File size: 138,348 Bytes
ca7e2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d226eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_chat import message
import openai
# from openai import OpenAI
import requests
import json
import streamlit.components.v1 as components
import webbrowser
import pickle
import random
from streamlit_pills import pills
from pathlib import Path
from streamlit_login_auth_ui.widgets import __login__
from streamlit_lottie import st_lottie 
from typing import Optional, Any, Dict, List
from PIL import Image, ImageEnhance
from rembg import remove
from datetime import datetime, timedelta
import os
import gtts
from datetime import datetime
from gtts import gTTS
from googletrans import Translator
import urllib.request
import time
import warnings
warnings.filterwarnings("ignore")

# PPT Imports
import streamlit as st
# import plotly.express as px
from pptx import Presentation
from pptx.util import Inches
from datetime import date
import requests
from io import BytesIO
import glob
import base64
import os
import random
# import codecs
import re
import string
from datetime import datetime
import string
from pathlib import Path
import subprocess
from pptx.dml.color import RGBColor
import yaml
from yaml.loader import SafeLoader
# End of PPT Imports



# langchain methods and imports
from langchain import LLMChain, OpenAI
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import VectorStore
from langchain.vectorstores.faiss import FAISS
from pypdf import PdfReader


# Define a function to parse a PDF file and extract its text content
@st.cache_data
def parse_pdf(file: BytesIO) -> List[str]:
    pdf = PdfReader(file)
    output = []
    for page in pdf.pages:
        text = page.extract_text()
        # Merge hyphenated words
        text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
        # Fix newlines in the middle of sentences
        text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
        # Remove multiple newlines
        text = re.sub(r"\n\s*\n", "\n\n", text)
        output.append(text)
    return output


# Define a function to convert text content to a list of documents
@st.cache_data
def text_to_docs(text: str) -> List[Document]:
    """Converts a string or list of strings to a list of Documents
    with metadata."""
    if isinstance(text, str):
        # Take a single string as one page
        text = [text]
    page_docs = [Document(page_content=page) for page in text]

    # Add page numbers as metadata
    for i, doc in enumerate(page_docs):
        doc.metadata["page"] = i + 1

    # Split pages into chunks
    doc_chunks = []

    for doc in page_docs:
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=2000,
            separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
            chunk_overlap=0,
        )
        chunks = text_splitter.split_text(doc.page_content)
        for i, chunk in enumerate(chunks):
            doc = Document(
                page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
            )
            # Add sources a metadata
            doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
            doc_chunks.append(doc)
    return doc_chunks


# Define a function for the embeddings
@st.cache_data
def test_embed():
    embeddings = OpenAIEmbeddings(openai_api_key=api)
    # Indexing
    # Save in a Vector DB
    with st.spinner("It's indexing..."):
        index = FAISS.from_documents(pages, embeddings)
    st.success("Embeddings done.", icon="βœ…")
    return index
# End of langchain methods

import pandas as pd
df = pd.read_csv('files.csv')

# Load OpenAI key
# openai.api_key = open_api_key

# from sd2.generate import PIPELINE_NAMES, generate
# DEFAULT_PROMPT = "border collie puppy"
# DEFAULT_WIDTH, DEFAULT_HEIGHT = 512, 512
# OUTPUT_IMAGE_KEY = "output_img"
# LOADED_IMAGE_KEY = "loaded_image"


# For simple chat module
def get_initial_message():
    messages=[
            {"role": "system", "content": "You are a helpful AI Assistant created by Alpha AI. You can do anything."},
            {"role": "user", "content": "I want to know a lot of things."},
            {"role": "assistant", "content": "Thats awesome, what do you want to know about."}
        ]
    return messages

def get_chatgpt_response(messages, model="gpt-4o"):
    print("model: ", model)
    response = openai.ChatCompletion.create(
    model=model,
    messages=messages
    )
    return  response['choices'][0]['message']['content']

def update_chat(messages, role, content):
    messages.append({"role": role, "content": content})
    return messages

# ------
# Define image sizes
image_sizes = {
    "256x256": "256x256",
    "512x512": "512x512",
    "1024x1024": "1024x1024"
}
# For making AD copies
# Define function to generate image


def generate_image_edit_dalle(prompt, size,input_img,mask_img):
    outline_img = "A high resolution portrait of " + prompt
    img_response = openai.Image.create_edit(
    image=open(input_img, "rb"),
    mask=open(mask_img, "rb"),
    prompt=outline_img,
    n=1,
    size=size
    )
    image_url = img_response['data'][0]['url']
    urllib.request.urlretrieve(image_url, 'img_dalle_inp.png')
    img = Image.open("img_dalle_inp.png")
    return img


# Define function to generate image
def generate_image(prompt, size):
    outline_img = "A high resolution portrait of "
    img_response = openai.Image.create(
    prompt=prompt,
    n=1,
    size=size)
    img_url = img_response['data'][0]['url']
    urllib.request.urlretrieve(img_url, 'img.png')
    img = Image.open("img.png")
    return img

# Text to Speech Avatars
def text_to_speech_avatar(text):
    tts = gTTS(text, lang='en', tld='co.uk', slow=False)
    # try:
    #     my_file_name = text[0:20]
    # except:
    #     my_file_name = "audio"
    addition_name = st.session_state['name'][:5]             
    my_file_name = "dummy_" + addition_name
    tts.save(f"temp/{my_file_name}.mp3")
    # print(my_file_name)
    return True


# PPT Methods
bad_coding_practice = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits) for _ in
                              range(16))

def refresh_bad_coding_practice():
    global bad_coding_practice
    bad_coding_practice = ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits)
                                  for _ in range(16))
    return

def generate_content_blog(user_input):
  completion = openai.ChatCompletion.create(model="gpt-4o", messages=[
                      {"role": "system", "content": "You are an expert blog writer and can produce perfect grammar, sentence formation and SEO capable blogs."},
                      {"role": "user", "content": user_input}
                      ],max_tokens=2500, temperature = 0.6,presence_penalty = 0.1,frequency_penalty = 0.1,top_p=1,)
  result = completion.choices[0].message.content
  return result

def PrefixNameDownloader(image_description):
    outline_img = "A high resolution image of "
    img_response = openai.Image.create(
    prompt = outline_img + image_description,
    n=1,
    size="512x512")
    img_url = img_response['data'][0]['url']
    img_name = 'prefix_' + bad_coding_practice + "img001.jpg"
    urllib.request.urlretrieve(img_url, img_name)
    # img = Image.open("img.png")
    return img_name


def generate_ppt(topic, slide_length,color, font_colors):
    root = Presentation("theme0.pptx")
    message = f"""Create a slideshow presentation on the topic of {topic} which is {slide_length} slides 
    long. Add images on every slide except the title slide. 
    
    You are allowed to use the following slide types:
    
    Slide types:
    Title Slide - (Title, Subtitle)
    Content Slide - (Title, Content)
    Image Slide - (Title, Content, Image)
    Thanks Slide - (Title)
    
    Put this tag before the Title Slide: [L_TS]
    Put this tag before the Content Slide: [L_CS]
    Put this tag before the Image Slide: [L_IS]
    Put this tag before the Thanks Slide: [L_THS]
    
    Put "[SLIDEBREAK]" after each slide 
    
    For example:
    [L_TS]
    [TITLE]Mental Health[/TITLE]
    
    [SLIDEBREAK]
    
    [L_CS] 
    [TITLE]Mental Health Definition[/TITLE]
    [CONTENT]
    1. Definition: A person’s condition with regard to their psychological and emotional well-being
    2. Can impact one's physical health
    3. Stigmatized too often.
    [/CONTENT]
    
    [SLIDEBREAK]
    
    Put this tag before the Title: [TITLE]
    Put this tag after the Title: [/TITLE]
    Put this tag before the Subitle: [SUBTITLE]
    Put this tag after the Subtitle: [/SUBTITLE]
    Put this tag before the Content: [CONTENT]
    Put this tag after the Content: [/CONTENT]
    Put this tag before the Image: [IMAGE]
    Put this tag after the Image: [/IMAGE]
    
    Elaborate on the Content, provide as much information as possible.
    You put a [/CONTENT] at the end of the Content.
    Do not reply as if you are talking about the slideshow itself. (ex. "Include pictures here about...")
    Do not include any special characters (?, !, ., :, ) in the Title.
    Do not include any additional information in your response and stick to the format."""

    response = openai.ChatCompletion.create(
      model="gpt-4o",
      messages=[
            {
                "role": "system", "content": "Act as an expert presentation creator. You know all about designs, creativity, layouts and how to make amazing presentations",
                "role": "user", "content": message
                }
        ]
    )
    

    
    # """ Ref for slide types:
    # 0 -> title and subtitle
    # 1 -> title and content
    # 2 -> section header
    # 3 -> two content
    # 4 -> Comparison
    # 5 -> Title only
    # 6 -> Blank
    # 7 -> Content with caption
    # 8 -> Pic with caption
    # """

    def delete_all_slides():
        for i in range(len(root.slides)-1, -1, -1):
            r_id = root.slides._sldIdLst[i].rId
            root.part.drop_rel(r_id)
            del root.slides._sldIdLst[i]

    def create_title_slide(title, subtitle,slide_bg_color, font_colors):
        layout = root.slide_layouts[0]
        slide = root.slides.add_slide(layout)
        background = slide.background
        if slide_bg_color == "white":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        elif slide_bg_color == "black":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 0)
        elif slide_bg_color == "red":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 0, 0)
        elif slide_bg_color == "green":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 255, 0)
        elif slide_bg_color == "blue":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 255)
        else:
            # If an invalid color is provided, default to white
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        slide.shapes.title.text = title
        slide.placeholders[1].text = subtitle
        
        if font_colors == "white":
            # slide.shapes.title.font.color.rgb = RGBColor(255, 255, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        elif font_colors == "black":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 0)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 0)
        elif font_colors == "red":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 0, 0)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 0, 0)
        elif font_colors == "green":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 255, 0)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 255, 0)
        elif font_colors == "blue":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 255)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 255)
        else:
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
            slide.placeholders[1].text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        
        

    def create_section_header_slide(title, slide_bg_color, font_colors):
        layout = root.slide_layouts[2]
        slide = root.slides.add_slide(layout)
        background = slide.background
        if slide_bg_color == "white":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        elif slide_bg_color == "black":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 0)
        elif slide_bg_color == "red":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 0, 0)
        elif slide_bg_color == "green":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 255, 0)
        elif slide_bg_color == "blue":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 255)
        else:
            # If an invalid color is provided, default to white
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        slide.shapes.title.text = title
        
        if font_colors == "white":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        elif font_colors == "black":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 0)
        elif font_colors == "red":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 0, 0)
        elif font_colors == "green":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 255, 0)
        elif font_colors == "blue":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 255)
        else:
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)

    def create_title_and_content_slide(title, content, slide_bg_color,font_colors):
        layout = root.slide_layouts[1]
        slide = root.slides.add_slide(layout)
        background = slide.background
        if slide_bg_color == "white":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        elif slide_bg_color == "black":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 0)
        elif slide_bg_color == "red":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 0, 0)
        elif slide_bg_color == "green":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 255, 0)
        elif slide_bg_color == "blue":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 255)
        else:
            # If an invalid color is provided, default to white
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        slide.shapes.title.text = title
        # slide.placeholders[1].text = content
        
        content_placeholder = slide.placeholders[1]
        content_placeholder.text = content

        # set font color of bullet points in content
        # for paragraph in content_placeholder.text_frame.paragraphs:
        #     paragraph.font.color.rgb = RGBColor(255, 255, 255)
        
        if font_colors == "white":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 255, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        elif font_colors == "black":
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(0, 0, 0)
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 0, 0)
        elif font_colors == "red":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 0, 0)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(255, 0, 0)
        elif font_colors == "green":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 255, 0)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(0, 255, 0)
           
        elif font_colors == "blue":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 0, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(0, 0, 255)
        else:
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 255, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        
    def create_title_and_content_and_image_slide(title, content, image_query, slide_bg_color,font_colors):
        layout = root.slide_layouts[8]
        slide = root.slides.add_slide(layout)
        background = slide.background
        if slide_bg_color == "white":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        elif slide_bg_color == "black":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 0)
        elif slide_bg_color == "red":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 0, 0)
        elif slide_bg_color == "green":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 255, 0)
        elif slide_bg_color == "blue":
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(0, 0, 255)
        else:
            # If an invalid color is provided, default to white
            background.fill.solid()
            background.fill.fore_color.rgb = RGBColor(255, 255, 255)
        slide.shapes.title.text = title
        # slide.placeholders[2].text = content
        content_placeholder = slide.placeholders[2]
        content_placeholder.text = content
        
        if font_colors == "white":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 255, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        elif font_colors == "black":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 0, 0)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(0, 0, 0)
        elif font_colors == "red":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 0, 0)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 0, 0)
        elif font_colors == "green":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 255, 0)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb =  RGBColor(0, 255, 0)
        elif font_colors == "blue":
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(0, 0, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(0, 0, 255)
        else:
            for paragraph in content_placeholder.text_frame.paragraphs:
                paragraph.font.color.rgb = RGBColor(255, 255, 255)
            slide.shapes.title.text_frame.paragraphs[0].font.color.rgb = RGBColor(255, 255, 255)
        
        refresh_bad_coding_practice()
        google_crawler = PrefixNameDownloader(image_query)
        # google_crawler.crawl(keyword=image_query, max_num=1)
        dir_path = os.path.dirname(os.path.realpath(google_crawler))
        file_name = glob.glob(f"prefix_{bad_coding_practice}*")
        # print(file_name)
        img_path = os.path.join(dir_path, file_name[0])
        slide.shapes.add_picture(img_path, slide.placeholders[1].left, slide.placeholders[1].top,
                                slide.placeholders[1].width, slide.placeholders[1].height)

    def find_text_in_between_tags(text, start_tag, end_tag):
        start_pos = text.find(start_tag)
        end_pos = text.find(end_tag)
        result = []
        while start_pos > -1 and end_pos > -1:
            text_between_tags = text[start_pos+len(start_tag):end_pos]
            result.append(text_between_tags)
            start_pos = text.find(start_tag, end_pos+len(end_tag))
            end_pos = text.find(end_tag, start_pos)
        res1 = "".join(result)
        res2 = re.sub(r"\[IMAGE\].*?\[/IMAGE\]", '', res1)
        if len(result) > 0:
            return res2
        else:
            return ""

    def search_for_slide_type(text):
        tags = ["[L_TS]", "[L_CS]", "[L_IS]", "[L_THS]"]
        found_text = next((s for s in tags if s in text), None)
        return found_text

    def parse_response(reply,color,font_colors):
        slide_bg_color = color.lower()
        list_of_slides = reply.split("[SLIDEBREAK]")
        for slide in list_of_slides:
            slide_type = search_for_slide_type(slide)
            if slide_type == "[L_TS]":
                create_title_slide(find_text_in_between_tags(str(slide), "[TITLE]", "[/TITLE]"),
                                   find_text_in_between_tags(str(slide), "[SUBTITLE]", "[/SUBTITLE]"),slide_bg_color,font_colors)
            elif slide_type == "[L_CS]":
                create_title_and_content_slide("".join(find_text_in_between_tags(str(slide), "[TITLE]", "[/TITLE]")),
                                               "".join(find_text_in_between_tags(str(slide), "[CONTENT]",
                                                                                 "[/CONTENT]")),slide_bg_color,font_colors)
            elif slide_type == "[L_IS]":
                create_title_and_content_and_image_slide("".join(find_text_in_between_tags(str(slide), "[TITLE]",
                                                                                           "[/TITLE]")),
                                                         "".join(find_text_in_between_tags(str(slide), "[CONTENT]",
                                                                                           "[/CONTENT]")),
                                                         "".join(find_text_in_between_tags(str(slide), "[IMAGE]",
                                                                                           "[/IMAGE]")),slide_bg_color,font_colors)
            elif slide_type == "[L_THS]":
                create_section_header_slide("".join(find_text_in_between_tags(str(slide), "[TITLE]", "[/TITLE]")),slide_bg_color,font_colors)

    def find_title():
        # res = ''.join(random.choices(string.ascii_uppercase + string.digits, k=7))
        # val = str(res)
        # return val
        return root.slides[0].shapes.title.text

    delete_all_slides()

    # print(response)

    parse_response(response['choices'][0]['message']['content'],color,font_colors)

    path_new = "files"
    root.save(f"{path_new}/{find_title()}.pptx")
    binary_output = BytesIO()
    root.save(binary_output)
    
    # print("done")

    # return rf"Done! {find_title()} is ready! You can find it at {os.getcwd()}\{find_title()}.pptx"
    return f"{path_new}/{find_title()}.pptx",binary_output

# End of PPT Methods

# GTTS
def text_to_speech(text,ext):
    tts = gTTS(text, lang='en', tld='co.uk', slow=False)
    try:
        my_file_name = text[0:20]
    except:
        my_file_name = "audio"
    tts.save(f"temp/{my_file_name}.mp3")
    # print(my_file_name)
    return my_file_name

now_date = datetime.now()

# round to nearest 15 minutes
now_date = now_date.replace(minute=now_date.minute // 15 * 15, second=0, microsecond=0)

# split into date and time objects
now_time = now_date.time()
now_date = now_date.date() + timedelta(days=1)

# List of methods
def generateBlogTopics(prompt1):
    response = openai.Completion.create(
      engine="text-davinci-003",
    #   engine="gpt-3.5-turbo",
      prompt="Generate blog topics on: {}. \n \n 1.  ".format(prompt1),
      temperature=0.7,
      max_tokens=100,
      top_p=1,
      frequency_penalty=0,
      presence_penalty=0
    )

    return response['choices'][0]['text']

def generateBlogSections(prompt1):
    response = openai.Completion.create(
      engine="text-davinci-003",
    #   engine="gpt-3.5-turbo",
      prompt="Expand the blog title in to high level blog sections: {} \n\n- Introduction: ".format(prompt1),
      temperature=0.6,
      max_tokens=100,
      top_p=1,
      frequency_penalty=0,
      presence_penalty=0
    )

    return response['choices'][0]['text']


def blogSectionExpander(prompt1):
    response = openai.Completion.create(
      engine="text-davinci-003",
    #   engine="gpt-3.5-turbo",
      prompt="Expand the blog section in to a detailed professional , witty and clever explanation.\n\n {}".format(prompt1),
      temperature=0.7,
      max_tokens=750,
      top_p=1,
      frequency_penalty=0,
      presence_penalty=0
    )

    return response['choices'][0]['text']

def generate_legal_content(user_input):
    try:
        completion = openai.ChatCompletion.create(model="gpt-4o", messages=[
                        {"role": "system", "content": "You are alphaGPT, an AI assistant custom trained and created by Alpha AI to work within the legal industry of India. You are proficient at everytask when it comes to law, legal processes, legal resources etc."},
                        {"role": "user", "content": prompt}
                        ],max_tokens=3000, temperature = 0.7,presence_penalty = 0.1,frequency_penalty = 0.1)
                    # print(type(completion))
        result = completion.choices[0].message.content
        return result
    except openai.error.APIError as e:
        #Handle API error here, e.g. retry or log
        print(f"OpenAI API returned an API Error: {e}")
        pass
    except openai.error.APIConnectionError as e:
        #Handle connection error here
        print(f"Failed to connect to OpenAI API: {e}")
        pass
    except openai.error.RateLimitError as e:
        #Handle rate limit error (we recommend using exponential backoff)
        print(f"OpenAI API request exceeded rate limit: {e}")
        pass  


def load_lottiefile(filepath: str):
    with open(filepath, "r") as f:
        return json.load(f)

im = Image.open("favicon.ico")

st.set_page_config(
    page_title="Generative AI Toolkit",
    page_icon=im,
    layout="centered",
    initial_sidebar_state="expanded",
)


# Define the metadata
image_url = "aai_edu.png"

hide_st_style = """
            <head>
            <!-- Primary Meta Tags -->
<title>Alpha AI - Among India's leading AI Research and Development Startups</title>
<meta name="title" content="Alpha AI - Among India's leading AI Research and Development Startups">
<meta name="description" content="Empowering businesses with transformative AI solutions through customer-centricity, strategic expertise, and relentless innovation.">

<!-- Open Graph / Facebook -->
<meta property="og:type" content="website">
<meta property="og:url" content="https://alphaai.streamlit.app/">
<meta property="og:title" content="Alpha AI - Among India's leading AI Research and Development Startups">
<meta property="og:description" content="Empowering businesses with transformative AI solutions through customer-centricity, strategic expertise, and relentless innovation.">
<meta property="og:image" content="{image_url}">

<!-- Twitter -->
<meta property="twitter:card" content="summary_large_image">
<meta property="twitter:url" content="https://alphaai.streamlit.app/">
<meta property="twitter:title" content="Alpha AI - Among India's leading AI Research and Development Startups">
<meta property="twitter:description" content="Empowering businesses with transformative AI solutions through customer-centricity, strategic expertise, and relentless innovation.">
<meta property="twitter:image" content="{image_url}">
            </head>
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            header {visibility: hidden;}
            html, body, [class*="css"] {
            font-family: Montserrat; 
            font-weight: 350;
            }
            </style>
            """
st.markdown(hide_st_style, unsafe_allow_html=True)

def load_lottiefile(filepath: str):
    with open(filepath, "r") as f:
        return json.load(f)


def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()
    

# lottie_coding = load_lottiefile("comp_anim.json")  # replace link to local lottie file
lottie_hello1 = load_lottieurl("https://assets6.lottiefiles.com/packages/lf20_AHptq1.json")
# lottie_hello1 = load_lottieurl("https://assets5.lottiefiles.com/packages/lf20_hlvOdjjxTF.json")

place1 = st.empty()

with place1.container():
    anima1 , anima2 = st.columns([2,1])
    with anima1:
        # st.image("aai_black.png", width = 350, use_column_width=True)
        st.image("aai_white.png", width = 350, use_column_width=True)
    with anima2:
        st_lottie(
        lottie_hello1,
        speed=1,
        reverse=False,
        loop=True,
        quality="high", # medium ; high
        height=220,
        width=220,
        key=None,
        )


__login__obj = __login__(auth_token = "courier_auth_token", 
                    company_name = "Alpha AI",
                    width = 200, height = 250, 
                    logout_button_name = 'Logout', hide_menu_bool = False, 
                    hide_footer_bool = True) #,
                    # lottie_url = 'https://assets2.lottiefiles.com/packages/lf20_jcikwtux.json')

LOGGED_IN = __login__obj.build_login_ui()

if 'openai.api_key' not in st.session_state:
    st.session_state['openai.api_key'] = openai.api_key

place2 = st.empty()
with place1.container():
    st.header('Welcome to our Generative AI Toolkit :sunglasses:')
    st.subheader("The results of our toolkit are backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model is based on the GPT-3 model architecture initially proposed by OpenAI, intakes a sentence or partial sentence and predicts subsequent text from that input.")
    st.subheader("There is a current limit of a few tokens on various aspects of the tool that implies that you can create content containing upto 750 words")
    st.caption('For any feedback or to get personalization done for your usecases, contact us on alphaaiofficial@gmail.com :sunglasses:')
    st.info("ChatGPT, GPT3 Models, Langchain have been integrated with the latest update...")
# with open('creds.yaml') as file:
#     config = yaml.load(file, Loader=SafeLoader)



# # load hashed passwords
# file_path = Path(__file__).parent / "hashed_pw.pkl"
# with file_path.open("rb") as file:
#     hashed_passwords = pickle.load(file)


# with st.container():
#     tab1, tab2, tab3, tab4 = st.tabs(["Login", "Reset", "Register","Forgot Password"])
#     with tab1:

#         authenticator = stauth.Authenticate(
#         config['credentials'],
#         config['cookie']['name'],
#         config['cookie']['key'],
#         config['cookie']['expiry_days'],
#         config['preauthorized']
#         )
#         name, authentication_status, username = authenticator.login("Login", "main")
#     with tab2:
#         try:
#             if authenticator.reset_password(username, 'Reset password'):
#                 st.success('Password modified successfully')
#                 with open('creds.yaml', 'w') as file:
#                     yaml.dump(config, file, default_flow_style=False)
#         except Exception as e:
#             st.error(e)
#     with tab3:
#         try:
#             if authenticator.register_user('Register user', preauthorization=False):
#                 st.success('User registered successfully')
#                 with open('creds.yaml', 'w') as file:
#                     yaml.dump(config, file, default_flow_style=False)
#         except Exception as e:
#             st.error(e)
#     with tab4:
#         try:
#             username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
#             if username_forgot_pw:
#                 st.success('New password sent securely')
#                 # Random password to be transferred to user securely
#                 with open('creds.yaml', 'w') as file:
#                     yaml.dump(config, file, default_flow_style=False)
#             else:
#                 st.error('Username not found')
#         except Exception as e:
#             st.error(e)
        
# if authentication_status == False:
#     st.error("Username/password is incorrect")

# if authentication_status == None:
#     st.info("Please enter your username and password")

# if authentication_status:
if st.session_state['LOGGED_IN'] == True:
    place1.empty()
    place2.empty()
    # horizontal menu
    with st.sidebar:
        # st.write(f"Hello user!")
        # Store and display user's OpenAI API key
        api_key = st.text_input("Enter your OpenAI API key:", value = st.session_state['openai.api_key'], type="password", key='openai_session_key')
        openai.api_key = api_key
        st.session_state["openai.api_key"] = api_key
        st.write(f"Your OpenAI API key is: {api_key}")
            
        selected = option_menu(
                menu_title="Generative AI Toolkit",  # required
                options=[
                    "Home",
                    "---", 
                    "Chat Mode",
                    "---" ,
                    "alphaGPT",
                    "---" ,
                    "Act-Prompts",
                    "---" ,
                    "Food Blogger",
                    "---" ,
                    "Travel Blogger",
                    "---" ,
                    "E-Commerce",
                    "---" , 
                    "Business Brief Generator",
                    "---" , 
                    "Keyword Extraction",
                    "---" , 
                    "Summarization",
                    "---" , 
                    "Grammar Correction",
                    "---" ,
                    "Restaurant Reviews",
                    "---" ,
                    "Image Generator",
                    "---" ,
                    "Blog Generator",
                    "---" ,
                    "Content Paraphraser",
                    "---" ,
                    "Story Teller",
                    "---" ,
                    "Social Media Copywriting",
                    "---" ,
                    "Marketing Campaign",
                    "---" ,
                    "PPT Generator",
                    "---" ,
                    "AD Generator",
                    "---" ,
                    "Legal Aid",
                    "---" ,
                    "Travel and Tourism",
                    "---",
                    "Document Chat"
                    # ,
                    # "---",
                    # "GPT-LipSync" 
                ],# required
                icons=[
                    "house-fill",
                    "---",
                    "robot",
                    "---" ,
                    "bi bi-chat-left-dots-fill",
                    "---" ,
                    "person-video",
                    "---" ,
                    "cup-straw",
                    "---" ,
                    "compass",
                    "---" , 
                    "badge-ad",
                    "---" ,
                    "file-earmark-richtext",
                    "---" ,
                    "card-text",
                    "---" ,
                    "justify",
                    "---" ,
                    "fonts",
                    "---" ,
                    "stars",
                    "---" ,
                    "images",
                    "---" ,
                    "bi bi-envelope",
                    "---" ,
                    "cursor-text",
                    "---" ,
                    "card-text",
                    "---" ,
                    "telegram",
                    "---" ,
                    "people",
                    "---" ,
                    "file-slides-fill",
                    "---" ,
                    "pencil-square",
                    "---" ,
                    "book",
                    "---" ,
                    "geo-alt-fill",
                    "---",
                    "file-pdf-fill"
                    # ,
                    # "---",
                    # "stop-circle"
                    ],  # optional
                menu_icon="cast",  # optional
                default_index=0,  # optional
                orientation="vertical",
            )
    if selected == "Home":
        st.header('Welcome to our Generative AI Toolkit :sunglasses:')
        st.subheader("The results of our toolkit are backed by a large-scale unsupervised language model that can generate paragraphs of text. This transformer-based language model is based on the GPT-3 model architecture initially proposed by OpenAI, intakes a sentence or partial sentence and predicts subsequent text from that input.")
        st.subheader("There is a current limit of a few tokens on various aspects of the tool that implies that you can create content containing upto 750 words")
        st.caption('For any feedback or to get personalization done for your usecases, contact us on alphaaiofficial@gmail.com :sunglasses:')
        st.info("ChatGPT, GPT3 Models, Langchain have been integrated with the latest update...")
    #For Chat GPT    
    elif selected == "Chat Mode":
        # Initialize model selection and session state
        model = st.selectbox(
            "Select a model",
            ("gpt-4o", "gpt-3.5-turbo", "gpt-3.5-turbo-0301")
        )
        # client = OpenAI(openai_api_key=api_key)

        if "openai_model" not in st.session_state:
            st.session_state["openai_model"] = model

        if "messages" not in st.session_state:
            st.session_state.messages = []

        # Display existing chat messages
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

        # User input and assistant response handling
        if prompt := st.chat_input("What is up?"):
            st.session_state.messages.append({"role": "user", "content": prompt})
            with st.chat_message("user"):
                st.markdown(prompt)

            # Call OpenAI API to generate response
            response = openai.ChatCompletion.create(
                model=st.session_state["openai_model"],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
            )

            # Extract and display assistant's response
            assistant_response = response['choices'][0]['message']['content']
            st.session_state.messages.append({"role": "assistant", "content": assistant_response})
            with st.chat_message("assistant"):
                st.markdown(assistant_response)
                        
        
        # Clear session state
        st.info("Click on 'Clear' (at times, twice) to clear data!")
        if st.button("Clear", type="primary", use_container_width=True):
            st.session_state.clear()
        
    #For Chat GPT    
    elif selected == "alphaGPT":
        st.subheader("alphaGPT: An AI-powered chatbot")

        # You can also use radio buttons instead
        selected_alpha = st.radio("Stream the result in realtime or view it in one go!",("NO Streaming","Streaming"))
        # selected = pills("", ["NO Streaming", "Streaming"], ["🎈", "πŸ“‘"])

        user_input = st.text_area("You: ",placeholder = "Ask me anything ...", key="input", height=300)
        
        
        if st.button("Submit", type="primary"):
            st.markdown("----")
            res_box = st.empty()
            
            if selected_alpha == "Streaming":
                report = []
                temp_var = ""
                # Looping over the response
                model_v3 = "gpt-4o"
                # model_v4 = "gpt-4-0314"
                try:
                    for resp in openai.ChatCompletion.create(model=model_v3,
                                                        messages=[
                                                            {"role": "system", "content": "You are an AI language model custom trained and created by Alpha AI. You are proficient at everytask."},
                                                            {"role": "user", "content": user_input}
                                                            ],
                                                        max_tokens=2500, 
                                                        temperature = 0.6,
                                                        presence_penalty = 0.1,
                                                        frequency_penalty = 0.1,
                                                        
                                                        stream = True):
                        # join method to concatenate the elements of the list 
                        # into a single string, 
                        # then strip out any empty strings
                        # print(resp)
                        if "content" in resp["choices"][0]["delta"]:
                            report.append(resp["choices"][0]["delta"]["content"])
                            # report.append(resp.choices[0].delta.content)
                            result = "".join(report).strip()
                            # result = result.replace("\n", "")    
                            res_box.markdown(f'{result}') 
                            temp_var = f'{result}'
                        else:
                            pass
                    # print(temp_var)
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud = text_to_speech(temp_var, ext)
                    audio_file = open(f"temp/{result_aud}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass          
            else:
                try:
                    completion = openai.ChatCompletion.create(model="gpt-4o", messages=[
                        {"role": "system", "content": "You are an AI assistant custom trained and created by Alpha AI. You are proficient at everytask."},
                        {"role": "user", "content": user_input}
                        ],max_tokens=2500, temperature = 0.6,presence_penalty = 0.1,frequency_penalty = 0.1)
                    # print(type(completion))
                    result = completion.choices[0].message.content
                    res_box.write(result)
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud = text_to_speech(result,ext)
                    audio_file = open(f"temp/{result_aud}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass      
            # pyttsx3.speak(result)
        st.markdown("----")
        st.warning("Below are some examples one can refer to. To use simply copy paste it and edit the content.")
        st.info("""Write a product page for my company called HealthyBites that provides healthy organic meal delivery.

The goal is to persuade potential customers to choose HealthyBites as their partner in achieving better health and wellness

The target audience is health-conscious individuals who want to improve their eating habits but struggle with limited time or cooking skills.

Ensure the text is an ideal length based on the industry standard.

Write using the English language in a fun style and creative writing tone. 

Use a first-person narrative.

Format the text in a table with the 5 rows: [hero section – add persuasive power words], [description – include emotional appeal], [benefits – use benefit-focused language], [FAQs – include relevant facts and data] and [call to action – express urgency].""")
        st.info("""
                    Write a blog post that explains the difficulties and challenges implementing SEO.

The goal is to explain the challenges and provide some simple tips and guidelines to overcome these challenges.

The target audience is marketers and business owners.

Ensure the text is an ideal length based on the industry standard.

Write using the British language in a informal style and excitied writing tone. 

Use a first-person narrative.

Provide a compelling and catchy title in H1 format.

Format the text as follows using HTML code and H2 sub headings: [introduction – add persuasive power words], [main body – include emotional appeal and break out into sub-sections] and [conclusion – express urgency and include a CTA].
                    """)
        st.info("""
                    Generate a table summarising the keywords used in the above blog. Include 4 columns [keyword], [intent], [keyword density] and [user – include typical job titles that may be interested in the keywords]. Order by frequency use.
                    """)
        st.info("""
                    Generate a table summarising keywords that are likely to be popular with people searching Google specifically for information on [topic/ideas]. Include 3 columns [keyword], [intent] and [user – typical job titles that may be interested]. Order relevancy to the topic.
                    """)
        st.info("""
                    Write a blog post that [provide the title, topic or detail about what’s needed].

The goal is [explain the desired outcome].

The target audience is [state the audience].

Ensure the text is an ideal length based on the industry standard.

Write using the [state your country] language in a [include the style – see examples below] style and [nclude the tone – see examples below] writing tone. 

Use a [first-person/third-person] narrative.

Optimise the text for the following keywords [insert researched keywords] in an SEO friendly manner.

Provide a compelling and catchy title in H1 format.

Format the text as follows using HTML code and H2 sub headings: [introduction – add persuasive power words], [main body – include emotional appeal and break out into sub-sections] and [conclusion – express urgency and include a CTA].
                    """)
        st.info("""
                    Write a short explanation of [topic] in the [country] language that includes specific bullet points relevant to a [country] audience
                    """)
        st.info("""
                    I want you to act as a [state role]. You will come up with [explain what’s expected and the audience]. Your words should have [provide additional context and detail, including style and tone]. My first request is [state the topic/request].
                    """)
    elif selected == "Act-Prompts":
        st.subheader("Acts & Prompts: Edit prompts and generate content based on acts dynamically.")
        
        act_options = df['act'].unique().tolist()
        selected_act = st.selectbox("Select an act", act_options)
        
        # Get corresponding prompt for selected 'act'
        prompt = df.loc[df['act'] == selected_act, 'prompt'].values[0]
        
        # Display prompt
        st.write("Prompt:")
        
        # Allow user to choose and edit prompt
        edited_prompt = st.text_area("Edit prompt", prompt,height=350)
        
        # Generate response using GPT-3.5 API on submit button click
        if st.button("Submit", type="primary"):
            res_box = st.empty()
            report = []
            temp_var = ""
            # Looping over the response
            model_v3 = "gpt-4o"
            # model_v4 = "gpt-4-0314"
            try:
                for resp in openai.ChatCompletion.create(model=model_v3,
                                                    messages=[
                                                        {"role": "system", "content": "You are an AI language model custom trained and created by Alpha AI. You are proficient at everytask."},
                                                        {"role": "user", "content": edited_prompt}
                                                        ],
                                                    max_tokens=2500, 
                                                    temperature = 0.6,
                                                    presence_penalty = 0.1,
                                                    frequency_penalty = 0.1,
                                                    
                                                    stream = True):
                    # join method to concatenate the elements of the list 
                    # into a single string, 
                    # then strip out any empty strings
                    # print(resp)
                    if "content" in resp["choices"][0]["delta"]:
                        report.append(resp["choices"][0]["delta"]["content"])
                        # report.append(resp.choices[0].delta.content)
                        result = "".join(report).strip()
                        # result = result.replace("\n", "")    
                        res_box.markdown(f'{result}') 
                        temp_var = f'{result}'
                    else:
                        pass
                # print(temp_var)
                # For TTS
                # st.markdown(f"Wait for your audio to render")
                # ext = dt = datetime.now()
                # result_aud = text_to_speech(temp_var, ext)
                # audio_file = open(f"temp/{result_aud}.mp3", "rb")
                # audio_bytes = audio_file.read()
                # st.markdown(f"Your audio:")
                # st.audio(audio_bytes, format="audio/mp3", start_time=0)
                # st.markdown("----")
            except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
            except openai.error.APIConnectionError as e:
                #Handle connection error here
                print(f"Failed to connect to OpenAI API: {e}")
                pass
            except openai.error.RateLimitError as e:
                #Handle rate limit error (we recommend using exponential backoff)
                print(f"OpenAI API request exceeded rate limit: {e}")
                pass      
    
    
    elif selected == "Food Blogger":
        st.subheader("AI powered 'Food Blogger'")

        # You can also use radio buttons instead
        selected_food = st.radio("Stream the result in realtime or view it in one go!",("NO Streaming","Streaming"))
        # selected = pills("", ["NO Streaming", "Streaming"], ["🎈", "πŸ“‘"])

        user_input = st.text_input("You: ",placeholder = "Ask me anything ...", key="input")

        if st.button("Submit", type="primary"):
            st.markdown("----")
            res_box = st.empty()
            content_sys = "Act as an amazing food blogger who works with Tripsero and like to talk only about food, restaurants, cafe, meals and all about food and drinks"
            if selected_food == "Streaming":
                report = []
                temp_var2 = ""
                # Looping over the response
                try:
                    for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                                                            {"role": "system", "content":content_sys},
                                                            {"role": "user", "content": user_input}
                                                            ],
                                                        max_tokens=2500, 
                                                        temperature = 0.6,
                                                        presence_penalty = 0.1,
                                                        frequency_penalty = 0.1,
                                                        
                                                        stream = True):
                        # join method to concatenate the elements of the list 
                        # into a single string, 
                        # then strip out any empty strings
                        # print(resp)
                        if "content" in resp["choices"][0]["delta"]:
                            report.append(resp["choices"][0]["delta"]["content"])
                            # report.append(resp.choices[0].delta.content)
                            result = "".join(report).strip()
                            # result = result.replace("\n", "")        
                            res_box.markdown(f'{result}') 
                            temp_var2 = f'{result}'
                        else:
                            pass
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud2 = text_to_speech(temp_var2,ext)
                    audio_file = open(f"temp/{result_aud2}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass      
                    
            else:
                try:
                    completion = openai.ChatCompletion.create(model="gpt-4o", messages=[
                        {"role": "system", "content":content_sys},
                        {"role": "user", "content": user_input}
                        ],max_tokens=2500, temperature = 0.6,presence_penalty = 0.1,frequency_penalty = 0.1)
                    # print(type(completion))
                    result = completion.choices[0].message.content
                    res_box.write(result)
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud2 = text_to_speech(result,ext)
                    audio_file = open(f"temp/{result_aud2}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                    # pyttsx3.speak(result)
                    
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass     
                st.markdown("----") 
    
    elif selected == "Travel Blogger":
        st.subheader("AI powered 'Travel Blogger'")

        # You can also use radio buttons instead
        selected_travel = st.radio("Stream the result in realtime or view it in one go!",("NO Streaming","Streaming"))
        # selected = pills("", ["NO Streaming", "Streaming"], ["🎈", "πŸ“‘"])

        user_input = st.text_input("You: ",placeholder = "Ask me anything ...", key="input")

        if st.button("Submit", type="primary"):
            st.markdown("----")
            res_box = st.empty()
            content_sys = "Act as a famous Indian travel blogger who loves who works with Tripsero and travels to different places, writes about his personal experiences and more. You love adventures, random trips, personalized experience based travel and in general love the travel, tourism and hospitality industry."
            if selected_travel == "Streaming":
                report = []
                temp_var3 = ""
                # Looping over the response
                try:
                    for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                                                            {"role": "system", "content":content_sys},
                                                            {"role": "user", "content": user_input}
                                                            ],
                                                        max_tokens=2500, 
                                                        temperature = 0.6,
                                                        presence_penalty = 0.1,
                                                        frequency_penalty = 0.1,
                                                        
                                                        stream = True):
                        # join method to concatenate the elements of the list 
                        # into a single string, 
                        # then strip out any empty strings
                        # print(resp)
                        if "content" in resp["choices"][0]["delta"]:
                            report.append(resp["choices"][0]["delta"]["content"])
                            # report.append(resp.choices[0].delta.content)
                            result = "".join(report).strip()
                            # result = result.replace("\n", "")        
                            res_box.markdown(f'{result}') 
                            temp_var3 = f'{result}'
                        else:
                            pass
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud3 = text_to_speech(temp_var3,ext)
                    audio_file = open(f"temp/{result_aud3}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass      
                    
            else:
                try:
                    completion = openai.ChatCompletion.create(model="gpt-4o", messages=[
                        {"role": "system", "content":content_sys},
                        {"role": "user", "content": user_input}
                        ],max_tokens=2500, temperature = 0.6,presence_penalty = 0.1,frequency_penalty = 0.1)
                    # print(type(completion))
                    result = completion.choices[0].message.content
                    res_box.write(result)
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud3 = text_to_speech(result,ext)
                    audio_file = open(f"temp/{result_aud3}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                    # pyttsx3.speak(result)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass      
            st.markdown("----")
                
    # For E-Commerce
    elif selected == "E-Commerce":
        st.subheader('Generate content for various e-Commerce scenarios.')
        option = st.selectbox('What would you like to do today??',
            (
            'Product Collection Description',
            'Product Title Generator',
            'Collection Title Generator',
            'Product Descriptions',
            'Ad-caption Generator',
            'Ad-copy Generator',
            'Article Generator',
            'Social media page description',
            'Email Content - Outreach',
            'Homepage Content',
            ''
            'Homepage Headline'
            ))
        if option =="Product Collection Description":
            product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            final_pmt = "Act as an ecommerce merchandising expert and create a product collection description for the " + product + " from the brand " + brand
        elif option =="Product Title Generator":
            product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            industry = st.text_input("Enter the industry of the brand.")
            final_pmt = "Behave like an ecommerce merchandising specialist and draft a product title for " + product + " from " + brand + ", a " + industry + " brand."
        elif option =="Collection Title Generator":
            product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            final_pmt = "Act as an ecommerce merchandising expert and create a product collection title for " + product + " from " + brand + "."
        elif option =="Product Descriptions":
            product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            ideal_customer_persona = st.text_input("Enter the ideal customer persona.")
            final_pmt = "Think like an ecommerce merchandising specialist and write a product description to list " +product+ " on an ecommerce store " + brand + " for a customer who is a "+ ideal_customer_persona
        elif option =="Ad-caption Generator":
            product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            channel = st.selectbox('Choose the social media channel.',
            (
            'Instagram',
            'Facebook',
            'LinkedIn',
            'Twitter',
            ))
            final_pmt = "Think like an ecommerce digital advertiser and create an ad caption for the product "+ product+ " from the brand " + brand + ". Optimize the caption for " + channel + " ads and relevant character limits."
        elif option =="Ad-copy Generator":
           product = st.text_input("What type of product is it?")
           brand = st.text_input("Enter the brand name.")
           channel = st.selectbox('Choose the social media channel.',
            (
            'Instagram',
            'Facebook',
            'LinkedIn',
            'Twitter',
            ))
           final_pmt = "Think like an ecommerce digital advertising copywriter and create ad copy for the product " + product + " from the brand '"+brand+"'. Optimize the copy for "+channel+" ads."
        elif option =="Article Generator":
           product = st.text_input("What type of product is it?")
           brand = st.text_input("Enter the brand name.")
           final_pmt = "Act as an ecommerce content writer and write an article on the product '"+product+"' from the brand '"+brand+"'"
        elif option =="Social media page description":
           product = st.text_input("What type of product is it?")
           brand = st.text_input("Enter the brand name.")
           channel = st.selectbox('Choose the social media channel.',
            (
            'Instagram',
            'Facebook',
            'LinkedIn',
            'Twitter',
            ))
           industry = st.text_input("Enter the industry of the brand.")
           final_pmt = "Think like an ecommerce social media specialist and write a 90 character "+channel+" page description for a "+industry+" brand named "+brand+" which sells "+product
        elif option =="Email Content - Outreach":
           product = st.text_input("What type of product is it?")
           brand = st.text_input("Enter the brand name.")
           ideal_customer_persona = st.text_input("Enter the ideal customer persona.")
           industry = st.text_input("Enter the industry of the brand.")
           final_pmt = "Act like an email marketing expert for ecommerce and draft an email campaign for the product '"+product+"' from the brand '"+brand+"', belonging to the "+industry+" industry. The campaign is intended for a "+ideal_customer_persona+"."
        elif option =="Homepage Content":
            # product = st.text_input("What type of product is it?")
            brand = st.text_input("Enter the brand name.")
            industry = st.text_input("Enter the industry of the brand.")
            final_pmt = "Act like an ecommerce content writer and create homepage content for a "+industry+" product by the brand '"+brand+"'"      
        elif option =="Homepage Headline":
            product = st.text_input("What type of product is it, what is it called?")
            brand = st.text_input("Enter the brand name.")
            industry = st.text_input("Enter the industry of the brand.")
            final_pmt = "Behave like an ecommerce expert and create a homepage headline for a "+industry+" product called "+product+" from the brand "+brand
        else:
            st.text("Please select an option!")
        if st.button("Submit", type="primary"):
                    res_box6 = st.empty()
                    report6 = []
                    # Looping over the response
                    try:
                        for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                                messages=[
                                {
                                    "role": "system", "content": "Act As An AI Advertiser custom trained and created by Alpha AI. You are proficient at everytask.",
                                    "role": "user", "content": final_pmt
                                }
                                ],
                                                            max_tokens=4000, 
                                                            temperature = 0.7,
                                                            presence_penalty = 0.1,
                                                            frequency_penalty = 0.1,
                                                            
                                                            stream = True):
                            if "content" in resp["choices"][0]["delta"]:
                                report6.append(resp["choices"][0]["delta"]["content"])
                                # report.append(resp.choices[0].delta.content)
                                result = "".join(report6).strip()
                                # result = result.replace("\n", "")        
                                res_box6.markdown(f'{result}') 
                            else:
                                pass  
                    except openai.error.APIError as e:
                        #Handle API error here, e.g. retry or log
                        print(f"OpenAI API returned an API Error: {e}")
                        pass
                    except openai.error.APIConnectionError as e:
                        #Handle connection error here
                        print(f"Failed to connect to OpenAI API: {e}")
                        pass
                    except openai.error.RateLimitError as e:
                        #Handle rate limit error (we recommend using exponential backoff)
                        print(f"OpenAI API request exceeded rate limit: {e}")
                        pass     
    # For Keyword Extraction
    elif selected == "Business Brief Generator":
        st.subheader("Business Brief Generator.")
        business_name = st.text_input("Enter the name of your business.", max_chars=15)
        business_type = st.selectbox('What is the type of your business entity?',(
            'Private Limited',
            'Limited Liability Partnership',
            'One Person Company',
            'Partnership',
            'Sole Proprietorship'
            ))
        country = "India"

        product_service = st.text_area("Please describe your product / service.", max_chars = 230)

        short_description = st.text_area("Please provide a short description for your business.", max_chars = 300)

        years = st.text_input("For how many years or months has your business been active?", value = "Eg. 2 years / 1 year / 1 month / 4 months.", max_chars = 7)

        progress = st.text_area("Please tell us a little about your progress so far.", max_chars = 200)

        prompt_business = "Generate an elaborate Business Plan for the following business, using the guidelines provided:\nBusiness Name: " + business_name + "\nBusiness Type: "+business_type+"\nCountry: "+country+"\nProduct or Service: "+product_service+"\nShort Business Description: "+short_description+"\nYears in operation: "+years+"\nBusiness progress to date: "+ progress+"\n\nGuidelines: Start the company description by listing the business name and company structure, if one is provided. Write a detailed business description for the short description provided, in a professional business tone. Describe the industry the business will be operating in and re-write the business progress to date. Finally, provide a numbered list of five suitable business objectives and a list of 5 plan of action deliverables for this business. For each objective and plan of action, describe how the it fits the business needs and how it will benefit the stakeholders in the long run."


        if st.button("Generate", type="primary"):
                    res_box_bpg = st.empty()
                    report_bpg = []
                    # Looping over the response
                    try:
                        for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                                messages=[
                                {
                                    "role": "system", "content": "Act As a business plan maker professional. Very detailed and precise. You are proficient at everytask.",
                                    "role": "user", "content": prompt_business}
                                ],
                                                            max_tokens=3500, 
                                                            temperature = 0.7,
                                                            presence_penalty = 0.2,
                                                            frequency_penalty = 0.1,
                                                            stream = True):
                            if "content" in resp["choices"][0]["delta"]:
                                report_bpg.append(resp["choices"][0]["delta"]["content"])
                                # report.append(resp.choices[0].delta.content)
                                result = "".join(report_bpg).strip()
                                # result = result.replace("\n", "")        
                                res_box_bpg.markdown(f'{result}') 
                            else:
                                pass  
                    except openai.error.APIError as e:
                        #Handle API error here, e.g. retry or log
                        print(f"OpenAI API returned an API Error: {e}")
                        pass
                    except openai.error.APIConnectionError as e:
                        #Handle connection error here
                        print(f"Failed to connect to OpenAI API: {e}")
                        pass
                    except openai.error.RateLimitError as e:
                        #Handle rate limit error (we recommend using exponential backoff)
                        print(f"OpenAI API request exceeded rate limit: {e}")
                        pass     
    # For Keyword Extraction
    elif selected == "Keyword Extraction":
        st.subheader("Keyword Extraction")
            # Create Text Area Widget to enable user to enter texts
        article_text = st.text_area("Enter your text corpus & Press Enter, wait for the validation to happen!", max_chars = 500)

        # Next, we'll add a check to make sure that the input text is long enough 
        # to summarize, and display a warning if it is not:
        if len(article_text)>10:
            if st.button("Extract Keywords",type='primary'):
                # Use GPT-3 to generate a summary of the article
                try:
                    response = openai.Completion.create(
                        engine="text-davinci-003",
                        # engine="gpt-3.5-turbo",
                        prompt="Extract keywords from this text: " + article_text,
                        max_tokens = 60,
                        temperature = 0.5,
                        top_p=1.0,
                        frequency_penalty=0.8,
                        presence_penalty=0.1
                    )
                    # Print the generated summary
                    res = response["choices"][0]["text"]
                    st.success(res)
                    st.download_button('Download result', res)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass  
        else:
            st.warning("Not enough keywords available!")

    # For "Summarization"
    elif selected == "Summarization":
        st.subheader("Summarization")
        # Create Text Area Widget to enable user to enter texts
        article_text = st.text_area("Enter your scientific texts to summarize", max_chars = 5000)
        
        # Create Radio Button
        output_size = st.radio( label = "What kind of output do you want?", 
                                options= ["To-The-Point", "Concise", "Detailed"]
                            )
        # First, we'll use an if statement to determine the desired output size 
        # and set the out_token variable accordingly:

        if output_size == "To-The-Point":
            out_token = 50
        elif output_size == "Concise":
            out_token = 128
        else:
            out_token = 516

        # Next, we'll add a check to make sure that the input text is long enough 
        # to summarize, and display a warning if it is not:
        if len(article_text)>100:
            if st.button("Generate Summary",type='primary'):
                # Use GPT-3 to generate a summary of the article
                try:
                    response = openai.Completion.create(
                        engine="text-curie-001",
                        prompt="Please summarize this scientific article for me in a few sentences: " + article_text,
                        max_tokens = out_token,
                        temperature = 0.5,
                    )
                    # Print the generated summary
                    res = response["choices"][0]["text"]
                    st.success(res)
                    # pyttsx3.speak(res)
                    st.download_button('Download result', res)
                    # For TTS
                    st.markdown(f"Wait for your audio to render")
                    ext = dt = datetime.now()
                    result_aud4 = text_to_speech(res,ext)
                    audio_file = open(f"temp/{result_aud4}.mp3", "rb")
                    audio_bytes = audio_file.read()
                    st.markdown(f"Your audio:")
                    st.audio(audio_bytes, format="audio/mp3", start_time=0)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass  
        else:
            st.warning("Not enough words to summarize!")
        
    # For "Grammar Correction"
    elif selected == "Grammar Correction":
        st.subheader("Grammar Correction")
        # Create Text Area Widget to enable user to enter texts
        article_text = st.text_area("Enter the text you would like to correct", max_chars = 1000)
        
        # Create Radio Buttons
        output_size = st.radio( label = "What type of correction are you looking for?", 
                                options= ["Standard English", "Sentence Formation"]
                            )
        # First, we'll use an if statement to determine the desired output size 
        # and set the out_token variable accordingly:
        
        Appending_desc = None
        if output_size == "Standard English":
            out_token = 600
            Appending_desc = "Correct this to standard English: "
            
        elif output_size == "Sentence Formation":
            out_token = 600
            Appending_desc = "Correct this to standard English sentence: "

        # Next, we'll add a check to make sure that the input text is long enough 
        # to summarize, and display a warning if it is not:
        if len(article_text)>1:
            if st.button("Correct Grammar",type='primary'):
                # Use GPT-3 to generate a summary of the article
                try:
                    response = openai.Completion.create(
                        engine="text-davinci-003",
                        prompt= Appending_desc + article_text,
                        max_tokens = out_token,
                        temperature=0,
                        top_p=1.0,
                        frequency_penalty=0.0,
                        presence_penalty=0.0
                    )
                    # Print the generated summary
                    res = response["choices"][0]["text"]
                    st.success(res)
                    st.download_button('Download result', res)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass  
        else:
            st.warning("Not enough words to correct the description!")
        
        
# For "Restaurant Reviews"
    elif selected == "Restaurant Reviews":
        st.subheader("Generate reviews for Restaurant / Cafe")
        # Create Text Area Widget to enable user to enter texts
        article_text = "Write a restaurant review based on these notes:\n\n"
        st.text("Write a restaurant review based on these notes: Name: The Blue Wharf Lobster great, noisy, service polite, prices good.")
        
        article_text1 = st.text_area("Name of the restaurant?")
        article_text2 = st.text_area("Enter your short feedback")
        article_text3 = st.text_input("Enter your desired name", 'John Doe')
        # First, we'll use an if statement to determine the desired output size 
        # and set the out_token variable accordingly:


        # Next, we'll add a check to make sure that the input text is long enough 
        # to summarize, and display a warning if it is not:
        if len(article_text)>1:
            if st.button("Generate Review",type='primary'):
                pomm = "Your name is "+ article_text3 + ". " + article_text + "Name: " + article_text1 + "\n" + article_text2 + "\n\nReview:"
                
                report = []
                res_box = st.empty()
                # Looping over the response
                try:
                    for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                            messages=[
                                                                {"role": "system", "content": "You are an AI assistant custom trained and created by Alpha AI. You are proficient at everytask."},
                                                                {"role": "user", "content": pomm}
                                                                ],
                                                        max_tokens=64, 
                                                        temperature = 0.6,
                                                        presence_penalty = 0.1,
                                                        frequency_penalty = 0.1,
                                                        
                                                        stream = True):
                        # join method to concatenate the elements of the list 
                        # into a single string, 
                        # then strip out any empty strings
                        # print(resp)
                        if "content" in resp["choices"][0]["delta"]:
                            report.append(resp["choices"][0]["delta"]["content"])
                            # report.append(resp.choices[0].delta.content)
                            result = "".join(report).strip()
                            # result = result.replace("\n", "")   
                            # st.success(f'{result}')     
                            res_box.markdown(f'{result}') 
                        else:
                            pass
                    st.text("Review by: " + article_text3)
                    # st.download_button('Download result', report)
                    # # Use GPT-3 to generate a summary of the article
                    # response = openai.Completion.create(
                    #     engine="text-davinci-003",
                    #     prompt= ,
                    #     temperature=0.5,
                    #     max_tokens=64,
                    #     top_p=1.0,
                    #     frequency_penalty=0.0,
                    #     presence_penalty=0.0
                    #     )
                    # # Print the generated summary
                    # res = response["choices"][0]["text"]
                    # st.success(res)
                    # st.download_button('Download result', res)
                except openai.error.APIError as e:
                    #Handle API error here, e.g. retry or log
                    print(f"OpenAI API returned an API Error: {e}")
                    pass
                except openai.error.APIConnectionError as e:
                    #Handle connection error here
                    print(f"Failed to connect to OpenAI API: {e}")
                    pass
                except openai.error.RateLimitError as e:
                    #Handle rate limit error (we recommend using exponential backoff)
                    print(f"OpenAI API request exceeded rate limit: {e}")
                    pass  
        else:
            st.warning("Not enough clarity to generate reviews!")
    # IMAGE GENERATOR
    elif selected == "Image Generator":
        genre = st.radio(
        "What type of content do you want to generate?",
        ('Dalle', 'Stable Diffusion'))
        if genre == 'Dalle':
            # Set up Streamlit app
            st.subheader("Image Generator - Generating 4 Variants")

            # Prompt user for image prompt
            prompt = st.text_input("Enter image prompt:")

            # Prompt user for image size
            size = st.radio("Select image size:", list(image_sizes.keys()))

            # Generate and display images
            if st.button('Generate Image', type="primary"):
                with st.spinner(text="Work in Progress... please wait"):
                    col1, col2 = st.columns(2)
                    with col1:
                        image1 = generate_image(prompt, image_sizes[size])
                        st.image(image1, caption="Generated image 1", use_column_width=True)
                        image3 = generate_image(prompt, image_sizes[size])
                        st.image(image3, caption="Generated image 3", use_column_width=True)
                    with col2:
                        image2 = generate_image(prompt, image_sizes[size])
                        st.image(image2, caption="Generated image 2", use_column_width=True)
                        image4 = generate_image(prompt, image_sizes[size])
                        st.image(image4, caption="Generated image 4", use_column_width=True)
                
                # # Display images as a gallery
                # images = [image1, image2, image3, image4]
                # st.image(images, caption=["Generated image 1", "Generated image 2", "Generated image 3", "Generated image 4"], width=200)
            else:
                st.warning("Please enter an image prompt.")

            st.text("Save Image by Right Click")
        elif genre == 'Stable Diffusion':
            st.write("Go to www.sdui.alphaai.biz to access the Stable Diffusion Toolkit!")
    # BLOG GENERATOR
    elif selected == "Blog Generator":
        st.subheader('AI Blog Generator')
        # st.text("Note: Audio will be only generated in the non-streaming mode.")
        topic = st.text_input('Enter a topic to generate blog Topic on: ')
        button_blogtopics = st.button('Generate Blog Topics', type="primary")
        res_box1 = st.container()
        if button_blogtopics:
            st.markdown("----")
            topic_ins = "Generate quality blog titles on " + str(topic)
            res_box1.write(generate_content_blog(topic_ins))
            st.markdown("----")

        topic_blog = st.text_input('Enter a topic to generate blog outline and content on: ')
        # stream_check = st.radio("Stream the result in realtime or view it in one go!",("NO Streaming","Streaming"))
        
        if st.button("Submit", type="primary"):
            st.markdown("----")
            res_box2 = st.empty()
            outline = "Generate a detailed blog on the topic " + str(topic_blog) + "."
            report = []
            # Looping over the response
            try:
                for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                        {
                            "role": "system", "content": """
                            Act as an expert blog writer. You write extremely well and long blogs. You take into account the SEO aspect of the content you write. Follow the context to generate blogs and keep in mind the number of characters specified in the context.


    Context:

    Add five keywords for each subheading.

    Title

    Write the title of the blog.

    Write the Introduction to the blog in minimum 1500 characters.

    Subheading

    Generate content for subheading in minimum 1500 characters.

    Subheading

    Generate content for subheading in minimum 1500 characters.

    Subheading

    Generate content for subheading in minimum 1500 characters.

    Subheading

    Generate content for subheading in minimum 1500 characters.

    Subheading

    Generate content for subheading in minimum 1500 characters.

    Conclusion

    Write the conclusion to the blog in minimum 1000 characters.

                            """},
                        {"role": "user", "content": outline}
                        ],
                                                    max_tokens=3000, 
                                                    temperature = 0.6,
                                                    presence_penalty = 0.1,
                                                    frequency_penalty = 0.1,
                                                    
                                                    stream = True):
                    if "content" in resp["choices"][0]["delta"]:
                        report.append(resp["choices"][0]["delta"]["content"])
                        # report.append(resp.choices[0].delta.content)
                        result = "".join(report).strip()
                        # result = result.replace("\n", "")        
                        res_box2.markdown(f'{result}') 
                    else:
                        pass
            except openai.error.APIError as e:
                #Handle API error here, e.g. retry or log
                print(f"OpenAI API returned an API Error: {e}")
                pass
            except openai.error.APIConnectionError as e:
                #Handle connection error here
                print(f"Failed to connect to OpenAI API: {e}")
                pass
            except openai.error.RateLimitError as e:
                #Handle rate limit error (we recommend using exponential backoff)
                print(f"OpenAI API request exceeded rate limit: {e}")
                pass  
    # New tools 15th March 23
    elif selected == "Content Paraphraser":
        st.subheader('AI Content Paraphraser (Generation Limit - upto 5000 characters)')
        # st.text("Note: Audio will be only generated in the non-streaming mode.")
        topic = st.text_input('Enter content you would like to paraphrase')
        
        if st.button("Submit", type="primary"):
            res_box3 = st.empty()
            outline = "Generate a detailed blog on the topic " + str(topic) + "."
            report3 = []
            # Looping over the response
            try:
                for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                        {
                            "role": "system", "content": "You are now ParaGPT. Your purpose is to paraphrase text. I will provide you with text, and then you will change up the words, the sentence structure, add or remove figurative language, etc and change anything necessary in order to paraphrase the text. However, it is extremely important you do not change the original meaning/significance of the text. "},
                        {"role": "user", "content": outline}
                        ],
                                                    max_tokens=3000, 
                                                    temperature = 0.6,
                                                    presence_penalty = 0.1,
                                                    frequency_penalty = 0.1,
                                                    
                                                    stream = True):
                    if "content" in resp["choices"][0]["delta"]:
                        report3.append(resp["choices"][0]["delta"]["content"])
                        # report.append(resp.choices[0].delta.content)
                        result = "".join(report3).strip()
                        # result = result.replace("\n", "")        
                        res_box3.markdown(f'{result}') 
                    else:
                        pass  
            except openai.error.APIError as e:
                #Handle API error here, e.g. retry or log
                print(f"OpenAI API returned an API Error: {e}")
                pass
            except openai.error.APIConnectionError as e:
                #Handle connection error here
                print(f"Failed to connect to OpenAI API: {e}")
                pass
            except openai.error.RateLimitError as e:
                #Handle rate limit error (we recommend using exponential backoff)
                print(f"OpenAI API request exceeded rate limit: {e}")
                pass  
    elif selected == "Story Teller":
        st.subheader('AI Story Teller (Generation Limit - upto 5000 characters)')
        # st.text("Note: Audio will be only generated in the non-streaming mode.")
        topic = st.text_area('Enter the topic for generating the story.', max_chars = 500)
        
        if st.button("Submit", type="primary"):
            res_box4 = st.empty()
            outline = "I want you to act as a storyteller. You will come up with entertaining stories that are engaging, imaginative and captivating for the audience. It can be fairy tales, educational stories or any other type of stories which has the potential to capture people's attention and imagination. Depending on the target audience, you may choose specific themes or topics for your storytelling session. Now i want you to write about " + str(topic) + "."
            report4 = []
            # Looping over the response
            try:
                for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                        {"role": "user", "content": outline}
                        ],
                                                    max_tokens=3000, 
                                                    temperature = 0.6,
                                                    presence_penalty = 0.1,
                                                    frequency_penalty = 0.1,
                                                    
                                                    stream = True):
                    if "content" in resp["choices"][0]["delta"]:
                        report4.append(resp["choices"][0]["delta"]["content"])
                        # report.append(resp.choices[0].delta.content)
                        result = "".join(report4).strip()
                        # result = result.replace("\n", "")        
                        res_box4.markdown(f'{result}') 
                    else:
                        pass
            except openai.error.APIError as e:
                #Handle API error here, e.g. retry or log
                print(f"OpenAI API returned an API Error: {e}")
                pass
            except openai.error.APIConnectionError as e:
                #Handle connection error here
                print(f"Failed to connect to OpenAI API: {e}")
                pass
            except openai.error.RateLimitError as e:
                #Handle rate limit error (we recommend using exponential backoff)
                print(f"OpenAI API request exceeded rate limit: {e}")
                pass  
    elif selected == "Social Media Copywriting":
        st.subheader('AI Social Media Copywriting (Generation Limit - upto 5000 characters)')
        # st.text("Note: Audio will be only generated in the non-streaming mode.")
        social_plat = st.radio("Which platform",('LinkedIn', 'Instagram', 'Facebook'))
        purpose = st.text_area('Purpose of the post. Be explicit.')
        keywords = st.text_input("Enter the required keywords in a comma separated form.", value = "Eg. Abc, Def, Ghi...")
        rules = st.text_input("Enter the required rules to follow to make the post in a comma separated form.")
        
        outline_smc = "Create a compelling, eye-catching " + social_plat + "post for " + purpose + "." + "The post should include " + keywords + ". " +  "Also, it should follow these rules: " + rules + "."
        
        if st.button("Submit", type="primary"):
            res_box5 = st.empty()
            report5 = []
            # Looping over the response
            try:
                for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                        messages=[
                        {"role": "user", "content": outline_smc}
                        ],
                                                    max_tokens=3000, 
                                                    temperature = 0.6,
                                                    presence_penalty = 0.1,
                                                    frequency_penalty = 0.1,
                                                    
                                                    stream = True):
                    if "content" in resp["choices"][0]["delta"]:
                        report5.append(resp["choices"][0]["delta"]["content"])
                        # report.append(resp.choices[0].delta.content)
                        result = "".join(report5).strip()
                        # result = result.replace("\n", "")        
                        res_box5.markdown(f'{result}') 
                    else:
                        pass      
            except openai.error.APIError as e:
                #Handle API error here, e.g. retry or log
                print(f"OpenAI API returned an API Error: {e}")
                pass
            except openai.error.APIConnectionError as e:
                #Handle connection error here
                print(f"Failed to connect to OpenAI API: {e}")
                pass
            except openai.error.RateLimitError as e:
                #Handle rate limit error (we recommend using exponential backoff)
                print(f"OpenAI API request exceeded rate limit: {e}")
                pass  
    elif selected == "Marketing Campaign":
        st.subheader('Generate content for various marketing scenarios.')
        option = st.selectbox('What would you like to do today??',
            (
            'Act As An Advertiser',
            'Write AIDAs',
            'Instagram Caption',
            'Persuasive Texts',
            'Influencer Marketing Campaign',
            'Emotional Appeal Campaign',
            'Instagram Story Ideas',
            'Generate video script',
            'Lean Startup Methodology'
            ))
        if option =="Act As An Advertiser":
            prompt_adv1 = "I want you to act as an advertiser. You will create a campaign to promote a product or service of your choice. You will choose a target audience, develop key messages and slogans, select the media channels for promotion, and decide on any additional activities needed to reach your goals. My first suggestion request is "
            prompt_adv2 = st.text_input("What do you need an advertising campaign for?")
            final_pmt = prompt_adv1 + prompt_adv2
        elif option =="Write AIDAs":
            st.text("AIDAS stands for Attention, Interest, Desire, Action, and Satisfaction.")
            prompt_aidas = "Write an AIDA for "
            input_aidas = st.text_input("Enter the topic to generate it AIDAs")
            final_pmt = prompt_aidas + input_aidas
        elif option =='Instagram Caption':
            prompt_ic = "Write an attractive Instagram Caption "
            input_ic = st.text_input("Insert Product description...")
            final_pmt = prompt_ic + input_ic
        elif option =='Persuasive Texts':
            option_text = st.selectbox('Choose the type of text:',('Copy','Email','Blog','Newsletter','Article'))
            # type_of_text = st.text_input("Type of persuasiveness, elaborate.")
            ideal_customer_persona = st.text_input("Please elaborate on your ideal customer persona.")
            type_of_prod = st.text_input("Elaborate on the type of product/program/subscription.")
            prompt_ic = "I'm looking for a " + option_text + "that will convince " + ideal_customer_persona + " to sign up for my " + type_of_prod + "by explaining the value it brings and the benefits they'll receive."
            final_pmt = prompt_ic
        elif option =='Influencer Marketing Campaign':
            type_of_content = st.text_input("Type of content needed from the influencer.")
            ideal_customer_persona = st.text_input("Please elaborate on your ideal customer persona.")
            type_of_prod = st.text_input("Elaborate on the type of product/program/subscription.")
            influencer_type = st.text_input("Tell us a bit about your ideal type of influencer.")
            final_pmt = "I need an influencer marketing campaign outline that will engage my "+ ideal_customer_persona+ " with " + type_of_content + " from " + influencer_type +  " who can showcase the unique features and benefits of our " + type_of_prod + " in a fun and creative way."
        elif option =='Emotional Appeal Campaign':
            emotional_appeal = st.text_input("Describe the type of emotional appeal.")
            ideal_customer_persona = st.text_input("Please elaborate on your ideal customer persona.")
            type_of_prod = st.text_input("Elaborate on the type of product/program/subscription.")
            type_of_emotion = st.text_input("List down ',' seperated emotions ideal for your campaign.")
            prompt_ea = "Using the 'Emotional Appeal' framework, please write a marketing campaign outline that uses "+ emotional_appeal + " to persuade "+ ideal_customer_persona + "to take action and purchase our " + type_of_prod + ". Choose any of the emotions such as " + type_of_emotion + "."
            final_pmt = prompt_ea
        elif option =='Instagram Story Ideas':
            ideal_customer_persona = st.text_input("Please elaborate on your ideal customer persona.")
            prompt_is = "I need an Instagram story idea that will provide a sneak peek of upcoming products or services and create a sense of anticipation and excitement for my "+ ideal_customer_persona +" with a clear and compelling call to action."
            final_pmt = prompt_is
        elif option =='Generate video script':
            duration = st.text_input("Enter the duration of the required video.", value = "Eg. 4 minutes or 30 second")
            type_of_prod = st.text_input("Elaborate on the type of product/program/subscription.")
            prompt_gvs = "Generate an " + duration + " video script for a YouTube and Instagram video about our newest " + type_of_prod
            final_pmt = prompt_gvs
        elif option =='Lean Startup Methodology':
            rules = st.text_input("Please describe your product or service.")
            ideal_customer = st.text_input("Please describe your ideal customer.")
            outline_smc = "Outline a marketing campaign using the 'Lean Startup Methodology' framework that employs rapid experimentation and iteration to identify a scalable business model for our " + rules + "that appeals to our " + ideal_customer + ". Explain the steps taken to validate assumptions and obtain customer feedback to guide the marketing strategy."
            final_pmt = outline_smc
        else:
            st.text("Please select an option!")
        if st.button("Submit", type="primary"):
                    res_box6 = st.empty()
                    report6 = []
                    # Looping over the response
                    try:
                        for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                                messages=[
                                {
                                    "role": "system", "content": "Act As An AI Advertiser custom trained and created by Alpha AI. You are proficient at everytask.",
                                    "role": "user", "content": final_pmt
                                }
                                ],
                                                            max_tokens=4000, 
                                                            temperature = 0.7,
                                                            presence_penalty = 0.1,
                                                            frequency_penalty = 0.1,
                                                            
                                                            stream = True):
                            if "content" in resp["choices"][0]["delta"]:
                                report6.append(resp["choices"][0]["delta"]["content"])
                                # report.append(resp.choices[0].delta.content)
                                result = "".join(report6).strip()
                                # result = result.replace("\n", "")        
                                res_box6.markdown(f'{result}') 
                            else:
                                pass  
                    except openai.error.APIError as e:
                        #Handle API error here, e.g. retry or log
                        print(f"OpenAI API returned an API Error: {e}")
                        pass
                    except openai.error.APIConnectionError as e:
                        #Handle connection error here
                        print(f"Failed to connect to OpenAI API: {e}")
                        pass
                    except openai.error.RateLimitError as e:
                        #Handle rate limit error (we recommend using exponential backoff)
                        print(f"OpenAI API request exceeded rate limit: {e}")
                        pass     
    # New tools 15th March 23            
    elif selected == "PPT Generator":
        st.subheader("PPT Generator")
        topic = st.text_input('Enter a relevant topic')
        # api_key = st.text_input('Enter your API key')
        slides_sst = st.slider("Select the number of slides:", 1, 20, 5)
        slide_color = st.selectbox("Select the background color of the presentation:", ["White", "Black", "Red", "Green", "Blue"], key = "sbox1")
        # Convert the selected color to lowercase
        slide_colors = slide_color.lower()
        font_color = st.selectbox("Select the color of the font:", ["White", "Black", "Red", "Green", "Blue"], key = "sbox2")
        # Convert the selected color to lowercase
        font_colors = font_color.lower()
        button_blogtopics = st.button('Generate', type="primary")
        if button_blogtopics:
            st.text("Please wait for your slides to be made and displayed")
            b,binary_output = generate_ppt(topic, slides_sst,slide_colors,font_colors)
            st.markdown(b)
            string_path = b
            st.markdown("----")
            # f_path = Path(b)
            # print(type(f_path))
            path = os.path.normpath(b)
            list_files = subprocess.run(["libreoffice","--headless","--convert-to","pdf","--outdir", "output/",path])
            print("The exit code was: %d" % list_files.returncode)
            
            
            # PDF Path
            string_path = string_path[:-5]
            string_path = string_path[6:]
            string_path = "output/" + string_path + ".pdf"
            path_pdf = os.path.normpath(string_path)
            def show_pdf(file_val = path_pdf):
                with open(file_val,"rb") as f:
                    base64_pdf = base64.b64encode(f.read()).decode('utf-8')
                pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
                st.markdown(pdf_display, unsafe_allow_html=True)
            show_pdf(path_pdf)
            st.download_button(label='Click to download PowerPoint',data=binary_output.getvalue(),file_name=path)    
    # Legal assistant
    elif selected == "AD Generator":
        st.subheader("Generate ADs using alphaGPT")
        st.success("The uploaded image should be in 1:1 ratio else it will result in an error.")
        uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

        if uploaded_file is not None:
            # Read the uploaded image and display it
            image = Image.open(uploaded_file)
            # st.image(image, caption="Original Image", use_column_width=True)
            output_path = 'output_dalle_image.png'
            output_path2 = 'output_dalle_image2.png'
            input_save = 'input_dalle_img.png'
            image.save(input_save)
            # input = Image.open(input_path),False,240,10,20,None,False,False
            output2 = remove(image, only_mask=True)
            # output = remove(image,alpha_matting=True)
            output = remove(image)
            output.save(output_path)
            output2.save(output_path2)
            
            # Display the original and processed images side by side
            col1, col2, col3 = st.columns(3)
            with col1:
                st.image(image, caption="Original Image", use_column_width=True)
            with col2:
                st.image(output, caption="Masked Foreground", use_column_width=True)
            with col3:
                st.image(output2, caption="Masked Background", use_column_width=True)
            
             # Create Radio Buttons
            output_mask_selected = st.radio( label = "What type of mask", 
                                options= ["Masked Foreground", "Masked Background"]
                            )
            if output_mask_selected == "Masked Foreground":
                mask_img = output_path
            elif output_mask_selected == "Masked Background":
                mask_img = output_path2
                
            # Prompt user for image prompt
            prompt = st.text_input("Enter image prompt:")

            # Prompt user for image size
            size = st.radio("Select image size:", list(image_sizes.keys()))
            
            input_img = input_save
            # mask_img = output_path
            # Generate and display images
            if st.button('Generate Image', type="primary"):
                with st.spinner(text="Work in Progress... please wait"):
                    col1, col2 = st.columns(2)
                    with col1:
                        image1 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image1, caption="Generated image 1", use_column_width=True)
                        image3 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image3, caption="Generated image 2", use_column_width=True)
                        image5 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image5, caption="Generated image 3", use_column_width=True)
                    with col2:
                        image2 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image2, caption="Generated image 4", use_column_width=True)
                        image4 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image4, caption="Generated image 5", use_column_width=True)
                        image6 = generate_image_edit_dalle(prompt, image_sizes[size],input_img,mask_img)
                        st.image(image6, caption="Generated image 6", use_column_width=True)
                
                # # Display images as a gallery
                # images = [image1, image2, image3, image4]
                # st.image(images, caption=["Generated image 1", "Generated image 2", "Generated image 3", "Generated image 4"], width=200)
            else:
                st.warning("Please enter an image prompt.")
        st.warning("Here are some examples for the prompts!")
        st.info("Beautiful pond surrounded by lavender and lilac, dappled sunbeams illuminating the scene, stunning photograph from lansdcaping magazine.")
        st.info("A digital illustration of glowing toadstools beside a pond with lilypads, 4k, detailed, trending in artstation")
        st.info("An oil painting of a mechanical clockwork flying machine from the renaissance, Gorgeous digital painting, amazing art, artstation 3, realistic")
        st.info("Rubber Duck Aliens visiting the Earth for the first time, hyper-realistic, cinematic, detailed")
        st.info("photo of an extremely cute alien fish swimming an alien habitable underwater planet, coral reefs, dream-like atmosphere, water, plants, peaceful, serenity, calm ocean, tansparent water, reefs, fish, coral, inner peace, awareness, silence, nature, evolution --version 3 --s 42000 --uplight --no text, blur")
        st.info("2 medieval warriors ::0.4 travelling on a cliff to a background castle , view of a coast line landscape , English coastline, Irish coastline, scottish coastline, perspective, folklore, King Arthur, Lord of the Rings, Game of Thrones. Photographic, Photography, photorealistic, concept art, Artstation trending , cinematic lighting, cinematic composition, rule of thirds , ultra-detailed, dusk sky , low contrast, natural lighting, fog, realistic, light fogged, detailed, atmosphere hyperrealistic , volumetric light, ultra photoreal, | 35mm| , Matte painting, movie concept art, hyper-detailed, insanely detailed, corona render, octane render, 8k  --no blur")
    
    elif selected == "Legal Aid":
        
        # Define the categories and options
        categories = ['Legal Research', 'Drafting Legal Documents', 'Contract Drafting', 'Legal Forms and Documents', 'Legal Analysis','Legal Writing','Client Questions','Legal Procedures','Legal Terminology','Legal Citations']
        options = {
            'Legal Research': [
        "Provide examples of [legal case/issue]",
        "What are the latest developments in [legal area]?",
        "What are the relevant laws or regulations regarding [legal issue]?",
        "What is the history of [legal case/issue]?",
        "What is the legal definition of [legal term or phrase]",
        "What is the legal precedent for [legal case/issue]?",
        "What are the pros and cons of [legal argument/position]?",
        "What is the standard for [legal issue] in [jurisdiction]?",
        "What are the key legal arguments in [legal case/issue]?",
        "Provide a summary of [case name]",
        "Summarize the following contract: [copy and paste contract]",
        "What is the statute of limitations for [type of case] in [state or jurisdiction]?",
        "Outline the steps involved in [legal process or procedure]",
        "What is the significance of [case name]?"
                ],
            'Drafting Legal Documents': [
        "Draft a [legal document type] for [legal scenario]",
        "Draft a [legal document type] for [party 1] and [party 2]",
        "Write a [legal document type] for [legal issue]",
        "Write a [legal document type] for [client name]",
        "What should be included in a [legal document type]?",
        "What are the standard clauses for [legal document type]?",
        "What are the necessary elements for [legal document type]?",
        "What are the typical terms for [legal document type]?",
        "What are the recommended provisions for [legal document type]?",
        "Provide a template for [legal document name]",
        "What are the most common mistakes to avoid when drafting a [legal document name]?"
                ],
            'Contract Drafting': [
        "Draft a [contract type] between [party 1] and [party 2] for [consideration]",
        "Draft a non-disclosure agreement (NDA) between [party 1] and [party 2]",
        "Draft a confidentiality agreement between [party 1] and [party 2]",
        "Draft an employment contract for [position] with [salary and benefits information]",
        "Draft a service agreement between [party 1] and [party 2]",
        "Draft a lease agreement for [property description]",
        "Draft a purchase agreement for [item/property description]"
                ],
            'Legal Forms and Documents': [
        "Draft a power of attorney form",
        "Draft a will",
        "Draft a living trust",
        "Draft a contract for [contract type]",
        "Draft a non-disclosure agreement (NDA)",
        "Draft a confidentiality agreement",
        "Draft an employment contract",
        "Draft a partnership agreement",
        "Draft a prenuptial agreement",
        "Draft a divorce agreement",
        "Draft a property settlement agreement"   
            ],
            'Legal Analysis': [
        "What are the strengths and weaknesses of [legal argument]?",
        "What are the possible outcomes of [legal issue]?",
        "What is the likelihood of [legal outcome]?",
        "What is the impact of [legal issue] on [affected parties]?",
        "What are the alternative solutions for [legal issue]?",
        "What is the best course of action for [legal issue]?",
        "What are the risks associated with [legal issue]?",
        "What is the likelihood of success for [legal issue]?",
        "What is the legal basis for [legal argument]?",
        "What is the legal precedent for [legal argument]?",
        "What are the legal arguments for and against [legal issue]?"    
            ],
            'Legal Writing':[
        "Write a memo on [legal issue]",
        "Write a brief on [legal issue]",
        "Rephrase this clause: [clause]",
        "Write an argument for [legal issue]",
        "Write a legal opinion on [legal issue]",
        "What is the appropriate tone for [legal writing type]?",
        "What is the standard structure for [legal writing type]?",
        "What are the key points to include in [legal writing type]?",
        "What are the persuasive strategies for [legal writing type]?",
        "What is the format for [legal writing type]?",
        "Proofread the following: [copy and paste contract]",
        "What are the best practices for [legal writing type]?"
            ],
            'Client Questions':[
        "What is the best way to [legal issue]?",
        "What are the options for [legal issue]?",
        "What is the process for [legal issue]?",
        "What are the costs associated with [legal issue]?",
        "What is the estimated time frame for [legal issue] resolution?",
        "What is the likelihood of success for [legal issue]?",
        "What are the potential consequences of [legal issue]?",
        "What are the necessary steps to take for [legal issue]?",
        "What are the legal requirements for [legal issue]?",
        "What is the most common outcome for [legal issue]?"
            ],
            'Legal Procedures':[
        "What is the proper procedure for [legal action] in [jurisdiction]?",
        "What are the necessary forms for [legal action] in [jurisdiction]?",
        "What is the filing deadline for [legal action] in [jurisdiction]?",
        "What is the fee for [legal action] in [jurisdiction]?",
        "What is the estimated time frame for [legal action] in [jurisdiction]?",
        "What is the expected outcome for [legal action] in [jurisdiction]?",
            ],
            'Legal Terminology':[
        "What is the context in which [legal term] is typically used?",
        "What is the origin of [legal term]?",
        "What are the synonyms of [legal term]?",
        "What are the related terms to [legal term]?",
        "What is the meaning of [legal term]?",
        "What is the difference between [legal term 1] and [legal term 2]?",
        "What is the definition of [legal term] in [jurisdiction]?",
        "What is the explanation of [legal form or document]",
        "What are the benefits of using [legal form or document]",
        "What are the requirements for [legal form or document] in [jurisdiction]"
            ],
            'Legal Citations':[
        "What is the correct format for a [citation style] citation of [legal source]?",
        "What is the [citation style] citation for [legal case]?",
        "What is the [citation style] citation for [legal statute]?",
        "What is the [citation style] citation for [legal regulation]?",
        "What is the [citation style] citation for [legal treatise]?"
            ]
        }
        
        
        
        image_law = "law.png"
        col1, col2 = st.columns([1,3])
        with col2:
            st.title('Legal Information Finder')
        with col1:
            st.image(image_law,width=120)
            
        # Select a category
        category = st.selectbox("Select a category", categories)

        # Select an option
        option = st.selectbox(f"Select an option for {category}", options[category])

        # Get user input
        prompt = st.text_area(f"Prompt editor", value = option)

        # Generate text using OpenAI API
        if st.button("Submit", type="primary"):
            with st.spinner(text="Generating text..."):
                text = generate_legal_content(prompt)
                # st.write("Generated text:")
                st.write(text)
                ext = dt = datetime.now()
                result_aud6 = text_to_speech(f"{text}",ext)
                audio_file = open(f"temp/{result_aud6}.mp3", "rb")
                audio_bytes = audio_file.read()
                st.markdown(f"Your audio:")
                st.audio(audio_bytes, format="audio/mp3", start_time=0)
        
    elif selected == "Travel and Tourism":
        st.subheader('AI Toolkit - Travel & Tourism.')
        st.text("travel-oriented things including planning trips, setting aside budgets, suggesting places, and a lot more.")
        option = st.selectbox('What would you like to do today??',
            (
            'Travel Guide',
            'Suggest Landmarks',
            'Imagine your destination',
            'Plan trips',
            'Detailed location suggestions'
            ))
        if option =="Travel Guide":
            prompt_adv1 = "I want you to act as a travel guide. I will write you my location and you will suggest places to visit near my location. In some cases, I will also give you the type of places I will visit. You will also suggest me places of a similar type that are close to my first location. My first suggestion request is "
            prompt_adv2 = st.text_input("Enter location and purpose and a nearby places would be recommended to you.", value = "I am in London and I want to visit only museums.")
            final_pmt = prompt_adv1 + prompt_adv2
        elif option =="Suggest Landmarks":
            place_visit = st.text_input("Enter the place of visit.")
            country_visit = st.text_input("Enter the country where that place exists.")
            prompt_aidas = "I'm planning on visiting " + place_visit + " in "+ country_visit + ". What are some of the landmarks I must see?"
            final_pmt = prompt_aidas
        elif option =='Imagine your destination':
            prompt_ic = "I want you to act as my time travel guide. I will provide you with the historical period or future time I want to visit and you will suggest the best events, sights, or people to experience. Do not write explanations, simply provide suggestions and any necessary information. My first request is "
            input_ic = st.text_input("Quote a request based on the example value...", value = "I want to visit the Renaissance period, can you suggest some interesting events, sights, or people for me to experience?")
            final_pmt = prompt_ic + input_ic
        elif option =='Plan trips':
            st.subheader('Let us plan your trip!')
            # Form for User Input
            st.subheader('Budget')
            budget = st.text_input("Enter your travel budget.", value = "$2000 dollars")
            
            st.subheader('Destination')
            destination = st.text_input('Destination', value='Eg. Dubai')
            
            st.subheader('Arriving from')
            source = st.text_input('Source', value='Eg. Mumbai')
            
            st.subheader('Duration')
            duration = st.text_input("Duration of the travel.", value = "4 days")
            
            add_info = st.text_area('Additional Information', height=200, value='I want to visit as many places as possible! (respect time)')
            final_pmt = "I have " + budget + " and travelling for " + duration + ". Plan a trip for me to " + destination + " from " + source + ". Please take into account the additional information as well which is " + add_info
        elif option =='Detailed location suggestions':
            st.text("Simply follow the value inside the textbox as an example...")
            type_of_content = st.text_input("Prompt", value = "I'm planning on visiting the UK for 20 days. Give me 10 cities I should visit while there.")
            final_pmt = type_of_content
        elif option =='General travel tips':
            st.text("Simply follow the value inside the textbox as an example...")
            type_of_content = st.text_input("Prompt", value = "What is the best time of year to visit Hawaii?")
            final_pmt = type_of_content
        else:
            st.text("Please select an option!")
        if st.button("Submit", type="primary"):
                    res_box6 = st.empty()
                    report6 = []
                    # Looping over the response
                    try:
                        for resp in openai.ChatCompletion.create(model="gpt-4o",
                                                                messages=[
                                {
                                    "role": "system", "content": "You are an AI Language model custom trained and created by Alpha AI. You are proficient at everytask.",
                                    "role": "user", "content": final_pmt
                                }
                                ],
                                                            max_tokens=4000, 
                                                            temperature = 0.7,
                                                            presence_penalty = 0.1,
                                                            frequency_penalty = 0.1,
                                                            
                                                            stream = True):
                            if "content" in resp["choices"][0]["delta"]:
                                report6.append(resp["choices"][0]["delta"]["content"])
                                # report.append(resp.choices[0].delta.content)
                                result = "".join(report6).strip()
                                # result = result.replace("\n", "")        
                                res_box6.markdown(f'{result}') 
                            else:
                                pass
                    except openai.error.APIError as e:
                        #Handle API error here, e.g. retry or log
                        print(f"OpenAI API returned an API Error: {e}")
                        pass
                    except openai.error.APIConnectionError as e:
                        #Handle connection error here
                        print(f"Failed to connect to OpenAI API: {e}")
                        pass
                    except openai.error.RateLimitError as e:
                        #Handle rate limit error (we recommend using exponential backoff)
                        print(f"OpenAI API request exceeded rate limit: {e}")
                        pass  
    elif selected == "Document Chat":
        st.subheader("Chat with your document!")
        st.markdown(
            """ 
                ####  πŸ—¨οΈ Chat with your PDF files πŸ“œ with `Conversational Buffer Memory`  
                > *powered by [LangChain]('https://langchain.readthedocs.io/en/latest/modules/memory.html#memory') + 
                [OpenAI]('https://platform.openai.com/docs/models/gpt-3-5') + [DataButton](https://www.databutton.io/)*
                ----
                """
        )

        st.markdown(
            """
            `openai`
            `langchain`
            `tiktoken`
            `pypdf`
            `faiss-cpu`
            
            ---------
            """
        )

        # # Set up the sidebar
        # st.sidebar.markdown(
        #     """
        #     ### Steps:
        #     1. Upload PDF File
        #     2. Enter Your Secret Key for Embeddings
        #     3. Perform Q&A

        #     **Note : File content and API key not stored in any form.**
        #     """
        # )

        # Allow the user to upload a PDF file
        uploaded_file = st.file_uploader("**Upload Your PDF File**", type=["pdf"])

        if uploaded_file:
            name_of_file = uploaded_file.name
            doc = parse_pdf(uploaded_file)
            pages = text_to_docs(doc)
            if pages:
                # Allow the user to select a page and view its content
                with st.expander("Show Page Content", expanded=False):
                    page_sel = st.number_input(
                        label="Select Page", min_value=1, max_value=len(pages), step=1
                    )
                    pages[page_sel - 1]
                # Allow the user to enter an OpenAI API key
                # api = st.text_input(
                #     "**Enter OpenAI API Key**",
                #     type="password",
                #     placeholder="sk-",
                #     help="https://platform.openai.com/account/api-keys",
                # )
                api = openai.api_key
                if api:
                    # Test the embeddings and save the index in a vector database
                    index = test_embed()
                    # Set up the question-answering system
                    qa = RetrievalQA.from_chain_type(
                        llm=OpenAI(openai_api_key=api),
                        chain_type = "map_reduce",
                        retriever=index.as_retriever(),
                    )
                    # Set up the conversational agent
                    tools = [
                        Tool(
                            name="Indian Legal QA System",
                            func=qa.run,
                            description="Useful for when you need to answer questions about the aspects asked. Input may be a partial or fully formed question.",
                        )
                    ]
                    prefix = """Have a conversation with a human, answering the following questions as best you can based on the context and memory available. 
                                You have access to a single tool:"""
                    suffix = """Begin!"

                    {chat_history}
                    Question: {input}
                    {agent_scratchpad}"""

                    prompt = ZeroShotAgent.create_prompt(
                        tools,
                        prefix=prefix,
                        suffix=suffix,
                        input_variables=["input", "chat_history", "agent_scratchpad"],
                    )

                    if "memory" not in st.session_state:
                        st.session_state.memory = ConversationBufferMemory(
                            memory_key="chat_history"
                        )

                    llm_chain = LLMChain(
                        llm=OpenAI(
                            temperature=0, openai_api_key=api, model_name="gpt-4o"
                        ),
                        prompt=prompt,
                    )
                    agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
                    agent_chain = AgentExecutor.from_agent_and_tools(
                        agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
                    )

                    # Allow the user to enter a query and generate a response
                    query = st.text_input(
                        "**What's on your mind?**",
                        placeholder="Ask me anything from {}".format(name_of_file),
                    )

                    if query:
                        with st.spinner(
                            "Generating Answer to your Query : `{}` ".format(query)
                        ):
                            res = agent_chain.run(query)
                            st.info(res, icon="πŸ€–")

                    # Allow the user to view the conversation history and other information stored in the agent's memory
                    with st.expander("History/Memory"):
                        st.session_state.memory