uartimcs's picture
Upload folder using huggingface_hub
608a96e verified
raw
history blame
4.94 kB
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import json
import os
import re
from typing import Any, List
import numpy as np
from elements import Background, Document
from PIL import Image
from synthtiger import components, layers, templates
class SynthDoG(templates.Template):
def __init__(self, config=None, split_ratio: List[float] = [0.8, 0.1, 0.1]):
super().__init__(config)
if config is None:
config = {}
self.quality = config.get("quality", [50, 95])
self.landscape = config.get("landscape", 0.5)
self.short_size = config.get("short_size", [720, 1024])
self.aspect_ratio = config.get("aspect_ratio", [1, 2])
self.background = Background(config.get("background", {}))
self.document = Document(config.get("document", {}))
self.effect = components.Iterator(
[
components.Switch(components.RGB()),
components.Switch(components.Shadow()),
components.Switch(components.Contrast()),
components.Switch(components.Brightness()),
components.Switch(components.MotionBlur()),
components.Switch(components.GaussianBlur()),
],
**config.get("effect", {}),
)
# config for splits
self.splits = ["train", "validation", "test"]
self.split_ratio = split_ratio
self.split_indexes = np.random.choice(3, size=10000, p=split_ratio)
def generate(self):
landscape = np.random.rand() < self.landscape
short_size = np.random.randint(self.short_size[0], self.short_size[1] + 1)
aspect_ratio = np.random.uniform(self.aspect_ratio[0], self.aspect_ratio[1])
long_size = int(short_size * aspect_ratio)
size = (long_size, short_size) if landscape else (short_size, long_size)
bg_layer = self.background.generate(size)
paper_layer, text_layers, texts = self.document.generate(size)
document_group = layers.Group([*text_layers, paper_layer])
document_space = np.clip(size - document_group.size, 0, None)
document_group.left = np.random.randint(document_space[0] + 1)
document_group.top = np.random.randint(document_space[1] + 1)
roi = np.array(paper_layer.quad, dtype=int)
layer = layers.Group([*document_group.layers, bg_layer]).merge()
self.effect.apply([layer])
image = layer.output(bbox=[0, 0, *size])
label = " ".join(texts)
label = label.strip()
label = re.sub(r"\s+", " ", label)
quality = np.random.randint(self.quality[0], self.quality[1] + 1)
data = {
"image": image,
"label": label,
"quality": quality,
"roi": roi,
}
return data
def init_save(self, root):
if not os.path.exists(root):
os.makedirs(root, exist_ok=True)
def save(self, root, data, idx):
image = data["image"]
label = data["label"]
quality = data["quality"]
roi = data["roi"]
# split
split_idx = self.split_indexes[idx % len(self.split_indexes)]
output_dirpath = os.path.join(root, self.splits[split_idx])
# save image
image_filename = f"image_{idx}.jpg"
image_filepath = os.path.join(output_dirpath, image_filename)
os.makedirs(os.path.dirname(image_filepath), exist_ok=True)
image = Image.fromarray(image[..., :3].astype(np.uint8))
image.save(image_filepath, quality=quality)
# save metadata (gt_json)
metadata_filename = "metadata.jsonl"
metadata_filepath = os.path.join(output_dirpath, metadata_filename)
os.makedirs(os.path.dirname(metadata_filepath), exist_ok=True)
metadata = self.format_metadata(image_filename=image_filename, keys=["text_sequence"], values=[label])
with open(metadata_filepath, "a") as fp:
json.dump(metadata, fp, ensure_ascii=False)
fp.write("\n")
def end_save(self, root):
pass
def format_metadata(self, image_filename: str, keys: List[str], values: List[Any]):
"""
Fit gt_parse contents to huggingface dataset's format
keys and values, whose lengths are equal, are used to constrcut 'gt_parse' field in 'ground_truth' field
Args:
keys: List of task_name
values: List of actual gt data corresponding to each task_name
"""
assert len(keys) == len(values), "Length does not match: keys({}), values({})".format(len(keys), len(values))
_gt_parse_v = dict()
for k, v in zip(keys, values):
_gt_parse_v[k] = v
gt_parse = {"gt_parse": _gt_parse_v}
gt_parse_str = json.dumps(gt_parse, ensure_ascii=False)
metadata = {"file_name": image_filename, "ground_truth": gt_parse_str}
return metadata