
+
137
+ metadata["audio_file"].append(audio_file)
138
+ metadata["text"].append(sentence)
139
+ metadata["speaker_name"].append(speaker_name)
140
+
141
+ df = pandas.DataFrame(metadata)
142
+ df = df.sample(frac=1)
143
+ num_val_samples = int(len(df)*eval_percentage)
144
+
145
+ df_eval = df[:num_val_samples]
146
+ df_train = df[num_val_samples:]
147
+
148
+ df_train = df_train.sort_values('audio_file')
149
+ train_metadata_path = os.path.join(out_path, "metadata_train.csv")
150
+ df_train.to_csv(train_metadata_path, sep="|", index=False)
151
+
152
+ eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
153
+ df_eval = df_eval.sort_values('audio_file')
154
+ df_eval.to_csv(eval_metadata_path, sep="|", index=False)
155
+
156
+ # deallocate VRAM and RAM
157
+ del asr_model, df_train, df_eval, df, metadata
158
+ gc.collect()
159
+
160
+ return train_metadata_path, eval_metadata_path, audio_total_size
TTS/demos/xtts_ft_demo/utils/gpt_train.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+
4
+ from trainer import Trainer, TrainerArgs
5
+
6
+ from TTS.config.shared_configs import BaseDatasetConfig
7
+ from TTS.tts.datasets import load_tts_samples
8
+ from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
9
+ from TTS.utils.manage import ModelManager
10
+
11
+
12
+ def train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path, max_audio_length=255995):
13
+ # Logging parameters
14
+ RUN_NAME = "GPT_XTTS_FT"
15
+ PROJECT_NAME = "XTTS_trainer"
16
+ DASHBOARD_LOGGER = "tensorboard"
17
+ LOGGER_URI = None
18
+
19
+ # Set here the path that the checkpoints will be saved. Default: ./run/training/
20
+ OUT_PATH = os.path.join(output_path, "run", "training")
21
+
22
+ # Training Parameters
23
+ OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
24
+ START_WITH_EVAL = False # if True it will star with evaluation
25
+ BATCH_SIZE = batch_size # set here the batch size
26
+ GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps
27
+
28
+
29
+ # Define here the dataset that you want to use for the fine-tuning on.
30
+ config_dataset = BaseDatasetConfig(
31
+ formatter="coqui",
32
+ dataset_name="ft_dataset",
33
+ path=os.path.dirname(train_csv),
34
+ meta_file_train=train_csv,
35
+ meta_file_val=eval_csv,
36
+ language=language,
37
+ )
38
+
39
+ # Add here the configs of the datasets
40
+ DATASETS_CONFIG_LIST = [config_dataset]
41
+
42
+ # Define the path where XTTS v2.0.1 files will be downloaded
43
+ CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
44
+ os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
45
+
46
+
47
+ # DVAE files
48
+ DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
49
+ MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
50
+
51
+ # Set the path to the downloaded files
52
+ DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
53
+ MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
54
+
55
+ # download DVAE files if needed
56
+ if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
57
+ print(" > Downloading DVAE files!")
58
+ ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
59
+
60
+
61
+ # Download XTTS v2.0 checkpoint if needed
62
+ TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
63
+ XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
64
+ XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"
65
+
66
+ # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
67
+ TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
68
+ XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
69
+ XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) # config.json file
70
+
71
+ # download XTTS v2.0 files if needed
72
+ if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
73
+ print(" > Downloading XTTS v2.0 files!")
74
+ ModelManager._download_model_files(
75
+ [TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK, XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
76
+ )
77
+
78
+ # init args and config
79
+ model_args = GPTArgs(
80
+ max_conditioning_length=132300, # 6 secs
81
+ min_conditioning_length=66150, # 3 secs
82
+ debug_loading_failures=False,
83
+ max_wav_length=max_audio_length, # ~11.6 seconds
84
+ max_text_length=200,
85
+ mel_norm_file=MEL_NORM_FILE,
86
+ dvae_checkpoint=DVAE_CHECKPOINT,
87
+ xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
88
+ tokenizer_file=TOKENIZER_FILE,
89
+ gpt_num_audio_tokens=1026,
90
+ gpt_start_audio_token=1024,
91
+ gpt_stop_audio_token=1025,
92
+ gpt_use_masking_gt_prompt_approach=True,
93
+ gpt_use_perceiver_resampler=True,
94
+ )
95
+ # define audio config
96
+ audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
97
+ # training parameters config
98
+ config = GPTTrainerConfig(
99
+ epochs=num_epochs,
100
+ output_path=OUT_PATH,
101
+ model_args=model_args,
102
+ run_name=RUN_NAME,
103
+ project_name=PROJECT_NAME,
104
+ run_description="""
105
+ GPT XTTS training
106
+ """,
107
+ dashboard_logger=DASHBOARD_LOGGER,
108
+ logger_uri=LOGGER_URI,
109
+ audio=audio_config,
110
+ batch_size=BATCH_SIZE,
111
+ batch_group_size=48,
112
+ eval_batch_size=BATCH_SIZE,
113
+ num_loader_workers=8,
114
+ eval_split_max_size=256,
115
+ print_step=50,
116
+ plot_step=100,
117
+ log_model_step=100,
118
+ save_step=1000,
119
+ save_n_checkpoints=1,
120
+ save_checkpoints=True,
121
+ # target_loss="loss",
122
+ print_eval=False,
123
+ # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
124
+ optimizer="AdamW",
125
+ optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
126
+ optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
127
+ lr=5e-06, # learning rate
128
+ lr_scheduler="MultiStepLR",
129
+ # it was adjusted accordly for the new step scheme
130
+ lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
131
+ test_sentences=[],
132
+ )
133
+
134
+ # init the model from config
135
+ model = GPTTrainer.init_from_config(config)
136
+
137
+ # load training samples
138
+ train_samples, eval_samples = load_tts_samples(
139
+ DATASETS_CONFIG_LIST,
140
+ eval_split=True,
141
+ eval_split_max_size=config.eval_split_max_size,
142
+ eval_split_size=config.eval_split_size,
143
+ )
144
+
145
+ # init the trainer and 🚀
146
+ trainer = Trainer(
147
+ TrainerArgs(
148
+ restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
149
+ skip_train_epoch=False,
150
+ start_with_eval=START_WITH_EVAL,
151
+ grad_accum_steps=GRAD_ACUMM_STEPS,
152
+ ),
153
+ config,
154
+ output_path=OUT_PATH,
155
+ model=model,
156
+ train_samples=train_samples,
157
+ eval_samples=eval_samples,
158
+ )
159
+ trainer.fit()
160
+
161
+ # get the longest text audio file to use as speaker reference
162
+ samples_len = [len(item["text"].split(" ")) for item in train_samples]
163
+ longest_text_idx = samples_len.index(max(samples_len))
164
+ speaker_ref = train_samples[longest_text_idx]["audio_file"]
165
+
166
+ trainer_out_path = trainer.output_path
167
+
168
+ # deallocate VRAM and RAM
169
+ del model, trainer, train_samples, eval_samples
170
+ gc.collect()
171
+
172
+ return XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer_out_path, speaker_ref
TTS/demos/xtts_ft_demo/xtts_demo.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import sys
4
+ import tempfile
5
+
6
+ import gradio as gr
7
+ import librosa.display
8
+ import numpy as np
9
+
10
+ import os
11
+ import torch
12
+ import torchaudio
13
+ import traceback
14
+ from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
15
+ from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
16
+
17
+ from TTS.tts.configs.xtts_config import XttsConfig
18
+ from TTS.tts.models.xtts import Xtts
19
+
20
+
21
+ def clear_gpu_cache():
22
+ # clear the GPU cache
23
+ if torch.cuda.is_available():
24
+ torch.cuda.empty_cache()
25
+
26
+ XTTS_MODEL = None
27
+ def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
28
+ global XTTS_MODEL
29
+ clear_gpu_cache()
30
+ if not xtts_checkpoint or not xtts_config or not xtts_vocab:
31
+ return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
32
+ config = XttsConfig()
33
+ config.load_json(xtts_config)
34
+ XTTS_MODEL = Xtts.init_from_config(config)
35
+ print("Loading XTTS model! ")
36
+ XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
37
+ if torch.cuda.is_available():
38
+ XTTS_MODEL.cuda()
39
+
40
+ print("Model Loaded!")
41
+ return "Model Loaded!"
42
+
43
+ def run_tts(lang, tts_text, speaker_audio_file):
44
+ if XTTS_MODEL is None or not speaker_audio_file:
45
+ return "You need to run the previous step to load the model !!", None, None
46
+
47
+ gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
48
+ out = XTTS_MODEL.inference(
49
+ text=tts_text,
50
+ language=lang,
51
+ gpt_cond_latent=gpt_cond_latent,
52
+ speaker_embedding=speaker_embedding,
53
+ temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
54
+ length_penalty=XTTS_MODEL.config.length_penalty,
55
+ repetition_penalty=XTTS_MODEL.config.repetition_penalty,
56
+ top_k=XTTS_MODEL.config.top_k,
57
+ top_p=XTTS_MODEL.config.top_p,
58
+ )
59
+
60
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
61
+ out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
62
+ out_path = fp.name
63
+ torchaudio.save(out_path, out["wav"], 24000)
64
+
65
+ return "Speech generated !", out_path, speaker_audio_file
66
+
67
+
68
+
69
+
70
+ # define a logger to redirect
71
+ class Logger:
72
+ def __init__(self, filename="log.out"):
73
+ self.log_file = filename
74
+ self.terminal = sys.stdout
75
+ self.log = open(self.log_file, "w")
76
+
77
+ def write(self, message):
78
+ self.terminal.write(message)
79
+ self.log.write(message)
80
+
81
+ def flush(self):
82
+ self.terminal.flush()
83
+ self.log.flush()
84
+
85
+ def isatty(self):
86
+ return False
87
+
88
+ # redirect stdout and stderr to a file
89
+ sys.stdout = Logger()
90
+ sys.stderr = sys.stdout
91
+
92
+
93
+ # logging.basicConfig(stream=sys.stdout, level=logging.INFO)
94
+ import logging
95
+ logging.basicConfig(
96
+ level=logging.INFO,
97
+ format="%(asctime)s [%(levelname)s] %(message)s",
98
+ handlers=[
99
+ logging.StreamHandler(sys.stdout)
100
+ ]
101
+ )
102
+
103
+ def read_logs():
104
+ sys.stdout.flush()
105
+ with open(sys.stdout.log_file, "r") as f:
106
+ return f.read()
107
+
108
+
109
+ if __name__ == "__main__":
110
+
111
+ parser = argparse.ArgumentParser(
112
+ description="""XTTS fine-tuning demo\n\n"""
113
+ """
114
+ Example runs:
115
+ python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
116
+ """,
117
+ formatter_class=argparse.RawTextHelpFormatter,
118
+ )
119
+ parser.add_argument(
120
+ "--port",
121
+ type=int,
122
+ help="Port to run the gradio demo. Default: 5003",
123
+ default=5003,
124
+ )
125
+ parser.add_argument(
126
+ "--out_path",
127
+ type=str,
128
+ help="Output path (where data and checkpoints will be saved) Default: /tmp/xtts_ft/",
129
+ default="/tmp/xtts_ft/",
130
+ )
131
+
132
+ parser.add_argument(
133
+ "--num_epochs",
134
+ type=int,
135
+ help="Number of epochs to train. Default: 10",
136
+ default=10,
137
+ )
138
+ parser.add_argument(
139
+ "--batch_size",
140
+ type=int,
141
+ help="Batch size. Default: 4",
142
+ default=4,
143
+ )
144
+ parser.add_argument(
145
+ "--grad_acumm",
146
+ type=int,
147
+ help="Grad accumulation steps. Default: 1",
148
+ default=1,
149
+ )
150
+ parser.add_argument(
151
+ "--max_audio_length",
152
+ type=int,
153
+ help="Max permitted audio size in seconds. Default: 11",
154
+ default=11,
155
+ )
156
+
157
+ args = parser.parse_args()
158
+
159
+ with gr.Blocks() as demo:
160
+ with gr.Tab("1 - Data processing"):
161
+ out_path = gr.Textbox(
162
+ label="Output path (where data and checkpoints will be saved):",
163
+ value=args.out_path,
164
+ )
165
+ # upload_file = gr.Audio(
166
+ # sources="upload",
167
+ # label="Select here the audio files that you want to use for XTTS trainining !",
168
+ # type="filepath",
169
+ # )
170
+ upload_file = gr.File(
171
+ file_count="multiple",
172
+ label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
173
+ )
174
+ lang = gr.Dropdown(
175
+ label="Dataset Language",
176
+ value="en",
177
+ choices=[
178
+ "en",
179
+ "es",
180
+ "fr",
181
+ "de",
182
+ "it",
183
+ "pt",
184
+ "pl",
185
+ "tr",
186
+ "ru",
187
+ "nl",
188
+ "cs",
189
+ "ar",
190
+ "zh",
191
+ "hu",
192
+ "ko",
193
+ "ja"
194
+ ],
195
+ )
196
+ progress_data = gr.Label(
197
+ label="Progress:"
198
+ )
199
+ logs = gr.Textbox(
200
+ label="Logs:",
201
+ interactive=False,
202
+ )
203
+ demo.load(read_logs, None, logs, every=1)
204
+
205
+ prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
206
+
207
+ def preprocess_dataset(audio_path, language, out_path, progress=gr.Progress(track_tqdm=True)):
208
+ clear_gpu_cache()
209
+ out_path = os.path.join(out_path, "dataset")
210
+ os.makedirs(out_path, exist_ok=True)
211
+ if audio_path is None:
212
+ return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", ""
213
+ else:
214
+ try:
215
+ train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, target_language=language, out_path=out_path, gradio_progress=progress)
216
+ except:
217
+ traceback.print_exc()
218
+ error = traceback.format_exc()
219
+ return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
220
+
221
+ clear_gpu_cache()
222
+
223
+ # if audio total len is less than 2 minutes raise an error
224
+ if audio_total_size < 120:
225
+ message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
226
+ print(message)
227
+ return message, "", ""
228
+
229
+ print("Dataset Processed!")
230
+ return "Dataset Processed!", train_meta, eval_meta
231
+
232
+ with gr.Tab("2 - Fine-tuning XTTS Encoder"):
233
+ train_csv = gr.Textbox(
234
+ label="Train CSV:",
235
+ )
236
+ eval_csv = gr.Textbox(
237
+ label="Eval CSV:",
238
+ )
239
+ num_epochs = gr.Slider(
240
+ label="Number of epochs:",
241
+ minimum=1,
242
+ maximum=100,
243
+ step=1,
244
+ value=args.num_epochs,
245
+ )
246
+ batch_size = gr.Slider(
247
+ label="Batch size:",
248
+ minimum=2,
249
+ maximum=512,
250
+ step=1,
251
+ value=args.batch_size,
252
+ )
253
+ grad_acumm = gr.Slider(
254
+ label="Grad accumulation steps:",
255
+ minimum=2,
256
+ maximum=128,
257
+ step=1,
258
+ value=args.grad_acumm,
259
+ )
260
+ max_audio_length = gr.Slider(
261
+ label="Max permitted audio size in seconds:",
262
+ minimum=2,
263
+ maximum=20,
264
+ step=1,
265
+ value=args.max_audio_length,
266
+ )
267
+ progress_train = gr.Label(
268
+ label="Progress:"
269
+ )
270
+ logs_tts_train = gr.Textbox(
271
+ label="Logs:",
272
+ interactive=False,
273
+ )
274
+ demo.load(read_logs, None, logs_tts_train, every=1)
275
+ train_btn = gr.Button(value="Step 2 - Run the training")
276
+
277
+ def train_model(language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
278
+ clear_gpu_cache()
279
+ if not train_csv or not eval_csv:
280
+ return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
281
+ try:
282
+ # convert seconds to waveform frames
283
+ max_audio_length = int(max_audio_length * 22050)
284
+ config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
285
+ except:
286
+ traceback.print_exc()
287
+ error = traceback.format_exc()
288
+ return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""
289
+
290
+ # copy original files to avoid parameters changes issues
291
+ os.system(f"cp {config_path} {exp_path}")
292
+ os.system(f"cp {vocab_file} {exp_path}")
293
+
294
+ ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
295
+ print("Model training done!")
296
+ clear_gpu_cache()
297
+ return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
298
+
299
+ with gr.Tab("3 - Inference"):
300
+ with gr.Row():
301
+ with gr.Column() as col1:
302
+ xtts_checkpoint = gr.Textbox(
303
+ label="XTTS checkpoint path:",
304
+ value="",
305
+ )
306
+ xtts_config = gr.Textbox(
307
+ label="XTTS config path:",
308
+ value="",
309
+ )
310
+
311
+ xtts_vocab = gr.Textbox(
312
+ label="XTTS vocab path:",
313
+ value="",
314
+ )
315
+ progress_load = gr.Label(
316
+ label="Progress:"
317
+ )
318
+ load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
319
+
320
+ with gr.Column() as col2:
321
+ speaker_reference_audio = gr.Textbox(
322
+ label="Speaker reference audio:",
323
+ value="",
324
+ )
325
+ tts_language = gr.Dropdown(
326
+ label="Language",
327
+ value="en",
328
+ choices=[
329
+ "en",
330
+ "es",
331
+ "fr",
332
+ "de",
333
+ "it",
334
+ "pt",
335
+ "pl",
336
+ "tr",
337
+ "ru",
338
+ "nl",
339
+ "cs",
340
+ "ar",
341
+ "zh",
342
+ "hu",
343
+ "ko",
344
+ "ja",
345
+ ]
346
+ )
347
+ tts_text = gr.Textbox(
348
+ label="Input Text.",
349
+ value="This model sounds really good and above all, it's reasonably fast.",
350
+ )
351
+ tts_btn = gr.Button(value="Step 4 - Inference")
352
+
353
+ with gr.Column() as col3:
354
+ progress_gen = gr.Label(
355
+ label="Progress:"
356
+ )
357
+ tts_output_audio = gr.Audio(label="Generated Audio.")
358
+ reference_audio = gr.Audio(label="Reference audio used.")
359
+
360
+ prompt_compute_btn.click(
361
+ fn=preprocess_dataset,
362
+ inputs=[
363
+ upload_file,
364
+ lang,
365
+ out_path,
366
+ ],
367
+ outputs=[
368
+ progress_data,
369
+ train_csv,
370
+ eval_csv,
371
+ ],
372
+ )
373
+
374
+
375
+ train_btn.click(
376
+ fn=train_model,
377
+ inputs=[
378
+ lang,
379
+ train_csv,
380
+ eval_csv,
381
+ num_epochs,
382
+ batch_size,
383
+ grad_acumm,
384
+ out_path,
385
+ max_audio_length,
386
+ ],
387
+ outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
388
+ )
389
+
390
+ load_btn.click(
391
+ fn=load_model,
392
+ inputs=[
393
+ xtts_checkpoint,
394
+ xtts_config,
395
+ xtts_vocab
396
+ ],
397
+ outputs=[progress_load],
398
+ )
399
+
400
+ tts_btn.click(
401
+ fn=run_tts,
402
+ inputs=[
403
+ tts_language,
404
+ tts_text,
405
+ speaker_reference_audio,
406
+ ],
407
+ outputs=[progress_gen, tts_output_audio, reference_audio],
408
+ )
409
+
410
+ demo.launch(
411
+ share=True,
412
+ debug=False,
413
+ server_port=args.port,
414
+ server_name="0.0.0.0"
415
+ )
TTS/encoder/README.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Speaker Encoder
2
+
3
+ This is an implementation of https://arxiv.org/abs/1710.10467. This model can be used for voice and speaker embedding.
4
+
5
+ With the code here you can generate d-vectors for both multi-speaker and single-speaker TTS datasets, then visualise and explore them along with the associated audio files in an interactive chart.
6
+
7
+ Below is an example showing embedding results of various speakers. You can generate the same plot with the provided notebook as demonstrated in [this video](https://youtu.be/KW3oO7JVa7Q).
8
+
9
+ ![](umap.png)
10
+
11
+ Download a pretrained model from [Released Models](https://github.com/mozilla/TTS/wiki/Released-Models) page.
12
+
13
+ To run the code, you need to follow the same flow as in TTS.
14
+
15
+ - Define 'config.json' for your needs. Note that, audio parameters should match your TTS model.
16
+ - Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360```
17
+ - Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files.
18
+ - Watch training on Tensorboard as in TTS
TTS/encoder/__init__.py ADDED
File without changes
TTS/encoder/configs/base_encoder_config.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import asdict, dataclass, field
2
+ from typing import Dict, List
3
+
4
+ from coqpit import MISSING
5
+
6
+ from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig
7
+
8
+
9
+ @dataclass
10
+ class BaseEncoderConfig(BaseTrainingConfig):
11
+ """Defines parameters for a Generic Encoder model."""
12
+
13
+ model: str = None
14
+ audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
15
+ datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
16
+ # model params
17
+ model_params: Dict = field(
18
+ default_factory=lambda: {
19
+ "model_name": "lstm",
20
+ "input_dim": 80,
21
+ "proj_dim": 256,
22
+ "lstm_dim": 768,
23
+ "num_lstm_layers": 3,
24
+ "use_lstm_with_projection": True,
25
+ }
26
+ )
27
+
28
+ audio_augmentation: Dict = field(default_factory=lambda: {})
29
+
30
+ # training params
31
+ epochs: int = 10000
32
+ loss: str = "angleproto"
33
+ grad_clip: float = 3.0
34
+ lr: float = 0.0001
35
+ optimizer: str = "radam"
36
+ optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.9, 0.999], "weight_decay": 0})
37
+ lr_decay: bool = False
38
+ warmup_steps: int = 4000
39
+
40
+ # logging params
41
+ tb_model_param_stats: bool = False
42
+ steps_plot_stats: int = 10
43
+ save_step: int = 1000
44
+ print_step: int = 20
45
+ run_eval: bool = False
46
+
47
+ # data loader
48
+ num_classes_in_batch: int = MISSING
49
+ num_utter_per_class: int = MISSING
50
+ eval_num_classes_in_batch: int = None
51
+ eval_num_utter_per_class: int = None
52
+
53
+ num_loader_workers: int = MISSING
54
+ voice_len: float = 1.6
55
+
56
+ def check_values(self):
57
+ super().check_values()
58
+ c = asdict(self)
59
+ assert (
60
+ c["model_params"]["input_dim"] == self.audio.num_mels
61
+ ), " [!] model input dimendion must be equal to melspectrogram dimension."
TTS/encoder/configs/emotion_encoder_config.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import asdict, dataclass
2
+
3
+ from TTS.encoder.configs.base_encoder_config import BaseEncoderConfig
4
+
5
+
6
+ @dataclass
7
+ class EmotionEncoderConfig(BaseEncoderConfig):
8
+ """Defines parameters for Emotion Encoder model."""
9
+
10
+ model: str = "emotion_encoder"
11
+ map_classid_to_classname: dict = None
12
+ class_name_key: str = "emotion_name"
TTS/encoder/configs/speaker_encoder_config.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import asdict, dataclass
2
+
3
+ from TTS.encoder.configs.base_encoder_config import BaseEncoderConfig
4
+
5
+
6
+ @dataclass
7
+ class SpeakerEncoderConfig(BaseEncoderConfig):
8
+ """Defines parameters for Speaker Encoder model."""
9
+
10
+ model: str = "speaker_encoder"
11
+ class_name_key: str = "speaker_name"
TTS/encoder/dataset.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import torch
4
+ from torch.utils.data import Dataset
5
+
6
+ from TTS.encoder.utils.generic_utils import AugmentWAV
7
+
8
+
9
+ class EncoderDataset(Dataset):
10
+ def __init__(
11
+ self,
12
+ config,
13
+ ap,
14
+ meta_data,
15
+ voice_len=1.6,
16
+ num_classes_in_batch=64,
17
+ num_utter_per_class=10,
18
+ verbose=False,
19
+ augmentation_config=None,
20
+ use_torch_spec=None,
21
+ ):
22
+ """
23
+ Args:
24
+ ap (TTS.tts.utils.AudioProcessor): audio processor object.
25
+ meta_data (list): list of dataset instances.
26
+ seq_len (int): voice segment length in seconds.
27
+ verbose (bool): print diagnostic information.
28
+ """
29
+ super().__init__()
30
+ self.config = config
31
+ self.items = meta_data
32
+ self.sample_rate = ap.sample_rate
33
+ self.seq_len = int(voice_len * self.sample_rate)
34
+ self.num_utter_per_class = num_utter_per_class
35
+ self.ap = ap
36
+ self.verbose = verbose
37
+ self.use_torch_spec = use_torch_spec
38
+ self.classes, self.items = self.__parse_items()
39
+
40
+ self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
41
+
42
+ # Data Augmentation
43
+ self.augmentator = None
44
+ self.gaussian_augmentation_config = None
45
+ if augmentation_config:
46
+ self.data_augmentation_p = augmentation_config["p"]
47
+ if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
48
+ self.augmentator = AugmentWAV(ap, augmentation_config)
49
+
50
+ if "gaussian" in augmentation_config.keys():
51
+ self.gaussian_augmentation_config = augmentation_config["gaussian"]
52
+
53
+ if self.verbose:
54
+ print("\n > DataLoader initialization")
55
+ print(f" | > Classes per Batch: {num_classes_in_batch}")
56
+ print(f" | > Number of instances : {len(self.items)}")
57
+ print(f" | > Sequence length: {self.seq_len}")
58
+ print(f" | > Num Classes: {len(self.classes)}")
59
+ print(f" | > Classes: {self.classes}")
60
+
61
+ def load_wav(self, filename):
62
+ audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
63
+ return audio
64
+
65
+ def __parse_items(self):
66
+ class_to_utters = {}
67
+ for item in self.items:
68
+ path_ = item["audio_file"]
69
+ class_name = item[self.config.class_name_key]
70
+ if class_name in class_to_utters.keys():
71
+ class_to_utters[class_name].append(path_)
72
+ else:
73
+ class_to_utters[class_name] = [
74
+ path_,
75
+ ]
76
+
77
+ # skip classes with number of samples >= self.num_utter_per_class
78
+ class_to_utters = {k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class}
79
+
80
+ classes = list(class_to_utters.keys())
81
+ classes.sort()
82
+
83
+ new_items = []
84
+ for item in self.items:
85
+ path_ = item["audio_file"]
86
+ class_name = item["emotion_name"] if self.config.model == "emotion_encoder" else item["speaker_name"]
87
+ # ignore filtered classes
88
+ if class_name not in classes:
89
+ continue
90
+ # ignore small audios
91
+ if self.load_wav(path_).shape[0] - self.seq_len <= 0:
92
+ continue
93
+
94
+ new_items.append({"wav_file_path": path_, "class_name": class_name})
95
+
96
+ return classes, new_items
97
+
98
+ def __len__(self):
99
+ return len(self.items)
100
+
101
+ def get_num_classes(self):
102
+ return len(self.classes)
103
+
104
+ def get_class_list(self):
105
+ return self.classes
106
+
107
+ def set_classes(self, classes):
108
+ self.classes = classes
109
+ self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
110
+
111
+ def get_map_classid_to_classname(self):
112
+ return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
113
+
114
+ def __getitem__(self, idx):
115
+ return self.items[idx]
116
+
117
+ def collate_fn(self, batch):
118
+ # get the batch class_ids
119
+ labels = []
120
+ feats = []
121
+ for item in batch:
122
+ utter_path = item["wav_file_path"]
123
+ class_name = item["class_name"]
124
+
125
+ # get classid
126
+ class_id = self.classname_to_classid[class_name]
127
+ # load wav file
128
+ wav = self.load_wav(utter_path)
129
+ offset = random.randint(0, wav.shape[0] - self.seq_len)
130
+ wav = wav[offset : offset + self.seq_len]
131
+
132
+ if self.augmentator is not None and self.data_augmentation_p:
133
+ if random.random() < self.data_augmentation_p:
134
+ wav = self.augmentator.apply_one(wav)
135
+
136
+ if not self.use_torch_spec:
137
+ mel = self.ap.melspectrogram(wav)
138
+ feats.append(torch.FloatTensor(mel))
139
+ else:
140
+ feats.append(torch.FloatTensor(wav))
141
+
142
+ labels.append(class_id)
143
+
144
+ feats = torch.stack(feats)
145
+ labels = torch.LongTensor(labels)
146
+
147
+ return feats, labels
TTS/encoder/losses.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+
5
+
6
+ # adapted from https://github.com/cvqluu/GE2E-Loss
7
+ class GE2ELoss(nn.Module):
8
+ def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"):
9
+ """
10
+ Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1]
11
+ Accepts an input of size (N, M, D)
12
+ where N is the number of speakers in the batch,
13
+ M is the number of utterances per speaker,
14
+ and D is the dimensionality of the embedding vector (e.g. d-vector)
15
+ Args:
16
+ - init_w (float): defines the initial value of w in Equation (5) of [1]
17
+ - init_b (float): definies the initial value of b in Equation (5) of [1]
18
+ """
19
+ super().__init__()
20
+ # pylint: disable=E1102
21
+ self.w = nn.Parameter(torch.tensor(init_w))
22
+ # pylint: disable=E1102
23
+ self.b = nn.Parameter(torch.tensor(init_b))
24
+ self.loss_method = loss_method
25
+
26
+ print(" > Initialized Generalized End-to-End loss")
27
+
28
+ assert self.loss_method in ["softmax", "contrast"]
29
+
30
+ if self.loss_method == "softmax":
31
+ self.embed_loss = self.embed_loss_softmax
32
+ if self.loss_method == "contrast":
33
+ self.embed_loss = self.embed_loss_contrast
34
+
35
+ # pylint: disable=R0201
36
+ def calc_new_centroids(self, dvecs, centroids, spkr, utt):
37
+ """
38
+ Calculates the new centroids excluding the reference utterance
39
+ """
40
+ excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :]))
41
+ excl = torch.mean(excl, 0)
42
+ new_centroids = []
43
+ for i, centroid in enumerate(centroids):
44
+ if i == spkr:
45
+ new_centroids.append(excl)
46
+ else:
47
+ new_centroids.append(centroid)
48
+ return torch.stack(new_centroids)
49
+
50
+ def calc_cosine_sim(self, dvecs, centroids):
51
+ """
52
+ Make the cosine similarity matrix with dims (N,M,N)
53
+ """
54
+ cos_sim_matrix = []
55
+ for spkr_idx, speaker in enumerate(dvecs):
56
+ cs_row = []
57
+ for utt_idx, utterance in enumerate(speaker):
58
+ new_centroids = self.calc_new_centroids(dvecs, centroids, spkr_idx, utt_idx)
59
+ # vector based cosine similarity for speed
60
+ cs_row.append(
61
+ torch.clamp(
62
+ torch.mm(
63
+ utterance.unsqueeze(1).transpose(0, 1),
64
+ new_centroids.transpose(0, 1),
65
+ )
66
+ / (torch.norm(utterance) * torch.norm(new_centroids, dim=1)),
67
+ 1e-6,
68
+ )
69
+ )
70
+ cs_row = torch.cat(cs_row, dim=0)
71
+ cos_sim_matrix.append(cs_row)
72
+ return torch.stack(cos_sim_matrix)
73
+
74
+ # pylint: disable=R0201
75
+ def embed_loss_softmax(self, dvecs, cos_sim_matrix):
76
+ """
77
+ Calculates the loss on each embedding $L(e_{ji})$ by taking softmax
78
+ """
79
+ N, M, _ = dvecs.shape
80
+ L = []
81
+ for j in range(N):
82
+ L_row = []
83
+ for i in range(M):
84
+ L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j])
85
+ L_row = torch.stack(L_row)
86
+ L.append(L_row)
87
+ return torch.stack(L)
88
+
89
+ # pylint: disable=R0201
90
+ def embed_loss_contrast(self, dvecs, cos_sim_matrix):
91
+ """
92
+ Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid
93
+ """
94
+ N, M, _ = dvecs.shape
95
+ L = []
96
+ for j in range(N):
97
+ L_row = []
98
+ for i in range(M):
99
+ centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i])
100
+ excl_centroids_sigmoids = torch.cat((centroids_sigmoids[:j], centroids_sigmoids[j + 1 :]))
101
+ L_row.append(1.0 - torch.sigmoid(cos_sim_matrix[j, i, j]) + torch.max(excl_centroids_sigmoids))
102
+ L_row = torch.stack(L_row)
103
+ L.append(L_row)
104
+ return torch.stack(L)
105
+
106
+ def forward(self, x, _label=None):
107
+ """
108
+ Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
109
+ """
110
+
111
+ assert x.size()[1] >= 2
112
+
113
+ centroids = torch.mean(x, 1)
114
+ cos_sim_matrix = self.calc_cosine_sim(x, centroids)
115
+ torch.clamp(self.w, 1e-6)
116
+ cos_sim_matrix = self.w * cos_sim_matrix + self.b
117
+ L = self.embed_loss(x, cos_sim_matrix)
118
+ return L.mean()
119
+
120
+
121
+ # adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py
122
+ class AngleProtoLoss(nn.Module):
123
+ """
124
+ Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982
125
+ Accepts an input of size (N, M, D)
126
+ where N is the number of speakers in the batch,
127
+ M is the number of utterances per speaker,
128
+ and D is the dimensionality of the embedding vector
129
+ Args:
130
+ - init_w (float): defines the initial value of w
131
+ - init_b (float): definies the initial value of b
132
+ """
133
+
134
+ def __init__(self, init_w=10.0, init_b=-5.0):
135
+ super().__init__()
136
+ # pylint: disable=E1102
137
+ self.w = nn.Parameter(torch.tensor(init_w))
138
+ # pylint: disable=E1102
139
+ self.b = nn.Parameter(torch.tensor(init_b))
140
+ self.criterion = torch.nn.CrossEntropyLoss()
141
+
142
+ print(" > Initialized Angular Prototypical loss")
143
+
144
+ def forward(self, x, _label=None):
145
+ """
146
+ Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
147
+ """
148
+
149
+ assert x.size()[1] >= 2
150
+
151
+ out_anchor = torch.mean(x[:, 1:, :], 1)
152
+ out_positive = x[:, 0, :]
153
+ num_speakers = out_anchor.size()[0]
154
+
155
+ cos_sim_matrix = F.cosine_similarity(
156
+ out_positive.unsqueeze(-1).expand(-1, -1, num_speakers),
157
+ out_anchor.unsqueeze(-1).expand(-1, -1, num_speakers).transpose(0, 2),
158
+ )
159
+ torch.clamp(self.w, 1e-6)
160
+ cos_sim_matrix = cos_sim_matrix * self.w + self.b
161
+ label = torch.arange(num_speakers).to(cos_sim_matrix.device)
162
+ L = self.criterion(cos_sim_matrix, label)
163
+ return L
164
+
165
+
166
+ class SoftmaxLoss(nn.Module):
167
+ """
168
+ Implementation of the Softmax loss as defined in https://arxiv.org/abs/2003.11982
169
+ Args:
170
+ - embedding_dim (float): speaker embedding dim
171
+ - n_speakers (float): number of speakers
172
+ """
173
+
174
+ def __init__(self, embedding_dim, n_speakers):
175
+ super().__init__()
176
+
177
+ self.criterion = torch.nn.CrossEntropyLoss()
178
+ self.fc = nn.Linear(embedding_dim, n_speakers)
179
+
180
+ print("Initialised Softmax Loss")
181
+
182
+ def forward(self, x, label=None):
183
+ # reshape for compatibility
184
+ x = x.reshape(-1, x.size()[-1])
185
+ label = label.reshape(-1)
186
+
187
+ x = self.fc(x)
188
+ L = self.criterion(x, label)
189
+
190
+ return L
191
+
192
+ def inference(self, embedding):
193
+ x = self.fc(embedding)
194
+ activations = torch.nn.functional.softmax(x, dim=1).squeeze(0)
195
+ class_id = torch.argmax(activations)
196
+ return class_id
197
+
198
+
199
+ class SoftmaxAngleProtoLoss(nn.Module):
200
+ """
201
+ Implementation of the Softmax AnglePrototypical loss as defined in https://arxiv.org/abs/2009.14153
202
+ Args:
203
+ - embedding_dim (float): speaker embedding dim
204
+ - n_speakers (float): number of speakers
205
+ - init_w (float): defines the initial value of w
206
+ - init_b (float): definies the initial value of b
207
+ """
208
+
209
+ def __init__(self, embedding_dim, n_speakers, init_w=10.0, init_b=-5.0):
210
+ super().__init__()
211
+
212
+ self.softmax = SoftmaxLoss(embedding_dim, n_speakers)
213
+ self.angleproto = AngleProtoLoss(init_w, init_b)
214
+
215
+ print("Initialised SoftmaxAnglePrototypical Loss")
216
+
217
+ def forward(self, x, label=None):
218
+ """
219
+ Calculates the SoftmaxAnglePrototypical loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
220
+ """
221
+
222
+ Lp = self.angleproto(x)
223
+
224
+ Ls = self.softmax(x, label)
225
+
226
+ return Ls + Lp
TTS/encoder/models/base_encoder.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchaudio
4
+ from coqpit import Coqpit
5
+ from torch import nn
6
+
7
+ from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
8
+ from TTS.utils.generic_utils import set_init_dict
9
+ from TTS.utils.io import load_fsspec
10
+
11
+
12
+ class PreEmphasis(nn.Module):
13
+ def __init__(self, coefficient=0.97):
14
+ super().__init__()
15
+ self.coefficient = coefficient
16
+ self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0))
17
+
18
+ def forward(self, x):
19
+ assert len(x.size()) == 2
20
+
21
+ x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect")
22
+ return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
23
+
24
+
25
+ class BaseEncoder(nn.Module):
26
+ """Base `encoder` class. Every new `encoder` model must inherit this.
27
+
28
+ It defines common `encoder` specific functions.
29
+ """
30
+
31
+ # pylint: disable=W0102
32
+ def __init__(self):
33
+ super(BaseEncoder, self).__init__()
34
+
35
+ def get_torch_mel_spectrogram_class(self, audio_config):
36
+ return torch.nn.Sequential(
37
+ PreEmphasis(audio_config["preemphasis"]),
38
+ # TorchSTFT(
39
+ # n_fft=audio_config["fft_size"],
40
+ # hop_length=audio_config["hop_length"],
41
+ # win_length=audio_config["win_length"],
42
+ # sample_rate=audio_config["sample_rate"],
43
+ # window="hamming_window",
44
+ # mel_fmin=0.0,
45
+ # mel_fmax=None,
46
+ # use_htk=True,
47
+ # do_amp_to_db=False,
48
+ # n_mels=audio_config["num_mels"],
49
+ # power=2.0,
50
+ # use_mel=True,
51
+ # mel_norm=None,
52
+ # )
53
+ torchaudio.transforms.MelSpectrogram(
54
+ sample_rate=audio_config["sample_rate"],
55
+ n_fft=audio_config["fft_size"],
56
+ win_length=audio_config["win_length"],
57
+ hop_length=audio_config["hop_length"],
58
+ window_fn=torch.hamming_window,
59
+ n_mels=audio_config["num_mels"],
60
+ ),
61
+ )
62
+
63
+ @torch.no_grad()
64
+ def inference(self, x, l2_norm=True):
65
+ return self.forward(x, l2_norm)
66
+
67
+ @torch.no_grad()
68
+ def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True, l2_norm=True):
69
+ """
70
+ Generate embeddings for a batch of utterances
71
+ x: 1xTxD
72
+ """
73
+ # map to the waveform size
74
+ if self.use_torch_spec:
75
+ num_frames = num_frames * self.audio_config["hop_length"]
76
+
77
+ max_len = x.shape[1]
78
+
79
+ if max_len < num_frames:
80
+ num_frames = max_len
81
+
82
+ offsets = np.linspace(0, max_len - num_frames, num=num_eval)
83
+
84
+ frames_batch = []
85
+ for offset in offsets:
86
+ offset = int(offset)
87
+ end_offset = int(offset + num_frames)
88
+ frames = x[:, offset:end_offset]
89
+ frames_batch.append(frames)
90
+
91
+ frames_batch = torch.cat(frames_batch, dim=0)
92
+ embeddings = self.inference(frames_batch, l2_norm=l2_norm)
93
+
94
+ if return_mean:
95
+ embeddings = torch.mean(embeddings, dim=0, keepdim=True)
96
+ return embeddings
97
+
98
+ def get_criterion(self, c: Coqpit, num_classes=None):
99
+ if c.loss == "ge2e":
100
+ criterion = GE2ELoss(loss_method="softmax")
101
+ elif c.loss == "angleproto":
102
+ criterion = AngleProtoLoss()
103
+ elif c.loss == "softmaxproto":
104
+ criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_classes)
105
+ else:
106
+ raise Exception("The %s not is a loss supported" % c.loss)
107
+ return criterion
108
+
109
+ def load_checkpoint(
110
+ self,
111
+ config: Coqpit,
112
+ checkpoint_path: str,
113
+ eval: bool = False,
114
+ use_cuda: bool = False,
115
+ criterion=None,
116
+ cache=False,
117
+ ):
118
+ state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
119
+ try:
120
+ self.load_state_dict(state["model"])
121
+ print(" > Model fully restored. ")
122
+ except (KeyError, RuntimeError) as error:
123
+ # If eval raise the error
124
+ if eval:
125
+ raise error
126
+
127
+ print(" > Partial model initialization.")
128
+ model_dict = self.state_dict()
129
+ model_dict = set_init_dict(model_dict, state["model"], c)
130
+ self.load_state_dict(model_dict)
131
+ del model_dict
132
+
133
+ # load the criterion for restore_path
134
+ if criterion is not None and "criterion" in state:
135
+ try:
136
+ criterion.load_state_dict(state["criterion"])
137
+ except (KeyError, RuntimeError) as error:
138
+ print(" > Criterion load ignored because of:", error)
139
+
140
+ # instance and load the criterion for the encoder classifier in inference time
141
+ if (
142
+ eval
143
+ and criterion is None
144
+ and "criterion" in state
145
+ and getattr(config, "map_classid_to_classname", None) is not None
146
+ ):
147
+ criterion = self.get_criterion(config, len(config.map_classid_to_classname))
148
+ criterion.load_state_dict(state["criterion"])
149
+
150
+ if use_cuda:
151
+ self.cuda()
152
+ if criterion is not None:
153
+ criterion = criterion.cuda()
154
+
155
+ if eval:
156
+ self.eval()
157
+ assert not self.training
158
+
159
+ if not eval:
160
+ return criterion, state["step"]
161
+ return criterion
TTS/encoder/models/lstm.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ from TTS.encoder.models.base_encoder import BaseEncoder
5
+
6
+
7
+ class LSTMWithProjection(nn.Module):
8
+ def __init__(self, input_size, hidden_size, proj_size):
9
+ super().__init__()
10
+ self.input_size = input_size
11
+ self.hidden_size = hidden_size
12
+ self.proj_size = proj_size
13
+ self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
14
+ self.linear = nn.Linear(hidden_size, proj_size, bias=False)
15
+
16
+ def forward(self, x):
17
+ self.lstm.flatten_parameters()
18
+ o, (_, _) = self.lstm(x)
19
+ return self.linear(o)
20
+
21
+
22
+ class LSTMWithoutProjection(nn.Module):
23
+ def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers):
24
+ super().__init__()
25
+ self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True)
26
+ self.linear = nn.Linear(lstm_dim, proj_dim, bias=True)
27
+ self.relu = nn.ReLU()
28
+
29
+ def forward(self, x):
30
+ _, (hidden, _) = self.lstm(x)
31
+ return self.relu(self.linear(hidden[-1]))
32
+
33
+
34
+ class LSTMSpeakerEncoder(BaseEncoder):
35
+ def __init__(
36
+ self,
37
+ input_dim,
38
+ proj_dim=256,
39
+ lstm_dim=768,
40
+ num_lstm_layers=3,
41
+ use_lstm_with_projection=True,
42
+ use_torch_spec=False,
43
+ audio_config=None,
44
+ ):
45
+ super().__init__()
46
+ self.use_lstm_with_projection = use_lstm_with_projection
47
+ self.use_torch_spec = use_torch_spec
48
+ self.audio_config = audio_config
49
+ self.proj_dim = proj_dim
50
+
51
+ layers = []
52
+ # choise LSTM layer
53
+ if use_lstm_with_projection:
54
+ layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim))
55
+ for _ in range(num_lstm_layers - 1):
56
+ layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim))
57
+ self.layers = nn.Sequential(*layers)
58
+ else:
59
+ self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers)
60
+
61
+ self.instancenorm = nn.InstanceNorm1d(input_dim)
62
+
63
+ if self.use_torch_spec:
64
+ self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config)
65
+ else:
66
+ self.torch_spec = None
67
+
68
+ self._init_layers()
69
+
70
+ def _init_layers(self):
71
+ for name, param in self.layers.named_parameters():
72
+ if "bias" in name:
73
+ nn.init.constant_(param, 0.0)
74
+ elif "weight" in name:
75
+ nn.init.xavier_normal_(param)
76
+
77
+ def forward(self, x, l2_norm=True):
78
+ """Forward pass of the model.
79
+
80
+ Args:
81
+ x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
82
+ to compute the spectrogram on-the-fly.
83
+ l2_norm (bool): Whether to L2-normalize the outputs.
84
+
85
+ Shapes:
86
+ - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
87
+ """
88
+ with torch.no_grad():
89
+ with torch.cuda.amp.autocast(enabled=False):
90
+ if self.use_torch_spec:
91
+ x.squeeze_(1)
92
+ x = self.torch_spec(x)
93
+ x = self.instancenorm(x).transpose(1, 2)
94
+ d = self.layers(x)
95
+ if self.use_lstm_with_projection:
96
+ d = d[:, -1]
97
+ if l2_norm:
98
+ d = torch.nn.functional.normalize(d, p=2, dim=1)
99
+ return d
TTS/encoder/models/resnet.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ # from TTS.utils.audio.torch_transforms import TorchSTFT
5
+ from TTS.encoder.models.base_encoder import BaseEncoder
6
+
7
+
8
+ class SELayer(nn.Module):
9
+ def __init__(self, channel, reduction=8):
10
+ super(SELayer, self).__init__()
11
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
12
+ self.fc = nn.Sequential(
13
+ nn.Linear(channel, channel // reduction),
14
+ nn.ReLU(inplace=True),
15
+ nn.Linear(channel // reduction, channel),
16
+ nn.Sigmoid(),
17
+ )
18
+
19
+ def forward(self, x):
20
+ b, c, _, _ = x.size()
21
+ y = self.avg_pool(x).view(b, c)
22
+ y = self.fc(y).view(b, c, 1, 1)
23
+ return x * y
24
+
25
+
26
+ class SEBasicBlock(nn.Module):
27
+ expansion = 1
28
+
29
+ def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
30
+ super(SEBasicBlock, self).__init__()
31
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
32
+ self.bn1 = nn.BatchNorm2d(planes)
33
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
34
+ self.bn2 = nn.BatchNorm2d(planes)
35
+ self.relu = nn.ReLU(inplace=True)
36
+ self.se = SELayer(planes, reduction)
37
+ self.downsample = downsample
38
+ self.stride = stride
39
+
40
+ def forward(self, x):
41
+ residual = x
42
+
43
+ out = self.conv1(x)
44
+ out = self.relu(out)
45
+ out = self.bn1(out)
46
+
47
+ out = self.conv2(out)
48
+ out = self.bn2(out)
49
+ out = self.se(out)
50
+
51
+ if self.downsample is not None:
52
+ residual = self.downsample(x)
53
+
54
+ out += residual
55
+ out = self.relu(out)
56
+ return out
57
+
58
+
59
+ class ResNetSpeakerEncoder(BaseEncoder):
60
+ """Implementation of the model H/ASP without batch normalization in speaker embedding. This model was proposed in: https://arxiv.org/abs/2009.14153
61
+ Adapted from: https://github.com/clovaai/voxceleb_trainer
62
+ """
63
+
64
+ # pylint: disable=W0102
65
+ def __init__(
66
+ self,
67
+ input_dim=64,
68
+ proj_dim=512,
69
+ layers=[3, 4, 6, 3],
70
+ num_filters=[32, 64, 128, 256],
71
+ encoder_type="ASP",
72
+ log_input=False,
73
+ use_torch_spec=False,
74
+ audio_config=None,
75
+ ):
76
+ super(ResNetSpeakerEncoder, self).__init__()
77
+
78
+ self.encoder_type = encoder_type
79
+ self.input_dim = input_dim
80
+ self.log_input = log_input
81
+ self.use_torch_spec = use_torch_spec
82
+ self.audio_config = audio_config
83
+ self.proj_dim = proj_dim
84
+
85
+ self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
86
+ self.relu = nn.ReLU(inplace=True)
87
+ self.bn1 = nn.BatchNorm2d(num_filters[0])
88
+
89
+ self.inplanes = num_filters[0]
90
+ self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
91
+ self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
92
+ self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
93
+ self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))
94
+
95
+ self.instancenorm = nn.InstanceNorm1d(input_dim)
96
+
97
+ if self.use_torch_spec:
98
+ self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config)
99
+ else:
100
+ self.torch_spec = None
101
+
102
+ outmap_size = int(self.input_dim / 8)
103
+
104
+ self.attention = nn.Sequential(
105
+ nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
106
+ nn.ReLU(),
107
+ nn.BatchNorm1d(128),
108
+ nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
109
+ nn.Softmax(dim=2),
110
+ )
111
+
112
+ if self.encoder_type == "SAP":
113
+ out_dim = num_filters[3] * outmap_size
114
+ elif self.encoder_type == "ASP":
115
+ out_dim = num_filters[3] * outmap_size * 2
116
+ else:
117
+ raise ValueError("Undefined encoder")
118
+
119
+ self.fc = nn.Linear(out_dim, proj_dim)
120
+
121
+ self._init_layers()
122
+
123
+ def _init_layers(self):
124
+ for m in self.modules():
125
+ if isinstance(m, nn.Conv2d):
126
+ nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
127
+ elif isinstance(m, nn.BatchNorm2d):
128
+ nn.init.constant_(m.weight, 1)
129
+ nn.init.constant_(m.bias, 0)
130
+
131
+ def create_layer(self, block, planes, blocks, stride=1):
132
+ downsample = None
133
+ if stride != 1 or self.inplanes != planes * block.expansion:
134
+ downsample = nn.Sequential(
135
+ nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
136
+ nn.BatchNorm2d(planes * block.expansion),
137
+ )
138
+
139
+ layers = []
140
+ layers.append(block(self.inplanes, planes, stride, downsample))
141
+ self.inplanes = planes * block.expansion
142
+ for _ in range(1, blocks):
143
+ layers.append(block(self.inplanes, planes))
144
+
145
+ return nn.Sequential(*layers)
146
+
147
+ # pylint: disable=R0201
148
+ def new_parameter(self, *size):
149
+ out = nn.Parameter(torch.FloatTensor(*size))
150
+ nn.init.xavier_normal_(out)
151
+ return out
152
+
153
+ def forward(self, x, l2_norm=False):
154
+ """Forward pass of the model.
155
+
156
+ Args:
157
+ x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
158
+ to compute the spectrogram on-the-fly.
159
+ l2_norm (bool): Whether to L2-normalize the outputs.
160
+
161
+ Shapes:
162
+ - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
163
+ """
164
+ x.squeeze_(1)
165
+ # if you torch spec compute it otherwise use the mel spec computed by the AP
166
+ if self.use_torch_spec:
167
+ x = self.torch_spec(x)
168
+
169
+ if self.log_input:
170
+ x = (x + 1e-6).log()
171
+ x = self.instancenorm(x).unsqueeze(1)
172
+
173
+ x = self.conv1(x)
174
+ x = self.relu(x)
175
+ x = self.bn1(x)
176
+
177
+ x = self.layer1(x)
178
+ x = self.layer2(x)
179
+ x = self.layer3(x)
180
+ x = self.layer4(x)
181
+
182
+ x = x.reshape(x.size()[0], -1, x.size()[-1])
183
+
184
+ w = self.attention(x)
185
+
186
+ if self.encoder_type == "SAP":
187
+ x = torch.sum(x * w, dim=2)
188
+ elif self.encoder_type == "ASP":
189
+ mu = torch.sum(x * w, dim=2)
190
+ sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
191
+ x = torch.cat((mu, sg), 1)
192
+
193
+ x = x.view(x.size()[0], -1)
194
+ x = self.fc(x)
195
+
196
+ if l2_norm:
197
+ x = torch.nn.functional.normalize(x, p=2, dim=1)
198
+ return x
TTS/encoder/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ umap-learn
2
+ numpy>=1.17.0
TTS/encoder/utils/__init__.py ADDED
File without changes
TTS/encoder/utils/generic_utils.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import random
4
+
5
+ import numpy as np
6
+ from scipy import signal
7
+
8
+ from TTS.encoder.models.lstm import LSTMSpeakerEncoder
9
+ from TTS.encoder.models.resnet import ResNetSpeakerEncoder
10
+
11
+
12
+ class AugmentWAV(object):
13
+ def __init__(self, ap, augmentation_config):
14
+ self.ap = ap
15
+ self.use_additive_noise = False
16
+
17
+ if "additive" in augmentation_config.keys():
18
+ self.additive_noise_config = augmentation_config["additive"]
19
+ additive_path = self.additive_noise_config["sounds_path"]
20
+ if additive_path:
21
+ self.use_additive_noise = True
22
+ # get noise types
23
+ self.additive_noise_types = []
24
+ for key in self.additive_noise_config.keys():
25
+ if isinstance(self.additive_noise_config[key], dict):
26
+ self.additive_noise_types.append(key)
27
+
28
+ additive_files = glob.glob(os.path.join(additive_path, "**/*.wav"), recursive=True)
29
+
30
+ self.noise_list = {}
31
+
32
+ for wav_file in additive_files:
33
+ noise_dir = wav_file.replace(additive_path, "").split(os.sep)[0]
34
+ # ignore not listed directories
35
+ if noise_dir not in self.additive_noise_types:
36
+ continue
37
+ if not noise_dir in self.noise_list:
38
+ self.noise_list[noise_dir] = []
39
+ self.noise_list[noise_dir].append(wav_file)
40
+
41
+ print(
42
+ f" | > Using Additive Noise Augmentation: with {len(additive_files)} audios instances from {self.additive_noise_types}"
43
+ )
44
+
45
+ self.use_rir = False
46
+
47
+ if "rir" in augmentation_config.keys():
48
+ self.rir_config = augmentation_config["rir"]
49
+ if self.rir_config["rir_path"]:
50
+ self.rir_files = glob.glob(os.path.join(self.rir_config["rir_path"], "**/*.wav"), recursive=True)
51
+ self.use_rir = True
52
+
53
+ print(f" | > Using RIR Noise Augmentation: with {len(self.rir_files)} audios instances")
54
+
55
+ self.create_augmentation_global_list()
56
+
57
+ def create_augmentation_global_list(self):
58
+ if self.use_additive_noise:
59
+ self.global_noise_list = self.additive_noise_types
60
+ else:
61
+ self.global_noise_list = []
62
+ if self.use_rir:
63
+ self.global_noise_list.append("RIR_AUG")
64
+
65
+ def additive_noise(self, noise_type, audio):
66
+ clean_db = 10 * np.log10(np.mean(audio**2) + 1e-4)
67
+
68
+ noise_list = random.sample(
69
+ self.noise_list[noise_type],
70
+ random.randint(
71
+ self.additive_noise_config[noise_type]["min_num_noises"],
72
+ self.additive_noise_config[noise_type]["max_num_noises"],
73
+ ),
74
+ )
75
+
76
+ audio_len = audio.shape[0]
77
+ noises_wav = None
78
+ for noise in noise_list:
79
+ noiseaudio = self.ap.load_wav(noise, sr=self.ap.sample_rate)[:audio_len]
80
+
81
+ if noiseaudio.shape[0] < audio_len:
82
+ continue
83
+
84
+ noise_snr = random.uniform(
85
+ self.additive_noise_config[noise_type]["min_snr_in_db"],
86
+ self.additive_noise_config[noise_type]["max_num_noises"],
87
+ )
88
+ noise_db = 10 * np.log10(np.mean(noiseaudio**2) + 1e-4)
89
+ noise_wav = np.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio
90
+
91
+ if noises_wav is None:
92
+ noises_wav = noise_wav
93
+ else:
94
+ noises_wav += noise_wav
95
+
96
+ # if all possible files is less than audio, choose other files
97
+ if noises_wav is None:
98
+ return self.additive_noise(noise_type, audio)
99
+
100
+ return audio + noises_wav
101
+
102
+ def reverberate(self, audio):
103
+ audio_len = audio.shape[0]
104
+
105
+ rir_file = random.choice(self.rir_files)
106
+ rir = self.ap.load_wav(rir_file, sr=self.ap.sample_rate)
107
+ rir = rir / np.sqrt(np.sum(rir**2))
108
+ return signal.convolve(audio, rir, mode=self.rir_config["conv_mode"])[:audio_len]
109
+
110
+ def apply_one(self, audio):
111
+ noise_type = random.choice(self.global_noise_list)
112
+ if noise_type == "RIR_AUG":
113
+ return self.reverberate(audio)
114
+
115
+ return self.additive_noise(noise_type, audio)
116
+
117
+
118
+ def setup_encoder_model(config: "Coqpit"):
119
+ if config.model_params["model_name"].lower() == "lstm":
120
+ model = LSTMSpeakerEncoder(
121
+ config.model_params["input_dim"],
122
+ config.model_params["proj_dim"],
123
+ config.model_params["lstm_dim"],
124
+ config.model_params["num_lstm_layers"],
125
+ use_torch_spec=config.model_params.get("use_torch_spec", False),
126
+ audio_config=config.audio,
127
+ )
128
+ elif config.model_params["model_name"].lower() == "resnet":
129
+ model = ResNetSpeakerEncoder(
130
+ input_dim=config.model_params["input_dim"],
131
+ proj_dim=config.model_params["proj_dim"],
132
+ log_input=config.model_params.get("log_input", False),
133
+ use_torch_spec=config.model_params.get("use_torch_spec", False),
134
+ audio_config=config.audio,
135
+ )
136
+ return model
TTS/encoder/utils/prepare_voxceleb.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (C) 2020 ATHENA AUTHORS; Yiping Peng; Ne Luo
3
+ # All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+ # Only support eager mode and TF>=2.0.0
18
+ # pylint: disable=no-member, invalid-name, relative-beyond-top-level
19
+ # pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes
20
+ """ voxceleb 1 & 2 """
21
+
22
+ import hashlib
23
+ import os
24
+ import subprocess
25
+ import sys
26
+ import zipfile
27
+
28
+ import pandas
29
+ import soundfile as sf
30
+ from absl import logging
31
+
32
+ SUBSETS = {
33
+ "vox1_dev_wav": [
34
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
35
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
36
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
37
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad",
38
+ ],
39
+ "vox1_test_wav": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"],
40
+ "vox2_dev_aac": [
41
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa",
42
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab",
43
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac",
44
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad",
45
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae",
46
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf",
47
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag",
48
+ "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah",
49
+ ],
50
+ "vox2_test_aac": ["https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"],
51
+ }
52
+
53
+ MD5SUM = {
54
+ "vox1_dev_wav": "ae63e55b951748cc486645f532ba230b",
55
+ "vox2_dev_aac": "bbc063c46078a602ca71605645c2a402",
56
+ "vox1_test_wav": "185fdc63c3c739954633d50379a3d102",
57
+ "vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312",
58
+ }
59
+
60
+ USER = {"user": "", "password": ""}
61
+
62
+ speaker_id_dict = {}
63
+
64
+
65
+ def download_and_extract(directory, subset, urls):
66
+ """Download and extract the given split of dataset.
67
+
68
+ Args:
69
+ directory: the directory where to put the downloaded data.
70
+ subset: subset name of the corpus.
71
+ urls: the list of urls to download the data file.
72
+ """
73
+ os.makedirs(directory, exist_ok=True)
74
+
75
+ try:
76
+ for url in urls:
77
+ zip_filepath = os.path.join(directory, url.split("/")[-1])
78
+ if os.path.exists(zip_filepath):
79
+ continue
80
+ logging.info("Downloading %s to %s" % (url, zip_filepath))
81
+ subprocess.call(
82
+ "wget %s --user %s --password %s -O %s" % (url, USER["user"], USER["password"], zip_filepath),
83
+ shell=True,
84
+ )
85
+
86
+ statinfo = os.stat(zip_filepath)
87
+ logging.info("Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size))
88
+
89
+ # concatenate all parts into zip files
90
+ if ".zip" not in zip_filepath:
91
+ zip_filepath = "_".join(zip_filepath.split("_")[:-1])
92
+ subprocess.call("cat %s* > %s.zip" % (zip_filepath, zip_filepath), shell=True)
93
+ zip_filepath += ".zip"
94
+ extract_path = zip_filepath.strip(".zip")
95
+
96
+ # check zip file md5sum
97
+ with open(zip_filepath, "rb") as f_zip:
98
+ md5 = hashlib.md5(f_zip.read()).hexdigest()
99
+ if md5 != MD5SUM[subset]:
100
+ raise ValueError("md5sum of %s mismatch" % zip_filepath)
101
+
102
+ with zipfile.ZipFile(zip_filepath, "r") as zfile:
103
+ zfile.extractall(directory)
104
+ extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename)
105
+ subprocess.call("mv %s %s" % (extract_path_ori, extract_path), shell=True)
106
+ finally:
107
+ # os.remove(zip_filepath)
108
+ pass
109
+
110
+
111
+ def exec_cmd(cmd):
112
+ """Run a command in a subprocess.
113
+ Args:
114
+ cmd: command line to be executed.
115
+ Return:
116
+ int, the return code.
117
+ """
118
+ try:
119
+ retcode = subprocess.call(cmd, shell=True)
120
+ if retcode < 0:
121
+ logging.info(f"Child was terminated by signal {retcode}")
122
+ except OSError as e:
123
+ logging.info(f"Execution failed: {e}")
124
+ retcode = -999
125
+ return retcode
126
+
127
+
128
+ def decode_aac_with_ffmpeg(aac_file, wav_file):
129
+ """Decode a given AAC file into WAV using ffmpeg.
130
+ Args:
131
+ aac_file: file path to input AAC file.
132
+ wav_file: file path to output WAV file.
133
+ Return:
134
+ bool, True if success.
135
+ """
136
+ cmd = f"ffmpeg -i {aac_file} {wav_file}"
137
+ logging.info(f"Decoding aac file using command line: {cmd}")
138
+ ret = exec_cmd(cmd)
139
+ if ret != 0:
140
+ logging.error(f"Failed to decode aac file with retcode {ret}")
141
+ logging.error("Please check your ffmpeg installation.")
142
+ return False
143
+ return True
144
+
145
+
146
+ def convert_audio_and_make_label(input_dir, subset, output_dir, output_file):
147
+ """Optionally convert AAC to WAV and make speaker labels.
148
+ Args:
149
+ input_dir: the directory which holds the input dataset.
150
+ subset: the name of the specified subset. e.g. vox1_dev_wav
151
+ output_dir: the directory to place the newly generated csv files.
152
+ output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv
153
+ """
154
+
155
+ logging.info("Preprocessing audio and label for subset %s" % subset)
156
+ source_dir = os.path.join(input_dir, subset)
157
+
158
+ files = []
159
+ # Convert all AAC file into WAV format. At the same time, generate the csv
160
+ for root, _, filenames in os.walk(source_dir):
161
+ for filename in filenames:
162
+ name, ext = os.path.splitext(filename)
163
+ if ext.lower() == ".wav":
164
+ _, ext2 = os.path.splitext(name)
165
+ if ext2:
166
+ continue
167
+ wav_file = os.path.join(root, filename)
168
+ elif ext.lower() == ".m4a":
169
+ # Convert AAC to WAV.
170
+ aac_file = os.path.join(root, filename)
171
+ wav_file = aac_file + ".wav"
172
+ if not os.path.exists(wav_file):
173
+ if not decode_aac_with_ffmpeg(aac_file, wav_file):
174
+ raise RuntimeError("Audio decoding failed.")
175
+ else:
176
+ continue
177
+ speaker_name = root.split(os.path.sep)[-2]
178
+ if speaker_name not in speaker_id_dict:
179
+ num = len(speaker_id_dict)
180
+ speaker_id_dict[speaker_name] = num
181
+ # wav_filesize = os.path.getsize(wav_file)
182
+ wav_length = len(sf.read(wav_file)[0])
183
+ files.append((os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name))
184
+
185
+ # Write to CSV file which contains four columns:
186
+ # "wav_filename", "wav_length_ms", "speaker_id", "speaker_name".
187
+ csv_file_path = os.path.join(output_dir, output_file)
188
+ df = pandas.DataFrame(data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"])
189
+ df.to_csv(csv_file_path, index=False, sep="\t")
190
+ logging.info("Successfully generated csv file {}".format(csv_file_path))
191
+
192
+
193
+ def processor(directory, subset, force_process):
194
+ """download and process"""
195
+ urls = SUBSETS
196
+ if subset not in urls:
197
+ raise ValueError(subset, "is not in voxceleb")
198
+
199
+ subset_csv = os.path.join(directory, subset + ".csv")
200
+ if not force_process and os.path.exists(subset_csv):
201
+ return subset_csv
202
+
203
+ logging.info("Downloading and process the voxceleb in %s", directory)
204
+ logging.info("Preparing subset %s", subset)
205
+ download_and_extract(directory, subset, urls[subset])
206
+ convert_audio_and_make_label(directory, subset, directory, subset + ".csv")
207
+ logging.info("Finished downloading and processing")
208
+ return subset_csv
209
+
210
+
211
+ if __name__ == "__main__":
212
+ logging.set_verbosity(logging.INFO)
213
+ if len(sys.argv) != 4:
214
+ print("Usage: python prepare_data.py save_directory user password")
215
+ sys.exit()
216
+
217
+ DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3]
218
+ for SUBSET in SUBSETS:
219
+ processor(DIR, SUBSET, False)
TTS/encoder/utils/training.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dataclasses import dataclass, field
3
+
4
+ from coqpit import Coqpit
5
+ from trainer import TrainerArgs, get_last_checkpoint
6
+ from trainer.io import copy_model_files
7
+ from trainer.logging import logger_factory
8
+ from trainer.logging.console_logger import ConsoleLogger
9
+
10
+ from TTS.config import load_config, register_config
11
+ from TTS.tts.utils.text.characters import parse_symbols
12
+ from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch
13
+
14
+
15
+ @dataclass
16
+ class TrainArgs(TrainerArgs):
17
+ config_path: str = field(default=None, metadata={"help": "Path to the config file."})
18
+
19
+
20
+ def getarguments():
21
+ train_config = TrainArgs()
22
+ parser = train_config.init_argparse(arg_prefix="")
23
+ return parser
24
+
25
+
26
+ def process_args(args, config=None):
27
+ """Process parsed comand line arguments and initialize the config if not provided.
28
+ Args:
29
+ args (argparse.Namespace or dict like): Parsed input arguments.
30
+ config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None.
31
+ Returns:
32
+ c (TTS.utils.io.AttrDict): Config paramaters.
33
+ out_path (str): Path to save models and logging.
34
+ audio_path (str): Path to save generated test audios.
35
+ c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does
36
+ logging to the console.
37
+ dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging
38
+ TODO:
39
+ - Interactive config definition.
40
+ """
41
+ if isinstance(args, tuple):
42
+ args, coqpit_overrides = args
43
+ if args.continue_path:
44
+ # continue a previous training from its output folder
45
+ experiment_path = args.continue_path
46
+ args.config_path = os.path.join(args.continue_path, "config.json")
47
+ args.restore_path, best_model = get_last_checkpoint(args.continue_path)
48
+ if not args.best_path:
49
+ args.best_path = best_model
50
+ # init config if not already defined
51
+ if config is None:
52
+ if args.config_path:
53
+ # init from a file
54
+ config = load_config(args.config_path)
55
+ else:
56
+ # init from console args
57
+ from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel
58
+
59
+ config_base = BaseTrainingConfig()
60
+ config_base.parse_known_args(coqpit_overrides)
61
+ config = register_config(config_base.model)()
62
+ # override values from command-line args
63
+ config.parse_known_args(coqpit_overrides, relaxed_parser=True)
64
+ experiment_path = args.continue_path
65
+ if not experiment_path:
66
+ experiment_path = get_experiment_folder_path(config.output_path, config.run_name)
67
+ audio_path = os.path.join(experiment_path, "test_audios")
68
+ config.output_log_path = experiment_path
69
+ # setup rank 0 process in distributed training
70
+ dashboard_logger = None
71
+ if args.rank == 0:
72
+ new_fields = {}
73
+ if args.restore_path:
74
+ new_fields["restore_path"] = args.restore_path
75
+ new_fields["github_branch"] = get_git_branch()
76
+ # if model characters are not set in the config file
77
+ # save the default set to the config file for future
78
+ # compatibility.
79
+ if config.has("characters") and config.characters is None:
80
+ used_characters = parse_symbols()
81
+ new_fields["characters"] = used_characters
82
+ copy_model_files(config, experiment_path, new_fields)
83
+ dashboard_logger = logger_factory(config, experiment_path)
84
+ c_logger = ConsoleLogger()
85
+ return config, experiment_path, audio_path, c_logger, dashboard_logger
86
+
87
+
88
+ def init_arguments():
89
+ train_config = TrainArgs()
90
+ parser = train_config.init_argparse(arg_prefix="")
91
+ return parser
92
+
93
+
94
+ def init_training(config: Coqpit = None):
95
+ """Initialization of a training run."""
96
+ parser = init_arguments()
97
+ args = parser.parse_known_args()
98
+ config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config)
99
+ return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger
TTS/encoder/utils/visual.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import umap
5
+
6
+ matplotlib.use("Agg")
7
+
8
+
9
+ colormap = (
10
+ np.array(
11
+ [
12
+ [76, 255, 0],
13
+ [0, 127, 70],
14
+ [255, 0, 0],
15
+ [255, 217, 38],
16
+ [0, 135, 255],
17
+ [165, 0, 165],
18
+ [255, 167, 255],
19
+ [0, 255, 255],
20
+ [255, 96, 38],
21
+ [142, 76, 0],
22
+ [33, 0, 127],
23
+ [0, 0, 0],
24
+ [183, 183, 183],
25
+ ],
26
+ dtype=float,
27
+ )
28
+ / 255
29
+ )
30
+
31
+
32
+ def plot_embeddings(embeddings, num_classes_in_batch):
33
+ num_utter_per_class = embeddings.shape[0] // num_classes_in_batch
34
+
35
+ # if necessary get just the first 10 classes
36
+ if num_classes_in_batch > 10:
37
+ num_classes_in_batch = 10
38
+ embeddings = embeddings[: num_classes_in_batch * num_utter_per_class]
39
+
40
+ model = umap.UMAP()
41
+ projection = model.fit_transform(embeddings)
42
+ ground_truth = np.repeat(np.arange(num_classes_in_batch), num_utter_per_class)
43
+ colors = [colormap[i] for i in ground_truth]
44
+ fig, ax = plt.subplots(figsize=(16, 10))
45
+ _ = ax.scatter(projection[:, 0], projection[:, 1], c=colors)
46
+ plt.gca().set_aspect("equal", "datalim")
47
+ plt.title("UMAP projection")
48
+ plt.tight_layout()
49
+ plt.savefig("umap")
50
+ return fig
TTS/model.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from typing import Dict
3
+
4
+ import torch
5
+ from coqpit import Coqpit
6
+ from trainer import TrainerModel
7
+
8
+ # pylint: skip-file
9
+
10
+
11
+ class BaseTrainerModel(TrainerModel):
12
+ """BaseTrainerModel model expanding TrainerModel with required functions by 🐸TTS.
13
+
14
+ Every new 🐸TTS model must inherit it.
15
+ """
16
+
17
+ @staticmethod
18
+ @abstractmethod
19
+ def init_from_config(config: Coqpit):
20
+ """Init the model and all its attributes from the given config.
21
+
22
+ Override this depending on your model.
23
+ """
24
+ ...
25
+
26
+ @abstractmethod
27
+ def inference(self, input: torch.Tensor, aux_input={}) -> Dict:
28
+ """Forward pass for inference.
29
+
30
+ It must return a dictionary with the main model output and all the auxiliary outputs. The key ```model_outputs```
31
+ is considered to be the main output and you can add any other auxiliary outputs as you want.
32
+
33
+ We don't use `*kwargs` since it is problematic with the TorchScript API.
34
+
35
+ Args:
36
+ input (torch.Tensor): [description]
37
+ aux_input (Dict): Auxiliary inputs like speaker embeddings, durations etc.
38
+
39
+ Returns:
40
+ Dict: [description]
41
+ """
42
+ outputs_dict = {"model_outputs": None}
43
+ ...
44
+ return outputs_dict
45
+
46
+ @abstractmethod
47
+ def load_checkpoint(
48
+ self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False
49
+ ) -> None:
50
+ """Load a model checkpoint gile and get ready for training or inference.
51
+
52
+ Args:
53
+ config (Coqpit): Model configuration.
54
+ checkpoint_path (str): Path to the model checkpoint file.
55
+ eval (bool, optional): If true, init model for inference else for training. Defaults to False.
56
+ strict (bool, optional): Match all checkpoint keys to model's keys. Defaults to True.
57
+ cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False.
58
+ """
59
+ ...
TTS/server/README.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :frog: TTS demo server
2
+ Before you use the server, make sure you [install](https://github.com/coqui-ai/TTS/tree/dev#install-tts)) :frog: TTS properly. Then, you can follow the steps below.
3
+
4
+ **Note:** If you install :frog:TTS using ```pip```, you can also use the ```tts-server``` end point on the terminal.
5
+
6
+ Examples runs:
7
+
8
+ List officially released models.
9
+ ```python TTS/server/server.py --list_models ```
10
+
11
+ Run the server with the official models.
12
+ ```python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan```
13
+
14
+ Run the server with the official models on a GPU.
15
+ ```CUDA_VISIBLE_DEVICES="0" python TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA --vocoder_name vocoder_models/en/ljspeech/multiband-melgan --use_cuda True```
16
+
17
+ Run the server with a custom models.
18
+ ```python TTS/server/server.py --tts_checkpoint /path/to/tts/model.pth --tts_config /path/to/tts/config.json --vocoder_checkpoint /path/to/vocoder/model.pth --vocoder_config /path/to/vocoder/config.json```
TTS/server/__init__.py ADDED
File without changes
TTS/server/conf.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tts_path":"/media/erogol/data_ssd/Models/libri_tts/5049/", // tts model root folder
3
+ "tts_file":"best_model.pth", // tts checkpoint file
4
+ "tts_config":"config.json", // tts config.json file
5
+ "tts_speakers": null, // json file listing speaker ids. null if no speaker embedding.
6
+ "vocoder_config":null,
7
+ "vocoder_file": null,
8
+ "is_wavernn_batched":true,
9
+ "port": 5002,
10
+ "use_cuda": true,
11
+ "debug": true
12
+ }