Spaces:
Sleeping
Sleeping
__import__('pysqlite3') | |
import sys | |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
import streamlit as st | |
from PIL import Image | |
import whisper | |
import torch | |
import os | |
from streamlit_lottie import st_lottie | |
from pytube import YouTube | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.document_loaders import DataFrameLoader | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.llms import OpenAI | |
import pandas as pd | |
import requests | |
st.set_page_config(layout="centered", page_title="Youtube QnA") | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
def load_lottieurl(url: str): | |
try: | |
r = requests.get(url) | |
if r.status_code != 200: | |
return None | |
return r.json() | |
except Exception as e: | |
st.error(f"Failed to load Lottie animation: {e}") | |
return None | |
url_lottie1 = "https://lottie.host/d860aaf2-a646-42f2-8a51-3efe3be59bf2/tpZB5YYkuT.json" | |
url_lottie2 = "https://lottie.host/93dcafc4-8531-4406-891c-89c28e4f76e1/lWpokVrjB9.json" | |
lottie_hello1 = load_lottieurl(url_lottie2) | |
place1 = st.empty() | |
logo1 = "aai_white.png" | |
logo2 = "alphaGPT-2k.png" | |
logo3 = "banner.png" | |
with place1.container(): | |
st.header("Youtube Question Answering Bot") | |
anima1, anima2 = st.columns([1,1]) | |
with anima1: | |
st.image("logo.png", width=300, use_column_width=True) | |
with anima2: | |
st_lottie( | |
lottie_hello1, | |
speed=1, | |
reverse=False, | |
loop=True, | |
quality="high", | |
height=250, | |
width=250, | |
key=None, | |
) | |
def extract_and_save_audio(video_URL, destination, final_filename): | |
try: | |
video = YouTube(video_URL) | |
audio = video.streams.filter(only_audio=True).first() | |
output = audio.download(output_path=destination) | |
_, ext = os.path.splitext(output) | |
new_file = final_filename + '.mp3' | |
os.rename(output, new_file) | |
return new_file | |
except Exception as e: | |
st.error(f"Failed to extract audio: {e}") | |
return None | |
def chunk_clips(transcription, clip_size): | |
texts = [] | |
sources = [] | |
for i in range(0, len(transcription), clip_size): | |
clip_df = transcription.iloc[i:i+clip_size, :] | |
text = " ".join(clip_df['text'].to_list()) | |
source = str(round(clip_df.iloc[0]['start']/60, 2)) + " - " + str(round(clip_df.iloc[-1]['end']/60, 2)) + " min" | |
texts.append(text) | |
sources.append(source) | |
return [texts, sources] | |
openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password") | |
if not openai_api_key: | |
st.info("Please add your OpenAI API key to continue.") | |
st.stop() | |
state = st.session_state | |
site = st.text_input("Enter your URL here") | |
if st.button("Build Model"): | |
if site is None: | |
st.info("Enter URL to Build QnA Bot") | |
elif site: | |
try: | |
my_bar = st.progress(0, text="Fetching the video. Please wait.") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
whisper_model = whisper.load_model("base", device=device) | |
video_URL = site | |
destination = "." | |
final_filename = "AlphaGPT" | |
audio_file = extract_and_save_audio(video_URL, destination, final_filename) | |
if audio_file is None: | |
st.error("Failed to extract audio. Please try again with a different URL.") | |
st.stop() | |
my_bar.progress(50, text="Transcribing the video.") | |
result = whisper_model.transcribe(audio_file, fp16=False, language='English') | |
transcription = pd.DataFrame(result['segments']) | |
chunks = chunk_clips(transcription, 50) | |
documents = chunks[0] | |
sources = chunks[1] | |
my_bar.progress(75, text="Building QnA model.") | |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources]) | |
model_name = "gpt-3.5-turbo" | |
retriever = vStore.as_retriever() | |
retriever.search_kwargs = {'k': 2} | |
llm = OpenAI(model_name=model_name, openai_api_key=openai_api_key) | |
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever) | |
my_bar.progress(100, text="Model is ready.") | |
st.session_state['crawling'] = True | |
st.session_state['model'] = model | |
st.session_state['site'] = site | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.error('Oops, crawling resulted in an error :( Please try again with a different URL.') | |
if site and ("crawling" in state): | |
st.header("Ask your data") | |
model = st.session_state['model'] | |
site = st.session_state['site'] | |
st.video(site, format="video/mp4", start_time=0) | |
user_q = st.text_input("Enter your questions here") | |
if st.button("Get Response"): | |
try: | |
with st.spinner("Model is working on it..."): | |
result = model({"question": user_q}, return_only_outputs=True) | |
st.subheader('Your response:') | |
st.write(result["answer"]) | |
st.subheader('Sources:') | |
st.write(result["sources"]) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.') | |