Spaces:
Runtime error
Runtime error
Initialisation
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- Dockerfile +17 -0
- README.md +3 -3
- app.log +0 -0
- app.py +797 -0
- dataset/.DS_Store +0 -0
- dataset/images/.DS_Store +0 -0
- dataset/images/train/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5.jpg +0 -0
- dataset/images/train/03_JPG.rf.2ca107348e11cdefab68044dba66388d.jpg +0 -0
- dataset/images/train/04_JPG.rf.b0b546ecbc6b70149b8932018e69fef0.jpg +0 -0
- dataset/images/train/05_jpg.rf.46241369ebb0749c40882400f82eb224.jpg +0 -0
- dataset/images/train/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98.jpg +0 -0
- dataset/images/train/09_JPG.rf.9119efd8c174f968457a893669209835.jpg +0 -0
- dataset/images/train/10_JPG.rf.6745a7b3ea828239398b85182acba199.jpg +0 -0
- dataset/images/train/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg +0 -0
- dataset/images/train/12_jpg.rf.357643b374df92f81f9dee7c701b2315.jpg +0 -0
- dataset/images/train/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c.jpg +0 -0
- dataset/images/train/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg +0 -0
- dataset/images/train/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg +0 -0
- dataset/images/train/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg +0 -0
- dataset/images/train/18_jpg.rf.4d241aab78af17171d83f3a50f1cf1aa.jpg +0 -0
- dataset/images/train/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg +0 -0
- dataset/images/train/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg +0 -0
- dataset/images/train/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg +0 -0
- dataset/images/train/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg +0 -0
- dataset/images/train/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg +0 -0
- dataset/images/train/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg +0 -0
- dataset/images/train/31_jpg.rf.f31137f793efde0462ed560d426dcd24.jpg +0 -0
- dataset/images/train/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058.jpg +0 -0
- dataset/images/train/LU-F_mod_jpg.rf.fc594179772346639512f891960969bb.jpg +0 -0
- dataset/images/train/Solder_Voids_jpg.rf.d40f1b71d8a801f084067fde7f33fb08.jpg +0 -0
- dataset/images/train/gc10_lake_voids_260-31_jpg.rf.479f3d9dda8dd22097d3d93c78f7e11d.jpg +0 -0
- dataset/images/train/images_jpg.rf.675b31c5e1ba2b77f0fa5ca92e2391b0.jpg +0 -0
- dataset/images/train/qfn-voiding_0_jpg.rf.2945527db158e9ff4943febaf9cd3eab.jpg +0 -0
- dataset/images/train/techtips_3_jpg.rf.ad88af637816f0999f4df0b18dfef293.jpg +0 -0
- dataset/images/val/025_JPG.rf.b2cdc2d984adff593dc985f555b8d280.jpg +0 -0
- dataset/images/val/06_jpg.rf.a94e0a678df372f5ea1395a8d888a388.jpg +0 -0
- dataset/images/val/07_JPG.rf.324d17a87726bd2a9614536c687c6e68.jpg +0 -0
- dataset/images/val/23_jpg.rf.8e9afa6b3b471e10c26637d47700f28b.jpg +0 -0
- dataset/images/val/24_jpg.rf.4caa996d97e35f6ce4f27a527ea43465.jpg +0 -0
- dataset/images/val/27_jpg.rf.3475fce31d283058f46d9f349c04cb1a.jpg +0 -0
- dataset/images/val/28_jpg.rf.50e348d807d35667583137c9a6c162ca.jpg +0 -0
- dataset/images/val/30_jpg.rf.ed72622e97cf0d884997585686cfe40a.jpg +0 -0
- dataset/test/.DS_Store +0 -0
- dataset/test/images/17_jpg.rf.ec31940ea72d0cf8b9f38dba68789fcf.jpg +0 -0
- dataset/test/images/19_jpg.rf.2c5ffd63bd0ce6b9b0c80fef69d101dc.jpg +0 -0
- dataset/test/images/32_jpg.rf.f3e33dcf611a8754c0765224f7873d8b.jpg +0 -0
- dataset/test/images/normal-reflow_jpg.rf.2c4fbc1fda915b821b85689ae257e116.jpg +0 -0
- dataset/test/images/techtips_31_jpg.rf.673cd3c7c8511e534766e6dbc3171b39.jpg +0 -0
- dataset/test/labels/.DS_Store +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Utiliser une image de base Python légère
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Définir le répertoire de travail
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copier les fichiers nécessaires dans le conteneur
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Installer les dépendances
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Exposer le port 7860 pour le serveur Flask
|
14 |
+
EXPOSE 7860
|
15 |
+
|
16 |
+
# Commande pour démarrer Flask
|
17 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Segmentation Project
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
|
|
1 |
---
|
2 |
title: Segmentation Project
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
app.log
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
from flask_socketio import SocketIO
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from utils.predictor import Predictor
|
8 |
+
from utils.helpers import (
|
9 |
+
blend_mask_with_image,
|
10 |
+
save_mask_as_png,
|
11 |
+
convert_mask_to_yolo,
|
12 |
+
)
|
13 |
+
import torch
|
14 |
+
from ultralytics import YOLO
|
15 |
+
import threading
|
16 |
+
from threading import Lock
|
17 |
+
import subprocess
|
18 |
+
import time
|
19 |
+
import logging
|
20 |
+
import multiprocessing
|
21 |
+
|
22 |
+
|
23 |
+
# Initialize Flask app and SocketIO
|
24 |
+
app = Flask(__name__)
|
25 |
+
socketio = SocketIO(app)
|
26 |
+
|
27 |
+
# Define Base Directory
|
28 |
+
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
29 |
+
|
30 |
+
# Folder structure with absolute paths
|
31 |
+
UPLOAD_FOLDERS = {
|
32 |
+
'input': os.path.join(BASE_DIR, 'static/uploads/input'),
|
33 |
+
'segmented_voids': os.path.join(BASE_DIR, 'static/uploads/segmented/voids'),
|
34 |
+
'segmented_chips': os.path.join(BASE_DIR, 'static/uploads/segmented/chips'),
|
35 |
+
'mask_voids': os.path.join(BASE_DIR, 'static/uploads/mask/voids'),
|
36 |
+
'mask_chips': os.path.join(BASE_DIR, 'static/uploads/mask/chips'),
|
37 |
+
'automatic_segmented': os.path.join(BASE_DIR, 'static/uploads/segmented/automatic'),
|
38 |
+
}
|
39 |
+
|
40 |
+
HISTORY_FOLDERS = {
|
41 |
+
'images': os.path.join(BASE_DIR, 'static/history/images'),
|
42 |
+
'masks_chip': os.path.join(BASE_DIR, 'static/history/masks/chip'),
|
43 |
+
'masks_void': os.path.join(BASE_DIR, 'static/history/masks/void'),
|
44 |
+
}
|
45 |
+
|
46 |
+
DATASET_FOLDERS = {
|
47 |
+
'train_images': os.path.join(BASE_DIR, 'dataset/train/images'),
|
48 |
+
'train_labels': os.path.join(BASE_DIR, 'dataset/train/labels'),
|
49 |
+
'val_images': os.path.join(BASE_DIR, 'dataset/val/images'),
|
50 |
+
'val_labels': os.path.join(BASE_DIR, 'dataset/val/labels'),
|
51 |
+
'temp_backup': os.path.join(BASE_DIR, 'temp_backup'),
|
52 |
+
'models': os.path.join(BASE_DIR, 'models'),
|
53 |
+
'models_old': os.path.join(BASE_DIR, 'models/old'),
|
54 |
+
}
|
55 |
+
|
56 |
+
# Ensure all folders exist
|
57 |
+
for folder_name, folder_path in {**UPLOAD_FOLDERS, **HISTORY_FOLDERS, **DATASET_FOLDERS}.items():
|
58 |
+
os.makedirs(folder_path, exist_ok=True)
|
59 |
+
logging.info(f"Ensured folder exists: {folder_name} -> {folder_path}")
|
60 |
+
|
61 |
+
training_process = None
|
62 |
+
|
63 |
+
|
64 |
+
def initialize_training_status():
|
65 |
+
"""Initialize global training status."""
|
66 |
+
global training_status
|
67 |
+
training_status = {'running': False, 'cancelled': False}
|
68 |
+
|
69 |
+
def persist_training_status():
|
70 |
+
"""Save training status to a file."""
|
71 |
+
with open(os.path.join(BASE_DIR, 'training_status.json'), 'w') as status_file:
|
72 |
+
json.dump(training_status, status_file)
|
73 |
+
|
74 |
+
def load_training_status():
|
75 |
+
"""Load training status from a file."""
|
76 |
+
global training_status
|
77 |
+
status_path = os.path.join(BASE_DIR, 'training_status.json')
|
78 |
+
if os.path.exists(status_path):
|
79 |
+
with open(status_path, 'r') as status_file:
|
80 |
+
training_status = json.load(status_file)
|
81 |
+
else:
|
82 |
+
training_status = {'running': False, 'cancelled': False}
|
83 |
+
|
84 |
+
load_training_status()
|
85 |
+
|
86 |
+
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0"
|
87 |
+
|
88 |
+
# Initialize SAM Predictor
|
89 |
+
MODEL_CFG = r"C:\codes\sam2\segment-anything-2\sam2\configs\sam2.1\sam2.1_hiera_l.yaml"
|
90 |
+
CHECKPOINT = r"C:\codes\sam2\segment-anything-2\checkpoints\sam2.1_hiera_large.pt"
|
91 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
+
predictor = Predictor(MODEL_CFG, CHECKPOINT, DEVICE)
|
93 |
+
|
94 |
+
# Initialize YOLO-seg
|
95 |
+
YOLO_CFG = os.path.join(DATASET_FOLDERS['models'], "best.pt")
|
96 |
+
yolo_model = YOLO(YOLO_CFG)
|
97 |
+
|
98 |
+
# Configure logging
|
99 |
+
logging.basicConfig(
|
100 |
+
level=logging.INFO,
|
101 |
+
format='%(asctime)s [%(levelname)s] %(message)s',
|
102 |
+
handlers=[
|
103 |
+
logging.StreamHandler(),
|
104 |
+
logging.FileHandler(os.path.join(BASE_DIR, "app.log")) # Log to a file
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
@app.route('/')
|
110 |
+
def index():
|
111 |
+
"""Serve the main UI."""
|
112 |
+
return render_template('index.html')
|
113 |
+
|
114 |
+
@app.route('/upload', methods=['POST'])
|
115 |
+
def upload_image():
|
116 |
+
"""Handle image uploads."""
|
117 |
+
if 'file' not in request.files:
|
118 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
119 |
+
file = request.files['file']
|
120 |
+
if file.filename == '':
|
121 |
+
return jsonify({'error': 'No file selected'}), 400
|
122 |
+
|
123 |
+
# Save the uploaded file to the input folder
|
124 |
+
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
|
125 |
+
file.save(input_path)
|
126 |
+
|
127 |
+
# Set the uploaded image in the predictor
|
128 |
+
image = np.array(Image.open(input_path).convert("RGB"))
|
129 |
+
predictor.set_image(image)
|
130 |
+
|
131 |
+
# Return a web-accessible URL instead of the file system path
|
132 |
+
web_accessible_url = f"/static/uploads/input/{file.filename}"
|
133 |
+
print(f"Image uploaded and set for prediction: {input_path}")
|
134 |
+
return jsonify({'image_url': web_accessible_url})
|
135 |
+
|
136 |
+
@app.route('/segment', methods=['POST'])
|
137 |
+
def segment():
|
138 |
+
"""
|
139 |
+
Perform segmentation and return the blended image URL.
|
140 |
+
"""
|
141 |
+
try:
|
142 |
+
# Extract data from request
|
143 |
+
data = request.json
|
144 |
+
points = np.array(data.get('points', []))
|
145 |
+
labels = np.array(data.get('labels', []))
|
146 |
+
current_class = data.get('class', 'voids') # Default to 'voids' if class not provided
|
147 |
+
|
148 |
+
# Ensure predictor has an image set
|
149 |
+
if not predictor.image_set:
|
150 |
+
raise ValueError("No image set for prediction.")
|
151 |
+
|
152 |
+
# Perform SAM prediction
|
153 |
+
masks, _, _ = predictor.predict(
|
154 |
+
point_coords=points,
|
155 |
+
point_labels=labels,
|
156 |
+
multimask_output=False
|
157 |
+
)
|
158 |
+
|
159 |
+
# Check if masks exist and have non-zero elements
|
160 |
+
if masks is None or masks.size == 0:
|
161 |
+
raise RuntimeError("No masks were generated by the predictor.")
|
162 |
+
|
163 |
+
# Define output paths based on class
|
164 |
+
mask_folder = UPLOAD_FOLDERS.get(f'mask_{current_class}')
|
165 |
+
segmented_folder = UPLOAD_FOLDERS.get(f'segmented_{current_class}')
|
166 |
+
|
167 |
+
if not mask_folder or not segmented_folder:
|
168 |
+
raise ValueError(f"Invalid class '{current_class}' provided.")
|
169 |
+
|
170 |
+
os.makedirs(mask_folder, exist_ok=True)
|
171 |
+
os.makedirs(segmented_folder, exist_ok=True)
|
172 |
+
|
173 |
+
# Save the raw mask
|
174 |
+
mask_path = os.path.join(mask_folder, 'raw_mask.png')
|
175 |
+
save_mask_as_png(masks[0], mask_path)
|
176 |
+
|
177 |
+
# Generate blended image
|
178 |
+
blend_color = [34, 139, 34] if current_class == 'voids' else [30, 144, 255] # Green for voids, blue for chips
|
179 |
+
blended_image = blend_mask_with_image(predictor.image, masks[0], blend_color)
|
180 |
+
|
181 |
+
# Save blended image
|
182 |
+
blended_filename = f"blended_{current_class}.png"
|
183 |
+
blended_path = os.path.join(segmented_folder, blended_filename)
|
184 |
+
Image.fromarray(blended_image).save(blended_path)
|
185 |
+
|
186 |
+
# Return URL for frontend access
|
187 |
+
segmented_url = f"/static/uploads/segmented/{current_class}/{blended_filename}"
|
188 |
+
logging.info(f"Segmentation completed for {current_class}. Points: {points}, Labels: {labels}")
|
189 |
+
return jsonify({'segmented_url': segmented_url})
|
190 |
+
|
191 |
+
except ValueError as ve:
|
192 |
+
logging.error(f"Value error during segmentation: {ve}")
|
193 |
+
return jsonify({'error': str(ve)}), 400
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
logging.error(f"Unexpected error during segmentation: {e}")
|
197 |
+
return jsonify({'error': 'Segmentation failed', 'details': str(e)}), 500
|
198 |
+
|
199 |
+
@app.route('/automatic_segment', methods=['POST'])
|
200 |
+
def automatic_segment():
|
201 |
+
"""Perform automatic segmentation using YOLO."""
|
202 |
+
if 'file' not in request.files:
|
203 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
204 |
+
file = request.files['file']
|
205 |
+
if file.filename == '':
|
206 |
+
return jsonify({'error': 'No file selected'}), 400
|
207 |
+
|
208 |
+
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
|
209 |
+
file.save(input_path)
|
210 |
+
|
211 |
+
try:
|
212 |
+
# Perform YOLO segmentation
|
213 |
+
results = yolo_model.predict(input_path, save=False, save_txt=False)
|
214 |
+
output_folder = UPLOAD_FOLDERS['automatic_segmented']
|
215 |
+
os.makedirs(output_folder, exist_ok=True)
|
216 |
+
|
217 |
+
chips_data = []
|
218 |
+
chips = []
|
219 |
+
voids = []
|
220 |
+
|
221 |
+
# Process results and save segmented images
|
222 |
+
for result in results:
|
223 |
+
annotated_image = result.plot()
|
224 |
+
result_filename = f"{file.filename.rsplit('.', 1)[0]}_pred.jpg"
|
225 |
+
result_path = os.path.join(output_folder, result_filename)
|
226 |
+
Image.fromarray(annotated_image).save(result_path)
|
227 |
+
|
228 |
+
# Separate chips and voids
|
229 |
+
for i, label in enumerate(result.boxes.cls): # YOLO labels
|
230 |
+
label_name = result.names[int(label)] # Get label name (e.g., 'chip' or 'void')
|
231 |
+
box = result.boxes.xyxy[i].cpu().numpy() # Bounding box (x1, y1, x2, y2)
|
232 |
+
area = float((box[2] - box[0]) * (box[3] - box[1])) # Calculate area
|
233 |
+
|
234 |
+
if label_name == 'chip':
|
235 |
+
chips.append({'box': box, 'area': area, 'voids': []})
|
236 |
+
elif label_name == 'void':
|
237 |
+
voids.append({'box': box, 'area': area})
|
238 |
+
|
239 |
+
# Assign voids to chips based on proximity
|
240 |
+
for void in voids:
|
241 |
+
void_centroid = [
|
242 |
+
(void['box'][0] + void['box'][2]) / 2, # x centroid
|
243 |
+
(void['box'][1] + void['box'][3]) / 2 # y centroid
|
244 |
+
]
|
245 |
+
for chip in chips:
|
246 |
+
# Check if void centroid is within chip bounding box
|
247 |
+
if (chip['box'][0] <= void_centroid[0] <= chip['box'][2] and
|
248 |
+
chip['box'][1] <= void_centroid[1] <= chip['box'][3]):
|
249 |
+
chip['voids'].append(void)
|
250 |
+
break
|
251 |
+
|
252 |
+
# Calculate metrics for each chip
|
253 |
+
for idx, chip in enumerate(chips):
|
254 |
+
chip_area = chip['area']
|
255 |
+
total_void_area = sum([float(void['area']) for void in chip['voids']])
|
256 |
+
max_void_area = max([float(void['area']) for void in chip['voids']], default=0)
|
257 |
+
|
258 |
+
void_percentage = (total_void_area / chip_area) * 100 if chip_area > 0 else 0
|
259 |
+
max_void_percentage = (max_void_area / chip_area) * 100 if chip_area > 0 else 0
|
260 |
+
|
261 |
+
chips_data.append({
|
262 |
+
"chip_number": int(idx + 1),
|
263 |
+
"chip_area": round(chip_area, 2),
|
264 |
+
"void_percentage": round(void_percentage, 2),
|
265 |
+
"max_void_percentage": round(max_void_percentage, 2)
|
266 |
+
})
|
267 |
+
|
268 |
+
# Return the segmented image URL and table data
|
269 |
+
segmented_url = f"/static/uploads/segmented/automatic/{result_filename}"
|
270 |
+
return jsonify({
|
271 |
+
"segmented_url": segmented_url, # Use the URL for frontend access
|
272 |
+
"table_data": {
|
273 |
+
"image_name": file.filename,
|
274 |
+
"chips": chips_data
|
275 |
+
}
|
276 |
+
})
|
277 |
+
|
278 |
+
except Exception as e:
|
279 |
+
print(f"Error in automatic segmentation: {e}")
|
280 |
+
return jsonify({'error': 'Segmentation failed.'}), 500
|
281 |
+
|
282 |
+
@app.route('/save_both', methods=['POST'])
|
283 |
+
def save_both():
|
284 |
+
"""Save both the image and masks into the history folders."""
|
285 |
+
data = request.json
|
286 |
+
image_name = data.get('image_name')
|
287 |
+
|
288 |
+
if not image_name:
|
289 |
+
return jsonify({'error': 'Image name not provided'}), 400
|
290 |
+
|
291 |
+
try:
|
292 |
+
# Ensure image_name is a pure file name
|
293 |
+
image_name = os.path.basename(image_name) # Strip any directory path
|
294 |
+
print(f"Sanitized Image Name: {image_name}")
|
295 |
+
|
296 |
+
# Correctly resolve the input image path
|
297 |
+
input_image_path = os.path.join(UPLOAD_FOLDERS['input'], image_name)
|
298 |
+
if not os.path.exists(input_image_path):
|
299 |
+
print(f"Input image does not exist: {input_image_path}")
|
300 |
+
return jsonify({'error': f'Input image not found: {input_image_path}'}), 404
|
301 |
+
|
302 |
+
# Copy the image to history/images
|
303 |
+
image_history_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
|
304 |
+
os.makedirs(os.path.dirname(image_history_path), exist_ok=True)
|
305 |
+
shutil.copy(input_image_path, image_history_path)
|
306 |
+
print(f"Image saved to history: {image_history_path}")
|
307 |
+
|
308 |
+
# Backup void mask
|
309 |
+
void_mask_path = os.path.join(UPLOAD_FOLDERS['mask_voids'], 'raw_mask.png')
|
310 |
+
if os.path.exists(void_mask_path):
|
311 |
+
void_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
|
312 |
+
os.makedirs(os.path.dirname(void_mask_history_path), exist_ok=True)
|
313 |
+
shutil.copy(void_mask_path, void_mask_history_path)
|
314 |
+
print(f"Voids mask saved to history: {void_mask_history_path}")
|
315 |
+
else:
|
316 |
+
print(f"Voids mask not found: {void_mask_path}")
|
317 |
+
|
318 |
+
# Backup chip mask
|
319 |
+
chip_mask_path = os.path.join(UPLOAD_FOLDERS['mask_chips'], 'raw_mask.png')
|
320 |
+
if os.path.exists(chip_mask_path):
|
321 |
+
chip_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
|
322 |
+
os.makedirs(os.path.dirname(chip_mask_history_path), exist_ok=True)
|
323 |
+
shutil.copy(chip_mask_path, chip_mask_history_path)
|
324 |
+
print(f"Chips mask saved to history: {chip_mask_history_path}")
|
325 |
+
else:
|
326 |
+
print(f"Chips mask not found: {chip_mask_path}")
|
327 |
+
|
328 |
+
return jsonify({'message': 'Image and masks saved successfully!'}), 200
|
329 |
+
|
330 |
+
except Exception as e:
|
331 |
+
print(f"Error saving files: {e}")
|
332 |
+
return jsonify({'error': 'Failed to save files.', 'details': str(e)}), 500
|
333 |
+
|
334 |
+
@app.route('/get_history', methods=['GET'])
|
335 |
+
def get_history():
|
336 |
+
try:
|
337 |
+
saved_images = os.listdir(HISTORY_FOLDERS['images'])
|
338 |
+
return jsonify({'status': 'success', 'images': saved_images}), 200
|
339 |
+
except Exception as e:
|
340 |
+
return jsonify({'status': 'error', 'message': f'Failed to fetch history: {e}'}), 500
|
341 |
+
|
342 |
+
|
343 |
+
@app.route('/delete_history_item', methods=['POST'])
|
344 |
+
def delete_history_item():
|
345 |
+
data = request.json
|
346 |
+
image_name = data.get('image_name')
|
347 |
+
|
348 |
+
if not image_name:
|
349 |
+
return jsonify({'error': 'Image name not provided'}), 400
|
350 |
+
|
351 |
+
try:
|
352 |
+
image_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
|
353 |
+
if os.path.exists(image_path):
|
354 |
+
os.remove(image_path)
|
355 |
+
|
356 |
+
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
|
357 |
+
if os.path.exists(void_mask_path):
|
358 |
+
os.remove(void_mask_path)
|
359 |
+
|
360 |
+
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
|
361 |
+
if os.path.exists(chip_mask_path):
|
362 |
+
os.remove(chip_mask_path)
|
363 |
+
|
364 |
+
return jsonify({'message': f'{image_name} and associated masks deleted successfully.'}), 200
|
365 |
+
except Exception as e:
|
366 |
+
return jsonify({'error': f'Failed to delete files: {e}'}), 500
|
367 |
+
|
368 |
+
# Lock for training status updates
|
369 |
+
status_lock = Lock()
|
370 |
+
|
371 |
+
def update_training_status(key, value):
|
372 |
+
"""Thread-safe update for training status."""
|
373 |
+
with status_lock:
|
374 |
+
training_status[key] = value
|
375 |
+
|
376 |
+
@app.route('/retrain_model', methods=['POST'])
|
377 |
+
def retrain_model():
|
378 |
+
"""Handle retrain model workflow."""
|
379 |
+
global training_status
|
380 |
+
|
381 |
+
if training_status.get('running', False):
|
382 |
+
return jsonify({'error': 'Training is already in progress'}), 400
|
383 |
+
|
384 |
+
try:
|
385 |
+
# Update training status
|
386 |
+
update_training_status('running', True)
|
387 |
+
update_training_status('cancelled', False)
|
388 |
+
logging.info("Training status updated. Starting training workflow.")
|
389 |
+
|
390 |
+
# Backup masks and images
|
391 |
+
backup_masks_and_images()
|
392 |
+
logging.info("Backup completed successfully.")
|
393 |
+
|
394 |
+
# Prepare YOLO labels
|
395 |
+
prepare_yolo_labels()
|
396 |
+
logging.info("YOLO labels prepared successfully.")
|
397 |
+
|
398 |
+
# Start YOLO training in a separate thread
|
399 |
+
threading.Thread(target=run_yolo_training).start()
|
400 |
+
return jsonify({'message': 'Training started successfully!'}), 200
|
401 |
+
|
402 |
+
except Exception as e:
|
403 |
+
logging.error(f"Error during training preparation: {e}")
|
404 |
+
update_training_status('running', False)
|
405 |
+
return jsonify({'error': f"Failed to start training: {e}"}), 500
|
406 |
+
|
407 |
+
def prepare_yolo_labels():
|
408 |
+
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
|
409 |
+
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source
|
410 |
+
train_labels_folder = DATASET_FOLDERS['train_labels']
|
411 |
+
train_images_folder = DATASET_FOLDERS['train_images']
|
412 |
+
val_labels_folder = DATASET_FOLDERS['val_labels']
|
413 |
+
val_images_folder = DATASET_FOLDERS['val_images']
|
414 |
+
|
415 |
+
# Ensure destination directories exist
|
416 |
+
os.makedirs(train_labels_folder, exist_ok=True)
|
417 |
+
os.makedirs(train_images_folder, exist_ok=True)
|
418 |
+
os.makedirs(val_labels_folder, exist_ok=True)
|
419 |
+
os.makedirs(val_images_folder, exist_ok=True)
|
420 |
+
|
421 |
+
try:
|
422 |
+
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
|
423 |
+
random.shuffle(all_images) # Shuffle the images for randomness
|
424 |
+
|
425 |
+
# Determine split index
|
426 |
+
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation
|
427 |
+
|
428 |
+
# Split images into train and validation sets
|
429 |
+
train_images = all_images[:split_idx]
|
430 |
+
val_images = all_images[split_idx:]
|
431 |
+
|
432 |
+
# Process training images
|
433 |
+
for image_name in train_images:
|
434 |
+
process_image_and_mask(
|
435 |
+
image_name,
|
436 |
+
source_images_folder=images_folder,
|
437 |
+
dest_images_folder=train_images_folder,
|
438 |
+
dest_labels_folder=train_labels_folder
|
439 |
+
)
|
440 |
+
|
441 |
+
# Process validation images
|
442 |
+
for image_name in val_images:
|
443 |
+
process_image_and_mask(
|
444 |
+
image_name,
|
445 |
+
source_images_folder=images_folder,
|
446 |
+
dest_images_folder=val_images_folder,
|
447 |
+
dest_labels_folder=val_labels_folder
|
448 |
+
)
|
449 |
+
|
450 |
+
logging.info("YOLO labels prepared, and images split into train and validation successfully.")
|
451 |
+
|
452 |
+
except Exception as e:
|
453 |
+
logging.error(f"Error in preparing YOLO labels: {e}")
|
454 |
+
raise
|
455 |
+
|
456 |
+
import random
|
457 |
+
|
458 |
+
def prepare_yolo_labels():
|
459 |
+
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
|
460 |
+
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source
|
461 |
+
train_labels_folder = DATASET_FOLDERS['train_labels']
|
462 |
+
train_images_folder = DATASET_FOLDERS['train_images']
|
463 |
+
val_labels_folder = DATASET_FOLDERS['val_labels']
|
464 |
+
val_images_folder = DATASET_FOLDERS['val_images']
|
465 |
+
|
466 |
+
# Ensure destination directories exist
|
467 |
+
os.makedirs(train_labels_folder, exist_ok=True)
|
468 |
+
os.makedirs(train_images_folder, exist_ok=True)
|
469 |
+
os.makedirs(val_labels_folder, exist_ok=True)
|
470 |
+
os.makedirs(val_images_folder, exist_ok=True)
|
471 |
+
|
472 |
+
try:
|
473 |
+
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
|
474 |
+
random.shuffle(all_images) # Shuffle the images for randomness
|
475 |
+
|
476 |
+
# Determine split index
|
477 |
+
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation
|
478 |
+
|
479 |
+
# Split images into train and validation sets
|
480 |
+
train_images = all_images[:split_idx]
|
481 |
+
val_images = all_images[split_idx:]
|
482 |
+
|
483 |
+
# Process training images
|
484 |
+
for image_name in train_images:
|
485 |
+
process_image_and_mask(
|
486 |
+
image_name,
|
487 |
+
source_images_folder=images_folder,
|
488 |
+
dest_images_folder=train_images_folder,
|
489 |
+
dest_labels_folder=train_labels_folder
|
490 |
+
)
|
491 |
+
|
492 |
+
# Process validation images
|
493 |
+
for image_name in val_images:
|
494 |
+
process_image_and_mask(
|
495 |
+
image_name,
|
496 |
+
source_images_folder=images_folder,
|
497 |
+
dest_images_folder=val_images_folder,
|
498 |
+
dest_labels_folder=val_labels_folder
|
499 |
+
)
|
500 |
+
|
501 |
+
logging.info("YOLO labels prepared, and images split into train and validation successfully.")
|
502 |
+
|
503 |
+
except Exception as e:
|
504 |
+
logging.error(f"Error in preparing YOLO labels: {e}")
|
505 |
+
raise
|
506 |
+
|
507 |
+
|
508 |
+
def process_image_and_mask(image_name, source_images_folder, dest_images_folder, dest_labels_folder):
|
509 |
+
"""
|
510 |
+
Process a single image and its masks, saving them in the appropriate YOLO format.
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
image_path = os.path.join(source_images_folder, image_name)
|
514 |
+
label_file_path = os.path.join(dest_labels_folder, f"{os.path.splitext(image_name)[0]}.txt")
|
515 |
+
|
516 |
+
# Copy image to the destination images folder
|
517 |
+
shutil.copy(image_path, os.path.join(dest_images_folder, image_name))
|
518 |
+
|
519 |
+
# Clear the label file if it exists
|
520 |
+
if os.path.exists(label_file_path):
|
521 |
+
os.remove(label_file_path)
|
522 |
+
|
523 |
+
# Process void mask
|
524 |
+
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
|
525 |
+
if os.path.exists(void_mask_path):
|
526 |
+
convert_mask_to_yolo(
|
527 |
+
mask_path=void_mask_path,
|
528 |
+
image_path=image_path,
|
529 |
+
class_id=0, # Void class
|
530 |
+
output_path=label_file_path
|
531 |
+
)
|
532 |
+
|
533 |
+
# Process chip mask
|
534 |
+
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
|
535 |
+
if os.path.exists(chip_mask_path):
|
536 |
+
convert_mask_to_yolo(
|
537 |
+
mask_path=chip_mask_path,
|
538 |
+
image_path=image_path,
|
539 |
+
class_id=1, # Chip class
|
540 |
+
output_path=label_file_path,
|
541 |
+
append=True # Append chip annotations
|
542 |
+
)
|
543 |
+
|
544 |
+
logging.info(f"Processed {image_name} into YOLO format.")
|
545 |
+
except Exception as e:
|
546 |
+
logging.error(f"Error processing {image_name}: {e}")
|
547 |
+
raise
|
548 |
+
|
549 |
+
def backup_masks_and_images():
|
550 |
+
"""Backup current masks and images from history folders."""
|
551 |
+
temp_backup_paths = {
|
552 |
+
'voids': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/voids'),
|
553 |
+
'chips': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/chips'),
|
554 |
+
'images': os.path.join(DATASET_FOLDERS['temp_backup'], 'images')
|
555 |
+
}
|
556 |
+
|
557 |
+
# Prepare all backup directories
|
558 |
+
for path in temp_backup_paths.values():
|
559 |
+
if os.path.exists(path):
|
560 |
+
shutil.rmtree(path)
|
561 |
+
os.makedirs(path, exist_ok=True)
|
562 |
+
|
563 |
+
try:
|
564 |
+
# Backup images from history
|
565 |
+
for file in os.listdir(HISTORY_FOLDERS['images']):
|
566 |
+
src_image_path = os.path.join(HISTORY_FOLDERS['images'], file)
|
567 |
+
dst_image_path = os.path.join(temp_backup_paths['images'], file)
|
568 |
+
shutil.copy(src_image_path, dst_image_path)
|
569 |
+
|
570 |
+
# Backup void masks from history
|
571 |
+
for file in os.listdir(HISTORY_FOLDERS['masks_void']):
|
572 |
+
src_void_path = os.path.join(HISTORY_FOLDERS['masks_void'], file)
|
573 |
+
dst_void_path = os.path.join(temp_backup_paths['voids'], file)
|
574 |
+
shutil.copy(src_void_path, dst_void_path)
|
575 |
+
|
576 |
+
# Backup chip masks from history
|
577 |
+
for file in os.listdir(HISTORY_FOLDERS['masks_chip']):
|
578 |
+
src_chip_path = os.path.join(HISTORY_FOLDERS['masks_chip'], file)
|
579 |
+
dst_chip_path = os.path.join(temp_backup_paths['chips'], file)
|
580 |
+
shutil.copy(src_chip_path, dst_chip_path)
|
581 |
+
|
582 |
+
logging.info("Masks and images backed up successfully from history.")
|
583 |
+
except Exception as e:
|
584 |
+
logging.error(f"Error during backup: {e}")
|
585 |
+
raise RuntimeError("Backup process failed.")
|
586 |
+
|
587 |
+
def run_yolo_training(num_epochs=10):
|
588 |
+
"""Run YOLO training process."""
|
589 |
+
global training_process
|
590 |
+
|
591 |
+
try:
|
592 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
593 |
+
data_cfg_path = os.path.join(BASE_DIR, "models/data.yaml") # Ensure correct YAML path
|
594 |
+
|
595 |
+
logging.info(f"Starting YOLO training on {device} with {num_epochs} epochs.")
|
596 |
+
logging.info(f"Using dataset configuration: {data_cfg_path}")
|
597 |
+
|
598 |
+
training_command = [
|
599 |
+
"yolo",
|
600 |
+
"train",
|
601 |
+
f"data={data_cfg_path}",
|
602 |
+
f"model={os.path.join(DATASET_FOLDERS['models'], 'best.pt')}",
|
603 |
+
f"device={device}",
|
604 |
+
f"epochs={num_epochs}",
|
605 |
+
"project=runs",
|
606 |
+
"name=train"
|
607 |
+
]
|
608 |
+
|
609 |
+
training_process = subprocess.Popen(
|
610 |
+
training_command,
|
611 |
+
stdout=subprocess.PIPE,
|
612 |
+
stderr=subprocess.STDOUT,
|
613 |
+
text=True,
|
614 |
+
env=os.environ.copy(),
|
615 |
+
)
|
616 |
+
|
617 |
+
# Display and log output in real time
|
618 |
+
for line in iter(training_process.stdout.readline, ''):
|
619 |
+
print(line.strip())
|
620 |
+
logging.info(line.strip())
|
621 |
+
socketio.emit('training_update', {'message': line.strip()}) # Send updates to the frontend
|
622 |
+
|
623 |
+
training_process.wait()
|
624 |
+
|
625 |
+
if training_process.returncode == 0:
|
626 |
+
finalize_training() # Finalize successfully completed training
|
627 |
+
else:
|
628 |
+
raise RuntimeError("YOLO training process failed. Check logs for details.")
|
629 |
+
except Exception as e:
|
630 |
+
logging.error(f"Training error: {e}")
|
631 |
+
restore_backup() # Restore the dataset and masks
|
632 |
+
|
633 |
+
# Emit training error event to the frontend
|
634 |
+
socketio.emit('training_status', {'status': 'error', 'message': f"Training failed: {str(e)}"})
|
635 |
+
finally:
|
636 |
+
update_training_status('running', False)
|
637 |
+
training_process = None # Reset the process
|
638 |
+
|
639 |
+
|
640 |
+
@socketio.on('cancel_training')
|
641 |
+
def handle_cancel_training():
|
642 |
+
"""Cancel the YOLO training process."""
|
643 |
+
global training_process, training_status
|
644 |
+
|
645 |
+
if not training_status.get('running', False):
|
646 |
+
socketio.emit('button_update', {'action': 'retrain'}) # Update button to retrain
|
647 |
+
return
|
648 |
+
|
649 |
+
try:
|
650 |
+
training_process.terminate()
|
651 |
+
training_process.wait()
|
652 |
+
training_status['running'] = False
|
653 |
+
training_status['cancelled'] = True
|
654 |
+
|
655 |
+
restore_backup()
|
656 |
+
cleanup_train_val_directories()
|
657 |
+
|
658 |
+
# Emit button state change
|
659 |
+
socketio.emit('button_update', {'action': 'retrain'})
|
660 |
+
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
|
661 |
+
except Exception as e:
|
662 |
+
logging.error(f"Error cancelling training: {e}")
|
663 |
+
socketio.emit('training_status', {'status': 'error', 'message': str(e)})
|
664 |
+
|
665 |
+
def finalize_training():
|
666 |
+
"""Finalize training by promoting the new model and cleaning up."""
|
667 |
+
try:
|
668 |
+
# Locate the most recent training directory
|
669 |
+
runs_dir = os.path.join(BASE_DIR, 'runs')
|
670 |
+
if not os.path.exists(runs_dir):
|
671 |
+
raise FileNotFoundError("Training runs directory does not exist.")
|
672 |
+
|
673 |
+
# Get the latest training run folder
|
674 |
+
latest_run = max(
|
675 |
+
[os.path.join(runs_dir, d) for d in os.listdir(runs_dir)],
|
676 |
+
key=os.path.getmtime
|
677 |
+
)
|
678 |
+
weights_dir = os.path.join(latest_run, 'weights')
|
679 |
+
best_model_path = os.path.join(weights_dir, 'best.pt')
|
680 |
+
|
681 |
+
if not os.path.exists(best_model_path):
|
682 |
+
raise FileNotFoundError(f"'best.pt' not found in {weights_dir}.")
|
683 |
+
|
684 |
+
# Backup the old model
|
685 |
+
old_model_folder = DATASET_FOLDERS['models_old']
|
686 |
+
os.makedirs(old_model_folder, exist_ok=True)
|
687 |
+
existing_best_model = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
|
688 |
+
|
689 |
+
if os.path.exists(existing_best_model):
|
690 |
+
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
691 |
+
shutil.move(existing_best_model, os.path.join(old_model_folder, f"old_{timestamp}.pt"))
|
692 |
+
logging.info(f"Old model backed up to {old_model_folder}.")
|
693 |
+
|
694 |
+
# Move the new model to the models directory
|
695 |
+
new_model_dest = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
|
696 |
+
shutil.move(best_model_path, new_model_dest)
|
697 |
+
logging.info(f"New model saved to {new_model_dest}.")
|
698 |
+
|
699 |
+
# Notify frontend that training is completed
|
700 |
+
socketio.emit('training_status', {
|
701 |
+
'status': 'completed',
|
702 |
+
'message': 'Training completed successfully! Model saved as best.pt.'
|
703 |
+
})
|
704 |
+
|
705 |
+
# Clean up train/val directories
|
706 |
+
cleanup_train_val_directories()
|
707 |
+
logging.info("Train and validation directories cleaned up successfully.")
|
708 |
+
|
709 |
+
except Exception as e:
|
710 |
+
logging.error(f"Error finalizing training: {e}")
|
711 |
+
# Emit error status to the frontend
|
712 |
+
socketio.emit('training_status', {'status': 'error', 'message': f"Error finalizing training: {str(e)}"})
|
713 |
+
|
714 |
+
def restore_backup():
|
715 |
+
"""Restore the dataset and masks from the backup."""
|
716 |
+
try:
|
717 |
+
temp_backup = DATASET_FOLDERS['temp_backup']
|
718 |
+
shutil.copytree(os.path.join(temp_backup, 'masks/voids'), UPLOAD_FOLDERS['mask_voids'], dirs_exist_ok=True)
|
719 |
+
shutil.copytree(os.path.join(temp_backup, 'masks/chips'), UPLOAD_FOLDERS['mask_chips'], dirs_exist_ok=True)
|
720 |
+
shutil.copytree(os.path.join(temp_backup, 'images'), UPLOAD_FOLDERS['input'], dirs_exist_ok=True)
|
721 |
+
logging.info("Backup restored successfully.")
|
722 |
+
except Exception as e:
|
723 |
+
logging.error(f"Error restoring backup: {e}")
|
724 |
+
|
725 |
+
@app.route('/cancel_training', methods=['POST'])
|
726 |
+
def cancel_training():
|
727 |
+
global training_process
|
728 |
+
|
729 |
+
if training_process is None:
|
730 |
+
logging.error("No active training process to terminate.")
|
731 |
+
return jsonify({'error': 'No active training process to cancel.'}), 400
|
732 |
+
|
733 |
+
try:
|
734 |
+
training_process.terminate()
|
735 |
+
training_process.wait()
|
736 |
+
training_process = None # Reset the process after termination
|
737 |
+
|
738 |
+
# Update training status
|
739 |
+
update_training_status('running', False)
|
740 |
+
update_training_status('cancelled', True)
|
741 |
+
|
742 |
+
# Check if the model is already saved as best.pt
|
743 |
+
best_model_path = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
|
744 |
+
if os.path.exists(best_model_path):
|
745 |
+
logging.info(f"Model already saved as best.pt at {best_model_path}.")
|
746 |
+
socketio.emit('button_update', {'action': 'revert'}) # Notify frontend to revert button state
|
747 |
+
else:
|
748 |
+
logging.info("Training canceled, but no new model was saved.")
|
749 |
+
|
750 |
+
# Restore backup if needed
|
751 |
+
restore_backup()
|
752 |
+
cleanup_train_val_directories()
|
753 |
+
|
754 |
+
# Emit status update to frontend
|
755 |
+
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
|
756 |
+
return jsonify({'message': 'Training canceled and data restored successfully.'}), 200
|
757 |
+
|
758 |
+
except Exception as e:
|
759 |
+
logging.error(f"Error cancelling training: {e}")
|
760 |
+
return jsonify({'error': f"Failed to cancel training: {e}"}), 500
|
761 |
+
|
762 |
+
@app.route('/clear_history', methods=['POST'])
|
763 |
+
def clear_history():
|
764 |
+
try:
|
765 |
+
for folder in [HISTORY_FOLDERS['images'], HISTORY_FOLDERS['masks_chip'], HISTORY_FOLDERS['masks_void']]:
|
766 |
+
shutil.rmtree(folder, ignore_errors=True)
|
767 |
+
os.makedirs(folder, exist_ok=True) # Recreate the empty folder
|
768 |
+
return jsonify({'message': 'History cleared successfully!'}), 200
|
769 |
+
except Exception as e:
|
770 |
+
return jsonify({'error': f'Failed to clear history: {e}'}), 500
|
771 |
+
|
772 |
+
@app.route('/training_status', methods=['GET'])
|
773 |
+
def get_training_status():
|
774 |
+
"""Return the current training status."""
|
775 |
+
if training_status.get('running', False):
|
776 |
+
return jsonify({'status': 'running', 'message': 'Training in progress.'}), 200
|
777 |
+
elif training_status.get('cancelled', False):
|
778 |
+
return jsonify({'status': 'cancelled', 'message': 'Training was cancelled.'}), 200
|
779 |
+
return jsonify({'status': 'idle', 'message': 'No training is currently running.'}), 200
|
780 |
+
|
781 |
+
def cleanup_train_val_directories():
|
782 |
+
"""Clear the train and validation directories."""
|
783 |
+
try:
|
784 |
+
for folder in [DATASET_FOLDERS['train_images'], DATASET_FOLDERS['train_labels'],
|
785 |
+
DATASET_FOLDERS['val_images'], DATASET_FOLDERS['val_labels']]:
|
786 |
+
shutil.rmtree(folder, ignore_errors=True) # Remove folder contents
|
787 |
+
os.makedirs(folder, exist_ok=True) # Recreate empty folders
|
788 |
+
logging.info("Train and validation directories cleaned up successfully.")
|
789 |
+
except Exception as e:
|
790 |
+
logging.error(f"Error cleaning up train/val directories: {e}")
|
791 |
+
|
792 |
+
|
793 |
+
if __name__ == '__main__':
|
794 |
+
multiprocessing.set_start_method('spawn') # Required for multiprocessing on Windows
|
795 |
+
app.run(debug=True, use_reloader=False)
|
796 |
+
|
797 |
+
|
dataset/.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
dataset/images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
dataset/images/train/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5.jpg
ADDED
dataset/images/train/03_JPG.rf.2ca107348e11cdefab68044dba66388d.jpg
ADDED
dataset/images/train/04_JPG.rf.b0b546ecbc6b70149b8932018e69fef0.jpg
ADDED
dataset/images/train/05_jpg.rf.46241369ebb0749c40882400f82eb224.jpg
ADDED
dataset/images/train/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98.jpg
ADDED
dataset/images/train/09_JPG.rf.9119efd8c174f968457a893669209835.jpg
ADDED
dataset/images/train/10_JPG.rf.6745a7b3ea828239398b85182acba199.jpg
ADDED
dataset/images/train/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg
ADDED
dataset/images/train/12_jpg.rf.357643b374df92f81f9dee7c701b2315.jpg
ADDED
dataset/images/train/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c.jpg
ADDED
dataset/images/train/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg
ADDED
dataset/images/train/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg
ADDED
dataset/images/train/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg
ADDED
dataset/images/train/18_jpg.rf.4d241aab78af17171d83f3a50f1cf1aa.jpg
ADDED
dataset/images/train/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg
ADDED
dataset/images/train/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg
ADDED
dataset/images/train/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg
ADDED
dataset/images/train/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg
ADDED
dataset/images/train/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg
ADDED
dataset/images/train/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg
ADDED
dataset/images/train/31_jpg.rf.f31137f793efde0462ed560d426dcd24.jpg
ADDED
dataset/images/train/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058.jpg
ADDED
dataset/images/train/LU-F_mod_jpg.rf.fc594179772346639512f891960969bb.jpg
ADDED
dataset/images/train/Solder_Voids_jpg.rf.d40f1b71d8a801f084067fde7f33fb08.jpg
ADDED
dataset/images/train/gc10_lake_voids_260-31_jpg.rf.479f3d9dda8dd22097d3d93c78f7e11d.jpg
ADDED
dataset/images/train/images_jpg.rf.675b31c5e1ba2b77f0fa5ca92e2391b0.jpg
ADDED
dataset/images/train/qfn-voiding_0_jpg.rf.2945527db158e9ff4943febaf9cd3eab.jpg
ADDED
dataset/images/train/techtips_3_jpg.rf.ad88af637816f0999f4df0b18dfef293.jpg
ADDED
dataset/images/val/025_JPG.rf.b2cdc2d984adff593dc985f555b8d280.jpg
ADDED
dataset/images/val/06_jpg.rf.a94e0a678df372f5ea1395a8d888a388.jpg
ADDED
dataset/images/val/07_JPG.rf.324d17a87726bd2a9614536c687c6e68.jpg
ADDED
dataset/images/val/23_jpg.rf.8e9afa6b3b471e10c26637d47700f28b.jpg
ADDED
dataset/images/val/24_jpg.rf.4caa996d97e35f6ce4f27a527ea43465.jpg
ADDED
dataset/images/val/27_jpg.rf.3475fce31d283058f46d9f349c04cb1a.jpg
ADDED
dataset/images/val/28_jpg.rf.50e348d807d35667583137c9a6c162ca.jpg
ADDED
dataset/images/val/30_jpg.rf.ed72622e97cf0d884997585686cfe40a.jpg
ADDED
dataset/test/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
dataset/test/images/17_jpg.rf.ec31940ea72d0cf8b9f38dba68789fcf.jpg
ADDED
dataset/test/images/19_jpg.rf.2c5ffd63bd0ce6b9b0c80fef69d101dc.jpg
ADDED
dataset/test/images/32_jpg.rf.f3e33dcf611a8754c0765224f7873d8b.jpg
ADDED
dataset/test/images/normal-reflow_jpg.rf.2c4fbc1fda915b821b85689ae257e116.jpg
ADDED
dataset/test/images/techtips_31_jpg.rf.673cd3c7c8511e534766e6dbc3171b39.jpg
ADDED
dataset/test/labels/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|