Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,29 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import argparse
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from donut import DonutModel
|
6 |
-
def demo_process(input_img):
|
7 |
-
global model, task_prompt, task_name
|
8 |
-
input_img = Image.fromarray(input_img)
|
9 |
-
output = model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
|
10 |
-
return output
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
parser.add_argument("--task", type=str, default="Booking")
|
13 |
-
parser.add_argument("--pretrained_path", type=str, default="
|
14 |
-
args, left_argv = parser.parse_known_args()
|
15 |
-
task_name = args.task
|
16 |
-
task_prompt = f"<s_{task_name}>"
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from donut import DonutModel
|
6 |
+
def demo_process(input_img):
|
7 |
+
global model, task_prompt, task_name
|
8 |
+
input_img = Image.fromarray(input_img)
|
9 |
+
output = model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
|
10 |
+
return output
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument("--task", type=str, default="Booking")
|
13 |
+
parser.add_argument("--pretrained_path", type=str, default="uartimcs/donut-booking-extract")
|
14 |
+
args, left_argv = parser.parse_known_args()
|
15 |
+
task_name = args.task
|
16 |
+
task_prompt = f"<s_{task_name}>"
|
17 |
+
|
18 |
+
image = Image.open("./sample-booking/CMA_150.jpg")
|
19 |
+
image.save("CMA_sample.jpg")
|
20 |
+
image = Image.open("./sample-booking/COSCO_150.jpg")
|
21 |
+
image.save("COSCO_sample.jpg")
|
22 |
+
image = Image.open("./sample-booking/ONEY_150.jpg")
|
23 |
+
image.save("ONEY_sample.jpg")
|
24 |
+
|
25 |
+
|
26 |
+
model = DonutModel.from_pretrained("uartimcs/donut-booking-extract")
|
27 |
+
model.eval()
|
28 |
+
demo = gr.Interface(fn=demo_process,inputs="image",outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task", examples=[["CMA_sample.jpg"], ["COSCO_sample.jpg"], ["ONEY_sample.jpg"]],)
|
29 |
+
demo.launch()
|