import joblib import pandas as pd from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report data_df = pd.read_csv("Bank_Telemarketing.csv") target = 'subscribed' numerical_features = ['Age', 'Duration(Sec)', 'CC Contact Freq', 'Days Since PC','PC Contact Freq'] categorical_features = ['Job', 'Marital Status', 'Education', 'Defaulter', 'Home Loan', 'Personal Loan', 'Communication Type', 'Last Contacted', 'Day of Week', 'PC Outcome'] print("Creating data subsets") X = data_df[numerical_features + categorical_features] y = data_df[target] Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) numerical_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) categorical_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) preprocessor = make_column_transformer( (numerical_pipeline, numerical_features), (categorical_pipeline, categorical_features) ) model_logistic_regression = LogisticRegression(n_jobs=-1) print("Estimating Best Model Pipeline") model_pipeline = make_pipeline( preprocessor, model_logistic_regression ) param_distribution = { "logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10] } rand_search_cv = RandomizedSearchCV( model_pipeline, param_distribution, n_iter=3, cv=3, random_state=42 ) rand_search_cv.fit(Xtrain, ytrain) print("Logging Metrics") print(f"Accuracy: {rand_search_cv.best_score_}") print("Serializing Model") saved_model_path = "model.joblib" joblib.dump(rand_search_cv.best_estimator_, saved_model_path)