Spaces:
Runtime error
Runtime error
from flask import Flask, render_template, request, jsonify | |
from flask_socketio import SocketIO | |
import sys | |
import os | |
sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
import shutil | |
import numpy as np | |
from PIL import Image | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
class Predictor: | |
def __init__(self, model_cfg, checkpoint, device): | |
self.device = device | |
self.model = build_sam2(model_cfg, checkpoint, device=device) | |
self.predictor = SAM2ImagePredictor(self.model) | |
self.image_set = False | |
def set_image(self, image): | |
"""Set the image for SAM prediction.""" | |
self.image = image | |
self.predictor.set_image(image) | |
self.image_set = True | |
def predict(self, point_coords, point_labels, multimask_output=False): | |
"""Run SAM prediction.""" | |
if not self.image_set: | |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") | |
return self.predictor.predict( | |
point_coords=point_coords, | |
point_labels=point_labels, | |
multimask_output=multimask_output | |
) | |
from utils.helpers import ( | |
blend_mask_with_image, | |
save_mask_as_png, | |
convert_mask_to_yolo, | |
) | |
import torch | |
from ultralytics import YOLO | |
import threading | |
from threading import Lock | |
import subprocess | |
import time | |
import logging | |
import multiprocessing | |
import json | |
# Initialize Flask app and SocketIO | |
app = Flask(__name__) | |
socketio = SocketIO(app) | |
# Define Base Directory | |
BASE_DIR = os.path.abspath(os.path.dirname(__file__)) | |
# Folder structure with absolute paths | |
UPLOAD_FOLDERS = { | |
'input': os.path.join(BASE_DIR, 'static/uploads/input'), | |
'segmented_voids': os.path.join(BASE_DIR, 'static/uploads/segmented/voids'), | |
'segmented_chips': os.path.join(BASE_DIR, 'static/uploads/segmented/chips'), | |
'mask_voids': os.path.join(BASE_DIR, 'static/uploads/mask/voids'), | |
'mask_chips': os.path.join(BASE_DIR, 'static/uploads/mask/chips'), | |
'automatic_segmented': os.path.join(BASE_DIR, 'static/uploads/segmented/automatic'), | |
} | |
HISTORY_FOLDERS = { | |
'images': os.path.join(BASE_DIR, 'static/history/images'), | |
'masks_chip': os.path.join(BASE_DIR, 'static/history/masks/chip'), | |
'masks_void': os.path.join(BASE_DIR, 'static/history/masks/void'), | |
} | |
DATASET_FOLDERS = { | |
'train_images': os.path.join(BASE_DIR, 'dataset/train/images'), | |
'train_labels': os.path.join(BASE_DIR, 'dataset/train/labels'), | |
'val_images': os.path.join(BASE_DIR, 'dataset/val/images'), | |
'val_labels': os.path.join(BASE_DIR, 'dataset/val/labels'), | |
'temp_backup': os.path.join(BASE_DIR, 'temp_backup'), | |
'models': os.path.join(BASE_DIR, 'models'), | |
'models_old': os.path.join(BASE_DIR, 'models/old'), | |
} | |
# Ensure all folders exist | |
for folder_name, folder_path in {**UPLOAD_FOLDERS, **HISTORY_FOLDERS, **DATASET_FOLDERS}.items(): | |
os.makedirs(folder_path, exist_ok=True) | |
logging.info(f"Ensured folder exists: {folder_name} -> {folder_path}") | |
training_process = None | |
def initialize_training_status(): | |
"""Initialize global training status.""" | |
global training_status | |
training_status = {'running': False, 'cancelled': False} | |
def persist_training_status(): | |
"""Save training status to a file.""" | |
with open(os.path.join(BASE_DIR, 'training_status.json'), 'w') as status_file: | |
json.dump(training_status, status_file) | |
def load_training_status(): | |
"""Load training status from a file.""" | |
global training_status | |
status_path = os.path.join(BASE_DIR, 'training_status.json') | |
if os.path.exists(status_path): | |
with open(status_path, 'r') as status_file: | |
training_status = json.load(status_file) | |
else: | |
training_status = {'running': False, 'cancelled': False} | |
load_training_status() | |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0" | |
# Initialize SAM Predictor | |
MODEL_CFG = r"sam2/sam2_hiera_l.yaml" | |
CHECKPOINT = r"sam2/checkpoints/sam2.1_hiera_large.pt" | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
predictor = Predictor(MODEL_CFG, CHECKPOINT, DEVICE) | |
# Initialize YOLO-seg | |
YOLO_CFG = os.path.join(DATASET_FOLDERS['models'], "best.pt") | |
yolo_model = YOLO(YOLO_CFG) | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s [%(levelname)s] %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
logging.FileHandler(os.path.join(BASE_DIR, "app.log")) # Log to a file | |
] | |
) | |
def index(): | |
"""Serve the main UI.""" | |
return render_template('index.html') | |
def upload_image(): | |
"""Handle image uploads.""" | |
if 'file' not in request.files: | |
return jsonify({'error': 'No file uploaded'}), 400 | |
file = request.files['file'] | |
if file.filename == '': | |
return jsonify({'error': 'No file selected'}), 400 | |
# Save the uploaded file to the input folder | |
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename) | |
file.save(input_path) | |
# Set the uploaded image in the predictor | |
image = np.array(Image.open(input_path).convert("RGB")) | |
predictor.set_image(image) | |
# Return a web-accessible URL instead of the file system path | |
web_accessible_url = f"/static/uploads/input/{file.filename}" | |
print(f"Image uploaded and set for prediction: {input_path}") | |
return jsonify({'image_url': web_accessible_url}) | |
def segment(): | |
""" | |
Perform segmentation and return the blended image URL. | |
""" | |
try: | |
# Extract data from request | |
data = request.json | |
points = np.array(data.get('points', [])) | |
labels = np.array(data.get('labels', [])) | |
current_class = data.get('class', 'voids') # Default to 'voids' if class not provided | |
# Ensure predictor has an image set | |
if not predictor.image_set: | |
raise ValueError("No image set for prediction.") | |
# Perform SAM prediction | |
masks, _, _ = predictor.predict( | |
point_coords=points, | |
point_labels=labels, | |
multimask_output=False | |
) | |
# Check if masks exist and have non-zero elements | |
if masks is None or masks.size == 0: | |
raise RuntimeError("No masks were generated by the predictor.") | |
# Define output paths based on class | |
mask_folder = UPLOAD_FOLDERS.get(f'mask_{current_class}') | |
segmented_folder = UPLOAD_FOLDERS.get(f'segmented_{current_class}') | |
if not mask_folder or not segmented_folder: | |
raise ValueError(f"Invalid class '{current_class}' provided.") | |
os.makedirs(mask_folder, exist_ok=True) | |
os.makedirs(segmented_folder, exist_ok=True) | |
# Save the raw mask | |
mask_path = os.path.join(mask_folder, 'raw_mask.png') | |
save_mask_as_png(masks[0], mask_path) | |
# Generate blended image | |
blend_color = [34, 139, 34] if current_class == 'voids' else [30, 144, 255] # Green for voids, blue for chips | |
blended_image = blend_mask_with_image(predictor.image, masks[0], blend_color) | |
# Save blended image | |
blended_filename = f"blended_{current_class}.png" | |
blended_path = os.path.join(segmented_folder, blended_filename) | |
Image.fromarray(blended_image).save(blended_path) | |
# Return URL for frontend access | |
segmented_url = f"/static/uploads/segmented/{current_class}/{blended_filename}" | |
logging.info(f"Segmentation completed for {current_class}. Points: {points}, Labels: {labels}") | |
return jsonify({'segmented_url': segmented_url}) | |
except ValueError as ve: | |
logging.error(f"Value error during segmentation: {ve}") | |
return jsonify({'error': str(ve)}), 400 | |
except Exception as e: | |
logging.error(f"Unexpected error during segmentation: {e}") | |
return jsonify({'error': 'Segmentation failed', 'details': str(e)}), 500 | |
def automatic_segment(): | |
"""Perform automatic segmentation using YOLO.""" | |
if 'file' not in request.files: | |
return jsonify({'error': 'No file uploaded'}), 400 | |
file = request.files['file'] | |
if file.filename == '': | |
return jsonify({'error': 'No file selected'}), 400 | |
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename) | |
file.save(input_path) | |
try: | |
# Perform YOLO segmentation | |
results = yolo_model.predict(input_path, save=False, save_txt=False) | |
output_folder = UPLOAD_FOLDERS['automatic_segmented'] | |
os.makedirs(output_folder, exist_ok=True) | |
chips_data = [] | |
chips = [] | |
voids = [] | |
# Process results and save segmented images | |
for result in results: | |
annotated_image = result.plot() | |
result_filename = f"{file.filename.rsplit('.', 1)[0]}_pred.jpg" | |
result_path = os.path.join(output_folder, result_filename) | |
Image.fromarray(annotated_image).save(result_path) | |
# Separate chips and voids | |
for i, label in enumerate(result.boxes.cls): # YOLO labels | |
label_name = result.names[int(label)] # Get label name (e.g., 'chip' or 'void') | |
box = result.boxes.xyxy[i].cpu().numpy() # Bounding box (x1, y1, x2, y2) | |
area = float((box[2] - box[0]) * (box[3] - box[1])) # Calculate area | |
if label_name == 'chip': | |
chips.append({'box': box, 'area': area, 'voids': []}) | |
elif label_name == 'void': | |
voids.append({'box': box, 'area': area}) | |
# Assign voids to chips based on proximity | |
for void in voids: | |
void_centroid = [ | |
(void['box'][0] + void['box'][2]) / 2, # x centroid | |
(void['box'][1] + void['box'][3]) / 2 # y centroid | |
] | |
for chip in chips: | |
# Check if void centroid is within chip bounding box | |
if (chip['box'][0] <= void_centroid[0] <= chip['box'][2] and | |
chip['box'][1] <= void_centroid[1] <= chip['box'][3]): | |
chip['voids'].append(void) | |
break | |
# Calculate metrics for each chip | |
for idx, chip in enumerate(chips): | |
chip_area = chip['area'] | |
total_void_area = sum([float(void['area']) for void in chip['voids']]) | |
max_void_area = max([float(void['area']) for void in chip['voids']], default=0) | |
void_percentage = (total_void_area / chip_area) * 100 if chip_area > 0 else 0 | |
max_void_percentage = (max_void_area / chip_area) * 100 if chip_area > 0 else 0 | |
chips_data.append({ | |
"chip_number": int(idx + 1), | |
"chip_area": round(chip_area, 2), | |
"void_percentage": round(void_percentage, 2), | |
"max_void_percentage": round(max_void_percentage, 2) | |
}) | |
# Return the segmented image URL and table data | |
segmented_url = f"/static/uploads/segmented/automatic/{result_filename}" | |
return jsonify({ | |
"segmented_url": segmented_url, # Use the URL for frontend access | |
"table_data": { | |
"image_name": file.filename, | |
"chips": chips_data | |
} | |
}) | |
except Exception as e: | |
print(f"Error in automatic segmentation: {e}") | |
return jsonify({'error': 'Segmentation failed.'}), 500 | |
def save_both(): | |
"""Save both the image and masks into the history folders.""" | |
data = request.json | |
image_name = data.get('image_name') | |
if not image_name: | |
return jsonify({'error': 'Image name not provided'}), 400 | |
try: | |
# Ensure image_name is a pure file name | |
image_name = os.path.basename(image_name) # Strip any directory path | |
print(f"Sanitized Image Name: {image_name}") | |
# Correctly resolve the input image path | |
input_image_path = os.path.join(UPLOAD_FOLDERS['input'], image_name) | |
if not os.path.exists(input_image_path): | |
print(f"Input image does not exist: {input_image_path}") | |
return jsonify({'error': f'Input image not found: {input_image_path}'}), 404 | |
# Copy the image to history/images | |
image_history_path = os.path.join(HISTORY_FOLDERS['images'], image_name) | |
os.makedirs(os.path.dirname(image_history_path), exist_ok=True) | |
shutil.copy(input_image_path, image_history_path) | |
print(f"Image saved to history: {image_history_path}") | |
# Backup void mask | |
void_mask_path = os.path.join(UPLOAD_FOLDERS['mask_voids'], 'raw_mask.png') | |
if os.path.exists(void_mask_path): | |
void_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png") | |
os.makedirs(os.path.dirname(void_mask_history_path), exist_ok=True) | |
shutil.copy(void_mask_path, void_mask_history_path) | |
print(f"Voids mask saved to history: {void_mask_history_path}") | |
else: | |
print(f"Voids mask not found: {void_mask_path}") | |
# Backup chip mask | |
chip_mask_path = os.path.join(UPLOAD_FOLDERS['mask_chips'], 'raw_mask.png') | |
if os.path.exists(chip_mask_path): | |
chip_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png") | |
os.makedirs(os.path.dirname(chip_mask_history_path), exist_ok=True) | |
shutil.copy(chip_mask_path, chip_mask_history_path) | |
print(f"Chips mask saved to history: {chip_mask_history_path}") | |
else: | |
print(f"Chips mask not found: {chip_mask_path}") | |
return jsonify({'message': 'Image and masks saved successfully!'}), 200 | |
except Exception as e: | |
print(f"Error saving files: {e}") | |
return jsonify({'error': 'Failed to save files.', 'details': str(e)}), 500 | |
def get_history(): | |
try: | |
saved_images = os.listdir(HISTORY_FOLDERS['images']) | |
return jsonify({'status': 'success', 'images': saved_images}), 200 | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': f'Failed to fetch history: {e}'}), 500 | |
def delete_history_item(): | |
data = request.json | |
image_name = data.get('image_name') | |
if not image_name: | |
return jsonify({'error': 'Image name not provided'}), 400 | |
try: | |
image_path = os.path.join(HISTORY_FOLDERS['images'], image_name) | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png") | |
if os.path.exists(void_mask_path): | |
os.remove(void_mask_path) | |
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png") | |
if os.path.exists(chip_mask_path): | |
os.remove(chip_mask_path) | |
return jsonify({'message': f'{image_name} and associated masks deleted successfully.'}), 200 | |
except Exception as e: | |
return jsonify({'error': f'Failed to delete files: {e}'}), 500 | |
# Lock for training status updates | |
status_lock = Lock() | |
def update_training_status(key, value): | |
"""Thread-safe update for training status.""" | |
with status_lock: | |
training_status[key] = value | |
def retrain_model(): | |
"""Handle retrain model workflow.""" | |
global training_status | |
if training_status.get('running', False): | |
return jsonify({'error': 'Training is already in progress'}), 400 | |
try: | |
# Update training status | |
update_training_status('running', True) | |
update_training_status('cancelled', False) | |
logging.info("Training status updated. Starting training workflow.") | |
# Backup masks and images | |
backup_masks_and_images() | |
logging.info("Backup completed successfully.") | |
# Prepare YOLO labels | |
prepare_yolo_labels() | |
logging.info("YOLO labels prepared successfully.") | |
# Start YOLO training in a separate thread | |
threading.Thread(target=run_yolo_training).start() | |
return jsonify({'message': 'Training started successfully!'}), 200 | |
except Exception as e: | |
logging.error(f"Error during training preparation: {e}") | |
update_training_status('running', False) | |
return jsonify({'error': f"Failed to start training: {e}"}), 500 | |
def prepare_yolo_labels(): | |
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder.""" | |
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source | |
train_labels_folder = DATASET_FOLDERS['train_labels'] | |
train_images_folder = DATASET_FOLDERS['train_images'] | |
val_labels_folder = DATASET_FOLDERS['val_labels'] | |
val_images_folder = DATASET_FOLDERS['val_images'] | |
# Ensure destination directories exist | |
os.makedirs(train_labels_folder, exist_ok=True) | |
os.makedirs(train_images_folder, exist_ok=True) | |
os.makedirs(val_labels_folder, exist_ok=True) | |
os.makedirs(val_images_folder, exist_ok=True) | |
try: | |
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))] | |
random.shuffle(all_images) # Shuffle the images for randomness | |
# Determine split index | |
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation | |
# Split images into train and validation sets | |
train_images = all_images[:split_idx] | |
val_images = all_images[split_idx:] | |
# Process training images | |
for image_name in train_images: | |
process_image_and_mask( | |
image_name, | |
source_images_folder=images_folder, | |
dest_images_folder=train_images_folder, | |
dest_labels_folder=train_labels_folder | |
) | |
# Process validation images | |
for image_name in val_images: | |
process_image_and_mask( | |
image_name, | |
source_images_folder=images_folder, | |
dest_images_folder=val_images_folder, | |
dest_labels_folder=val_labels_folder | |
) | |
logging.info("YOLO labels prepared, and images split into train and validation successfully.") | |
except Exception as e: | |
logging.error(f"Error in preparing YOLO labels: {e}") | |
raise | |
import random | |
def prepare_yolo_labels(): | |
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder.""" | |
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source | |
train_labels_folder = DATASET_FOLDERS['train_labels'] | |
train_images_folder = DATASET_FOLDERS['train_images'] | |
val_labels_folder = DATASET_FOLDERS['val_labels'] | |
val_images_folder = DATASET_FOLDERS['val_images'] | |
# Ensure destination directories exist | |
os.makedirs(train_labels_folder, exist_ok=True) | |
os.makedirs(train_images_folder, exist_ok=True) | |
os.makedirs(val_labels_folder, exist_ok=True) | |
os.makedirs(val_images_folder, exist_ok=True) | |
try: | |
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))] | |
random.shuffle(all_images) # Shuffle the images for randomness | |
# Determine split index | |
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation | |
# Split images into train and validation sets | |
train_images = all_images[:split_idx] | |
val_images = all_images[split_idx:] | |
# Process training images | |
for image_name in train_images: | |
process_image_and_mask( | |
image_name, | |
source_images_folder=images_folder, | |
dest_images_folder=train_images_folder, | |
dest_labels_folder=train_labels_folder | |
) | |
# Process validation images | |
for image_name in val_images: | |
process_image_and_mask( | |
image_name, | |
source_images_folder=images_folder, | |
dest_images_folder=val_images_folder, | |
dest_labels_folder=val_labels_folder | |
) | |
logging.info("YOLO labels prepared, and images split into train and validation successfully.") | |
except Exception as e: | |
logging.error(f"Error in preparing YOLO labels: {e}") | |
raise | |
def process_image_and_mask(image_name, source_images_folder, dest_images_folder, dest_labels_folder): | |
""" | |
Process a single image and its masks, saving them in the appropriate YOLO format. | |
""" | |
try: | |
image_path = os.path.join(source_images_folder, image_name) | |
label_file_path = os.path.join(dest_labels_folder, f"{os.path.splitext(image_name)[0]}.txt") | |
# Copy image to the destination images folder | |
shutil.copy(image_path, os.path.join(dest_images_folder, image_name)) | |
# Clear the label file if it exists | |
if os.path.exists(label_file_path): | |
os.remove(label_file_path) | |
# Process void mask | |
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png") | |
if os.path.exists(void_mask_path): | |
convert_mask_to_yolo( | |
mask_path=void_mask_path, | |
image_path=image_path, | |
class_id=0, # Void class | |
output_path=label_file_path | |
) | |
# Process chip mask | |
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png") | |
if os.path.exists(chip_mask_path): | |
convert_mask_to_yolo( | |
mask_path=chip_mask_path, | |
image_path=image_path, | |
class_id=1, # Chip class | |
output_path=label_file_path, | |
append=True # Append chip annotations | |
) | |
logging.info(f"Processed {image_name} into YOLO format.") | |
except Exception as e: | |
logging.error(f"Error processing {image_name}: {e}") | |
raise | |
def backup_masks_and_images(): | |
"""Backup current masks and images from history folders.""" | |
temp_backup_paths = { | |
'voids': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/voids'), | |
'chips': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/chips'), | |
'images': os.path.join(DATASET_FOLDERS['temp_backup'], 'images') | |
} | |
# Prepare all backup directories | |
for path in temp_backup_paths.values(): | |
if os.path.exists(path): | |
shutil.rmtree(path) | |
os.makedirs(path, exist_ok=True) | |
try: | |
# Backup images from history | |
for file in os.listdir(HISTORY_FOLDERS['images']): | |
src_image_path = os.path.join(HISTORY_FOLDERS['images'], file) | |
dst_image_path = os.path.join(temp_backup_paths['images'], file) | |
shutil.copy(src_image_path, dst_image_path) | |
# Backup void masks from history | |
for file in os.listdir(HISTORY_FOLDERS['masks_void']): | |
src_void_path = os.path.join(HISTORY_FOLDERS['masks_void'], file) | |
dst_void_path = os.path.join(temp_backup_paths['voids'], file) | |
shutil.copy(src_void_path, dst_void_path) | |
# Backup chip masks from history | |
for file in os.listdir(HISTORY_FOLDERS['masks_chip']): | |
src_chip_path = os.path.join(HISTORY_FOLDERS['masks_chip'], file) | |
dst_chip_path = os.path.join(temp_backup_paths['chips'], file) | |
shutil.copy(src_chip_path, dst_chip_path) | |
logging.info("Masks and images backed up successfully from history.") | |
except Exception as e: | |
logging.error(f"Error during backup: {e}") | |
raise RuntimeError("Backup process failed.") | |
def run_yolo_training(num_epochs=10): | |
"""Run YOLO training process.""" | |
global training_process | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
data_cfg_path = os.path.join(BASE_DIR, "models/data.yaml") # Ensure correct YAML path | |
logging.info(f"Starting YOLO training on {device} with {num_epochs} epochs.") | |
logging.info(f"Using dataset configuration: {data_cfg_path}") | |
training_command = [ | |
"yolo", | |
"train", | |
f"data={data_cfg_path}", | |
f"model={os.path.join(DATASET_FOLDERS['models'], 'best.pt')}", | |
f"device={device}", | |
f"epochs={num_epochs}", | |
"project=runs", | |
"name=train" | |
] | |
training_process = subprocess.Popen( | |
training_command, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.STDOUT, | |
text=True, | |
env=os.environ.copy(), | |
) | |
# Display and log output in real time | |
for line in iter(training_process.stdout.readline, ''): | |
print(line.strip()) | |
logging.info(line.strip()) | |
socketio.emit('training_update', {'message': line.strip()}) # Send updates to the frontend | |
training_process.wait() | |
if training_process.returncode == 0: | |
finalize_training() # Finalize successfully completed training | |
else: | |
raise RuntimeError("YOLO training process failed. Check logs for details.") | |
except Exception as e: | |
logging.error(f"Training error: {e}") | |
restore_backup() # Restore the dataset and masks | |
# Emit training error event to the frontend | |
socketio.emit('training_status', {'status': 'error', 'message': f"Training failed: {str(e)}"}) | |
finally: | |
update_training_status('running', False) | |
training_process = None # Reset the process | |
def handle_cancel_training(): | |
"""Cancel the YOLO training process.""" | |
global training_process, training_status | |
if not training_status.get('running', False): | |
socketio.emit('button_update', {'action': 'retrain'}) # Update button to retrain | |
return | |
try: | |
training_process.terminate() | |
training_process.wait() | |
training_status['running'] = False | |
training_status['cancelled'] = True | |
restore_backup() | |
cleanup_train_val_directories() | |
# Emit button state change | |
socketio.emit('button_update', {'action': 'retrain'}) | |
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'}) | |
except Exception as e: | |
logging.error(f"Error cancelling training: {e}") | |
socketio.emit('training_status', {'status': 'error', 'message': str(e)}) | |
def finalize_training(): | |
"""Finalize training by promoting the new model and cleaning up.""" | |
try: | |
# Locate the most recent training directory | |
runs_dir = os.path.join(BASE_DIR, 'runs') | |
if not os.path.exists(runs_dir): | |
raise FileNotFoundError("Training runs directory does not exist.") | |
# Get the latest training run folder | |
latest_run = max( | |
[os.path.join(runs_dir, d) for d in os.listdir(runs_dir)], | |
key=os.path.getmtime | |
) | |
weights_dir = os.path.join(latest_run, 'weights') | |
best_model_path = os.path.join(weights_dir, 'best.pt') | |
if not os.path.exists(best_model_path): | |
raise FileNotFoundError(f"'best.pt' not found in {weights_dir}.") | |
# Backup the old model | |
old_model_folder = DATASET_FOLDERS['models_old'] | |
os.makedirs(old_model_folder, exist_ok=True) | |
existing_best_model = os.path.join(DATASET_FOLDERS['models'], 'best.pt') | |
if os.path.exists(existing_best_model): | |
timestamp = time.strftime("%Y%m%d_%H%M%S") | |
shutil.move(existing_best_model, os.path.join(old_model_folder, f"old_{timestamp}.pt")) | |
logging.info(f"Old model backed up to {old_model_folder}.") | |
# Move the new model to the models directory | |
new_model_dest = os.path.join(DATASET_FOLDERS['models'], 'best.pt') | |
shutil.move(best_model_path, new_model_dest) | |
logging.info(f"New model saved to {new_model_dest}.") | |
# Notify frontend that training is completed | |
socketio.emit('training_status', { | |
'status': 'completed', | |
'message': 'Training completed successfully! Model saved as best.pt.' | |
}) | |
# Clean up train/val directories | |
cleanup_train_val_directories() | |
logging.info("Train and validation directories cleaned up successfully.") | |
except Exception as e: | |
logging.error(f"Error finalizing training: {e}") | |
# Emit error status to the frontend | |
socketio.emit('training_status', {'status': 'error', 'message': f"Error finalizing training: {str(e)}"}) | |
def restore_backup(): | |
"""Restore the dataset and masks from the backup.""" | |
try: | |
temp_backup = DATASET_FOLDERS['temp_backup'] | |
shutil.copytree(os.path.join(temp_backup, 'masks/voids'), UPLOAD_FOLDERS['mask_voids'], dirs_exist_ok=True) | |
shutil.copytree(os.path.join(temp_backup, 'masks/chips'), UPLOAD_FOLDERS['mask_chips'], dirs_exist_ok=True) | |
shutil.copytree(os.path.join(temp_backup, 'images'), UPLOAD_FOLDERS['input'], dirs_exist_ok=True) | |
logging.info("Backup restored successfully.") | |
except Exception as e: | |
logging.error(f"Error restoring backup: {e}") | |
def cancel_training(): | |
global training_process | |
if training_process is None: | |
logging.error("No active training process to terminate.") | |
return jsonify({'error': 'No active training process to cancel.'}), 400 | |
try: | |
training_process.terminate() | |
training_process.wait() | |
training_process = None # Reset the process after termination | |
# Update training status | |
update_training_status('running', False) | |
update_training_status('cancelled', True) | |
# Check if the model is already saved as best.pt | |
best_model_path = os.path.join(DATASET_FOLDERS['models'], 'best.pt') | |
if os.path.exists(best_model_path): | |
logging.info(f"Model already saved as best.pt at {best_model_path}.") | |
socketio.emit('button_update', {'action': 'revert'}) # Notify frontend to revert button state | |
else: | |
logging.info("Training canceled, but no new model was saved.") | |
# Restore backup if needed | |
restore_backup() | |
cleanup_train_val_directories() | |
# Emit status update to frontend | |
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'}) | |
return jsonify({'message': 'Training canceled and data restored successfully.'}), 200 | |
except Exception as e: | |
logging.error(f"Error cancelling training: {e}") | |
return jsonify({'error': f"Failed to cancel training: {e}"}), 500 | |
def clear_history(): | |
try: | |
for folder in [HISTORY_FOLDERS['images'], HISTORY_FOLDERS['masks_chip'], HISTORY_FOLDERS['masks_void']]: | |
shutil.rmtree(folder, ignore_errors=True) | |
os.makedirs(folder, exist_ok=True) # Recreate the empty folder | |
return jsonify({'message': 'History cleared successfully!'}), 200 | |
except Exception as e: | |
return jsonify({'error': f'Failed to clear history: {e}'}), 500 | |
def get_training_status(): | |
"""Return the current training status.""" | |
if training_status.get('running', False): | |
return jsonify({'status': 'running', 'message': 'Training in progress.'}), 200 | |
elif training_status.get('cancelled', False): | |
return jsonify({'status': 'cancelled', 'message': 'Training was cancelled.'}), 200 | |
return jsonify({'status': 'idle', 'message': 'No training is currently running.'}), 200 | |
def cleanup_train_val_directories(): | |
"""Clear the train and validation directories.""" | |
try: | |
for folder in [DATASET_FOLDERS['train_images'], DATASET_FOLDERS['train_labels'], | |
DATASET_FOLDERS['val_images'], DATASET_FOLDERS['val_labels']]: | |
shutil.rmtree(folder, ignore_errors=True) # Remove folder contents | |
os.makedirs(folder, exist_ok=True) # Recreate empty folders | |
logging.info("Train and validation directories cleaned up successfully.") | |
except Exception as e: | |
logging.error(f"Error cleaning up train/val directories: {e}") | |
if __name__ == '__main__': | |
multiprocessing.set_start_method('spawn') # Required for multiprocessing on Windows | |
app.run(debug=True, use_reloader=False) | |