Spaces:
Running
Running
File size: 11,944 Bytes
a827007 ffa1281 a827007 c34077d ffa1281 282794e a827007 a905447 a827007 a905447 ffa1281 a827007 ffa1281 a905447 a827007 20e8864 a827007 ffa1281 20e8864 a827007 ffa1281 a827007 ffa1281 20e8864 a827007 20e8864 a827007 a905447 ffa1281 a827007 ffa1281 20e8864 a827007 ffa1281 a905447 ffa1281 a905447 a827007 ffa1281 a905447 a827007 1023f27 a905447 ffa1281 a905447 20e8864 1023f27 20e8864 ffa1281 1023f27 ffa1281 1023f27 20e8864 a827007 a905447 a827007 1023f27 a827007 a905447 a827007 ffa1281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import argparse
from functools import partial
import gradio as gr
from transformers import AutoConfig
from estimate_train_vram import training_vram_required, inference_vram_required
from vram_helpers import ModelConfig, TrainingConfig, filter_params_for_dataclass, PRECISION_TO_BYTES
ZERO_STAGES = [0, 1, 2, 3]
BATCH_SIZES = [1, 2, 4, 8, 16, 32, 64]
QUANTIZATION = PRECISION_TO_BYTES.keys()
OPTIMIZERS = ["adam", "adamw", "adamw_8bit", "sgd"]
HUGGINGFACE_URL_CONFIG = "https://huggingface.co/{}/resolve/main/config.json"
def parse_args():
parser = argparse.ArgumentParser(description="Parser for VRAM estimator")
parser.add_argument("--repo_id", type=str, default=None, help="HuggingFace repo id to automatically determine model settings")
parser.add_argument("--model_size", type=float, default=7, help="Model size (in billion parameters)")
parser.add_argument("--hidden_size", type=int, default=4096, help="Hidden size")
parser.add_argument("--sequence_length", type=int, default=8192, help="Sequence length")
parser.add_argument("--num_layers", type=int, default=32, help="Number of layers")
parser.add_argument("--num_heads", type=int, default=32, help="Number of heads")
parser.add_argument("--mixed_precision", action="store_false", help="Enable mixed precision for model training")
parser.add_argument("--precision", type=str, default="bf16", help="Model precision for training")
parser.add_argument("--micro_batch_size", type=int, default=4, help="Micro batch size (batch size per device/GPU)")
parser.add_argument("--zero_stage", type=int, default=0, choices=ZERO_STAGES, help="ZeRO optimization stage")
parser.add_argument("--gradient_checkpointing", action="store_false", help="Enable gradient checkpointing")
parser.add_argument("--optimizer", type=str, default="adamw", choices=OPTIMIZERS, help="Type of optimizer")
parser.add_argument("--num_gpus", type=int, default=4, help="Number of GPUs. Necessary for estimating ZeRO stages")
parser.add_argument("--cache_dir", type=str, default=None, help="HuggingFace cache directory to download config from")
parser.add_argument("--qlora", action="store_false", help="Enable QLoRA in case of finetuning")
parser.add_argument("--quantization", type=str, choices=QUANTIZATION, help="Type of quantization. Default is fp16/bf16")
parser.add_argument("--train", action="store_false", help="Flag to turn off train and run inference")
parser.add_argument("--total_sequence_length", type=int, default=0, help="Total sequence length (prompt + output) for inference")
parser.add_argument("--no-app", action="store_true", help="Launch gradio app. Otherwise, commandline output")
return parser
def download_config_from_hub(repo_id: str, cache_dir: str):
return AutoConfig.from_pretrained(pretrained_model_name_or_path=repo_id, cache_dir=cache_dir)
def scrape_config_from_hub(repo_id):
import requests
url = HUGGINGFACE_URL_CONFIG.format(repo_id)
try:
print(f"Fetching config.json from the following URL: {url}...")
response = requests.get(url)
response.raise_for_status() # Raises a HTTPError if the status is 4xx, 5xx
config = response.json()
print(f"Fetched the config for model {repo_id} succesfully!")
except requests.exceptions.HTTPError as errh:
print(f"HTTP Error: {errh}")
except requests.exceptions.ConnectionError as errc:
print(f"Error Connecting: {errc}")
except requests.exceptions.Timeout as errt:
print(f"Timeout Error: {errt}")
except requests.exceptions.RequestException as err:
print(f"Something went wrong: {err}")
except ValueError as e:
print(f"Error decoding JSON: {e}")
return config
def build_interface(estimate_vram_fn):
with gr.Blocks() as app:
gr.Markdown("## 1. Select HuggingFace model from a repository or choose your own model parameters")
model_option = gr.Radio(["Repo ID", "Model Parameters"], label="Select Input Type")
repo_id = gr.Textbox(label="Repo ID", visible=False, placeholder="mistralai/Mistral-7B-v0.1")
with gr.Row(visible=False) as model_params_row:
model_params = [gr.Slider(label="Model Size", minimum=0.1, maximum=400, step=0.1, value=7, info="Model size (in billion parameters)"),
gr.Slider(label="Hidden size", minimum=256, maximum=8192, step=128, value=4096, info="Hidden size"),
gr.Slider(label="Sequence length", minimum=128, maximum=128_000, step=256, value=8192, info="Sequence length"),
gr.Slider(label="Num layers", minimum=8, maximum=64, step=1, value=32, info="Number of layers"),
gr.Slider(label="Num heads", minimum=8, maximum=64, step=1, value=32, info="Number of attention heads")
]
def update_visibility_model_type(selected_option, choices):
"""
Dynamically update the visibility of components based on the selected option.
:param selected_option: The currently selected option
:param choices: Variable number of tuples, each containing (option_value, component)
:return: List of gr.update() calls corresponding to each choice
"""
updates = []
for option_value, _ in choices:
updates.append(gr.update(visible=(selected_option == option_value)))
return updates
model_option_choices = [("Repo ID", repo_id), ("Model Parameters", model_params_row)]
model_option.change(
fn=partial(update_visibility_model_type, choices=model_option_choices),
inputs=[model_option],
outputs=[repo_id, model_params_row],
)
gr.Markdown("## 2. Select training or inference parameters")
training_option = gr.Radio(["Training", "Inference"], label="Select Input Type")
with gr.Row(equal_height=True, visible=False) as training_params_row:
training_params = [gr.Dropdown(label="Micro batch size", choices=BATCH_SIZES, value=4, info="Micro batch size (batch size per device/GPU)"),
gr.Dropdown(label="ZeRO stage", choices=ZERO_STAGES, value=0, info="ZeRO optimization stage"),
gr.Dropdown(label="Gradient checkpointing", choices=[True, False], value=True, info="Enable gradient checkpointing"),
gr.Dropdown(label="Mixed precision", choices=[False, True], value=False, info="Enable mixed precision for model training"),
gr.Dropdown(label="Optimizer", choices=OPTIMIZERS, value="adamw", info="Type of optimizer"),
gr.Dropdown(label="QLoRA", choices=[False, True], value=False, info="Finetune with QLoRA enabled"),
gr.Slider(label="Num GPUs", minimum=1, maximum=256, step=1, value=4, info="Number of GPUs. Necessary for estimating ZeRO stages"),
]
with gr.Row(equal_height=True, visible=False) as inference_params_row:
inference_params = [gr.Dropdown(label="Quantization", choices=QUANTIZATION, value="fp16", info="Quantization of model"),
gr.Slider(label="Num GPUs", minimum=1, maximum=256, step=1, value=1, info="Number of GPUs"),
gr.Dropdown(label="Micro batch size", choices=BATCH_SIZES, value=1, info="Micro batch size (batch size per device/GPU)"),
gr.Slider(label="Total sequence length", minimum=128, maximum=128_000, value=0, info="Total sequence length to run (necessary for KV cache calculation")
]
training_option_choices = [("Training", inference_params_row), ("Inference", training_params_row)]
training_option.change(
fn=partial(update_visibility_model_type, choices=training_option_choices),
inputs=[training_option],
outputs=[training_params_row, inference_params_row],
)
submit_btn = gr.Button("Estimate!")
output = gr.Textbox(label="Total estimated VRAM per device/GPU (in GB)")
def create_combined_params_dict(repo_id, training_option, *values):
all_params = model_params + training_params + inference_params
combined_dict = {param.label.lower().replace(" ", "_"): value for param, value in zip(all_params, values)}
combined_dict["repo_id"] = repo_id
combined_dict["train"] = True if training_option.lower() == "training" else False # False -> inference
return combined_dict
submit_btn.click(
fn=lambda repo_id, training_option, *values: estimate_vram_fn(create_combined_params_dict(repo_id, training_option, *values)),
inputs=[repo_id, training_option] + model_params + training_params + inference_params,
outputs=[output]
)
return app
def estimate_vram(cache_dir, gradio_params):
model_config = ModelConfig(**filter_params_for_dataclass(ModelConfig, gradio_params))
training_config = TrainingConfig(**filter_params_for_dataclass(TrainingConfig, gradio_params))
# Update model config
if not gradio_params["repo_id"]:
return "No model selected!"
# By default, scrape config.json from hub
config = download_config_from_hub(gradio_params["repo_id"], cache_dir)# gradio_params["cache_dir"])
model_config.overwrite_with_hf_config(config.to_dict())
if training_config.train:
total_vram_dict = training_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['gradients']}GB (gradients) + {total_vram_dict['optimizer']}GB (optimizer) + {total_vram_dict['activations']}GB (activations)"
else: # inference
total_vram_dict = inference_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['kv_cache']}GB (KV cache) + {total_vram_dict['activations']}GB (activations)"
return output_str
if __name__ == "__main__":
parser = parse_args()
args = parser.parse_args()
# Launch gradio interface
if not args.no_app:
import gradio as gr
estimate_vram_fn = partial(estimate_vram, args.cache_dir)
interface = build_interface(estimate_vram_fn)
interface.launch()
# Command line interface
else:
model_config = ModelConfig(**filter_params_for_dataclass(ModelConfig, vars(args)))
training_config = TrainingConfig(**filter_params_for_dataclass(TrainingConfig, vars(args)))
if args.repo_id:
# If cache directory set, then download config
if args.cache_dir:
config = download_config_from_hub(args.repo_id, args.cache_dir).to_dict()
# By default, scrape config.json from hub
else:
config = scrape_config_from_hub(args.repo_id)
model_config.overwrite_with_hf_config(config)
if training_config.train:
total_vram_dict = training_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['gradients']}GB (gradients) + {total_vram_dict['optimizer']}GB (optimizer) + {total_vram_dict['activations']}GB activations"
else: # inference
total_vram_dict = inference_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['kv_cache']}GB (KV cache) + {total_vram_dict['activations']}GB activations"
print(output_str)
|