Spaces:
Sleeping
Sleeping
import pandas as pd | |
import json | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from wordcloud import WordCloud | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
# Define the Streamlit app | |
st.title("Aspected-Based Sentiment Analysis with MVP") | |
palette_color = sns.color_palette('Set1') | |
# File upload and processing | |
uploaded_file = st.file_uploader("Upload JSON File", type=["json"]) | |
if uploaded_file: | |
loaded_dict = json.load(uploaded_file) | |
df = pd.DataFrame(loaded_dict) | |
st.subheader(f"{len(df)}+ sentiment tuples was detected") | |
st.write(df) | |
# Sentiment Distribution Chart | |
sentiment_distribution_perc = df["S"].value_counts(normalize=True) * 100 | |
sentiment_distribution = df["S"].value_counts() | |
st.subheader("Sentiment Distribution") | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6)) | |
ax1.pie(sentiment_distribution_perc, labels=sentiment_distribution_perc.index, autopct='%1.1f%%', startangle=140,colors=palette_color) | |
ax1.axis('equal') | |
ax1.set_title("Sentiment Distribution %") | |
# sns.countplot(x="S", data=df, palette=palette_color, ax=ax2) | |
ax2.set_title("Sentiment Distribution Counts") | |
ax2.bar(sentiment_distribution.index, sentiment_distribution.values, color=palette_color) | |
# ax2.xlabel("Sentiment") | |
# ax2.ylabel("Times") | |
# ax2.xticks(rotation=0) # Rotate x-axis labels if needed | |
st.pyplot(fig) | |
# Group by and aggregate data | |
grouped = df.groupby('A').agg({'S': ['count', lambda x: (x == 'great').sum(), lambda x: (x == 'ok').sum(), lambda x: (x == 'bad').sum()]}) | |
grouped.columns = grouped.columns.map('_'.join) | |
grouped = grouped.reset_index() | |
grouped = grouped.rename(columns={'A': 'Aspect', 'S_count': 'Freq', 'S_<lambda_0>': 'Great', 'S_<lambda_1>': 'Ok', 'S_<lambda_2>': 'Bad'}) | |
st.subheader("Top 5 Most Mentioned Product Apsects") | |
st.write(grouped.sort_values(by="Freq", ascending=False).head(5)) | |
# Word Cloud | |
aspect_terms = " ".join(df["A"]) | |
wordcloud = WordCloud( | |
width=800, | |
height=400, | |
background_color='white', | |
max_words=100, | |
colormap='inferno', | |
contour_width=3, | |
contour_color='red', | |
).generate(aspect_terms) | |
st.subheader("Word Cloud for Most Mentioned Aspects") | |
plt.figure(figsize=(10, 5)) | |
plt.imshow(wordcloud, interpolation='bilinear') | |
plt.title("Most mentioned aspect terms") | |
plt.axis("off") | |
st.pyplot() | |
st.sidebar.markdown("**Upload a JSON file to get started.**") |