resume_from_checkpoint_path: null # only used for resume_from_checkpoint option in PL result_path: "./result" pretrained_model_name_or_path: "naver-clova-ix/donut-base" # loading a pre-trained model (from moldehub or path) dataset_name_or_paths: ["./dataset/Booking"] # loading datasets (from moldehub or path) sort_json_key: False # cord dataset is preprocessed, and publicly available at https://huggingface.co/datasets/naver-clova-ix/cord-v2 train_batch_sizes: [2] val_batch_sizes: [1] input_size: [1280, 960] # when the input resolution differs from the pre-training setting, some weights will be newly initialized (but the model training would be okay) max_length: 768 align_long_axis: False num_nodes: 1 seed: 2022 lr: 3e-5 warmup_steps: 400 # 800/2*10/10, 10% num_training_samples_per_epoch: 800 max_epochs: 10 max_steps: -1 num_workers: 8 val_check_interval: 1.0 check_val_every_n_epoch: 3 gradient_clip_val: 1.0 verbose: True