""" Donut Copyright (c) 2022-present NAVER Corp. MIT License """ import math import os import re from typing import Any, List, Optional, Union import numpy as np import PIL import timm import torch import torch.nn as nn import torch.nn.functional as F from PIL import ImageOps from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.swin_transformer import SwinTransformer from torchvision import transforms from torchvision.transforms.functional import resize, rotate from transformers import MBartConfig, MBartForCausalLM, XLMRobertaTokenizer from transformers.file_utils import ModelOutput from transformers.modeling_utils import PretrainedConfig, PreTrainedModel class SwinEncoder(nn.Module): r""" Donut encoder based on SwinTransformer Set the initial weights and configuration with a pretrained SwinTransformer and then modify the detailed configurations as a Donut Encoder Args: input_size: Input image size (width, height) align_long_axis: Whether to rotate image if height is greater than width window_size: Window size(=patch size) of SwinTransformer encoder_layer: Number of layers of SwinTransformer encoder name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local. otherwise, `swin_base_patch4_window12_384` will be set (using `timm`). """ def __init__( self, input_size: List[int], align_long_axis: bool, window_size: int, encoder_layer: List[int], name_or_path: Union[str, bytes, os.PathLike] = None, ): super().__init__() self.input_size = input_size self.align_long_axis = align_long_axis self.window_size = window_size self.encoder_layer = encoder_layer self.to_tensor = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), ] ) self.model = SwinTransformer( img_size=self.input_size, depths=self.encoder_layer, window_size=self.window_size, patch_size=4, embed_dim=128, num_heads=[4, 8, 16, 32], num_classes=0, ) self.model.norm = None # weight init with swin if not name_or_path: swin_state_dict = timm.create_model("swin_base_patch4_window12_384", pretrained=True).state_dict() new_swin_state_dict = self.model.state_dict() for x in new_swin_state_dict: if x.endswith("relative_position_index") or x.endswith("attn_mask"): pass elif ( x.endswith("relative_position_bias_table") and self.model.layers[0].blocks[0].attn.window_size[0] != 12 ): pos_bias = swin_state_dict[x].unsqueeze(0)[0] old_len = int(math.sqrt(len(pos_bias))) new_len = int(2 * window_size - 1) pos_bias = pos_bias.reshape(1, old_len, old_len, -1).permute(0, 3, 1, 2) pos_bias = F.interpolate(pos_bias, size=(new_len, new_len), mode="bicubic", align_corners=False) new_swin_state_dict[x] = pos_bias.permute(0, 2, 3, 1).reshape(1, new_len ** 2, -1).squeeze(0) else: new_swin_state_dict[x] = swin_state_dict[x] self.model.load_state_dict(new_swin_state_dict) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: (batch_size, num_channels, height, width) """ x = self.model.patch_embed(x) x = self.model.pos_drop(x) x = self.model.layers(x) return x def prepare_input(self, img: PIL.Image.Image, random_padding: bool = False) -> torch.Tensor: """ Convert PIL Image to tensor according to specified input_size after following steps below: - resize - rotate (if align_long_axis is True and image is not aligned longer axis with canvas) - pad """ img = img.convert("RGB") if self.align_long_axis and ( (self.input_size[0] > self.input_size[1] and img.width > img.height) or (self.input_size[0] < self.input_size[1] and img.width < img.height) ): img = rotate(img, angle=-90, expand=True) img = resize(img, min(self.input_size)) img.thumbnail((self.input_size[1], self.input_size[0])) delta_width = self.input_size[1] - img.width delta_height = self.input_size[0] - img.height if random_padding: pad_width = np.random.randint(low=0, high=delta_width + 1) pad_height = np.random.randint(low=0, high=delta_height + 1) else: pad_width = delta_width // 2 pad_height = delta_height // 2 padding = ( pad_width, pad_height, delta_width - pad_width, delta_height - pad_height, ) return self.to_tensor(ImageOps.expand(img, padding)) class BARTDecoder(nn.Module): """ Donut Decoder based on Multilingual BART Set the initial weights and configuration with a pretrained multilingual BART model, and modify the detailed configurations as a Donut decoder Args: decoder_layer: Number of layers of BARTDecoder max_position_embeddings: The maximum sequence length to be trained name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local, otherwise, `hyunwoongko/asian-bart-ecjk` will be set (using `transformers`) """ def __init__( self, decoder_layer: int, max_position_embeddings: int, name_or_path: Union[str, bytes, os.PathLike] = None ): super().__init__() self.decoder_layer = decoder_layer self.max_position_embeddings = max_position_embeddings self.tokenizer = XLMRobertaTokenizer.from_pretrained( "hyunwoongko/asian-bart-ecjk" if not name_or_path else name_or_path ) self.model = MBartForCausalLM( config=MBartConfig( is_decoder=True, is_encoder_decoder=False, add_cross_attention=True, decoder_layers=self.decoder_layer, max_position_embeddings=self.max_position_embeddings, vocab_size=len(self.tokenizer), scale_embedding=True, add_final_layer_norm=True, ) ) self.model.forward = self.forward # to get cross attentions and utilize `generate` function self.model.config.is_encoder_decoder = True # to get cross-attention self.add_special_tokens([""]) # is used for representing a list in a JSON self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference # weight init with asian-bart if not name_or_path: bart_state_dict = MBartForCausalLM.from_pretrained("hyunwoongko/asian-bart-ecjk").state_dict() new_bart_state_dict = self.model.state_dict() for x in new_bart_state_dict: if x.endswith("embed_positions.weight") and self.max_position_embeddings != 1024: new_bart_state_dict[x] = torch.nn.Parameter( self.resize_bart_abs_pos_emb( bart_state_dict[x], self.max_position_embeddings + 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119 ) ) elif x.endswith("embed_tokens.weight") or x.endswith("lm_head.weight"): new_bart_state_dict[x] = bart_state_dict[x][: len(self.tokenizer), :] else: new_bart_state_dict[x] = bart_state_dict[x] self.model.load_state_dict(new_bart_state_dict) def add_special_tokens(self, list_of_tokens: List[str]): """ Add special tokens to tokenizer and resize the token embeddings """ newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))}) if newly_added_num > 0: self.model.resize_token_embeddings(len(self.tokenizer)) def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool = None, attention_mask: torch.Tensor = None): """ Args: input_ids: (batch_size, sequence_lenth) Returns: input_ids: (batch_size, sequence_length) attention_mask: (batch_size, sequence_length) encoder_hidden_states: (batch_size, sequence_length, embedding_dim) """ # for compatibility with transformers==4.11.x if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, "encoder_hidden_states": encoder_outputs.last_hidden_state, } return output def forward( self, input_ids, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: bool = None, output_attentions: Optional[torch.Tensor] = None, output_hidden_states: Optional[torch.Tensor] = None, return_dict: bool = None, ): """ A forward fucntion to get cross attentions and utilize `generate` function Source: https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L1669-L1810 Args: input_ids: (batch_size, sequence_length) attention_mask: (batch_size, sequence_length) encoder_hidden_states: (batch_size, sequence_length, hidden_size) Returns: loss: (1, ) logits: (batch_size, sequence_length, hidden_dim) hidden_states: (batch_size, sequence_length, hidden_size) decoder_attentions: (batch_size, num_heads, sequence_length, sequence_length) cross_attentions: (batch_size, num_heads, sequence_length, sequence_length) """ output_attentions = output_attentions if output_attentions is not None else self.model.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.model.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict outputs = self.model.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.model.lm_head(outputs[0]) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss(ignore_index=-100) loss = loss_fct(logits.view(-1, self.model.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return ModelOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, decoder_attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor: """ Resize position embeddings Truncate if sequence length of Bart backbone is greater than given max_length, else interpolate to max_length """ if weight.shape[0] > max_length: weight = weight[:max_length, ...] else: weight = ( F.interpolate( weight.permute(1, 0).unsqueeze(0), size=max_length, mode="linear", align_corners=False, ) .squeeze(0) .permute(1, 0) ) return weight class DonutConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DonutModel`]. It is used to instantiate a Donut model according to the specified arguments, defining the model architecture Args: input_size: Input image size (canvas size) of Donut.encoder, SwinTransformer in this codebase align_long_axis: Whether to rotate image if height is greater than width window_size: Window size of Donut.encoder, SwinTransformer in this codebase encoder_layer: Depth of each Donut.encoder Encoder layer, SwinTransformer in this codebase decoder_layer: Number of hidden layers in the Donut.decoder, such as BART max_position_embeddings Trained max position embeddings in the Donut decoder, if not specified, it will have same value with max_length max_length: Max position embeddings(=maximum sequence length) you want to train name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local """ model_type = "donut" def __init__( self, input_size: List[int] = [2560, 1920], align_long_axis: bool = False, window_size: int = 10, encoder_layer: List[int] = [2, 2, 14, 2], decoder_layer: int = 4, max_position_embeddings: int = None, max_length: int = 1536, name_or_path: Union[str, bytes, os.PathLike] = "", **kwargs, ): super().__init__() self.input_size = input_size self.align_long_axis = align_long_axis self.window_size = window_size self.encoder_layer = encoder_layer self.decoder_layer = decoder_layer self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings self.max_length = max_length self.name_or_path = name_or_path class DonutModel(PreTrainedModel): r""" Donut: an E2E OCR-free Document Understanding Transformer. The encoder maps an input document image into a set of embeddings, the decoder predicts a desired token sequence, that can be converted to a structured format, given a prompt and the encoder output embeddings """ config_class = DonutConfig base_model_prefix = "donut" def __init__(self, config: DonutConfig): super().__init__(config) self.config = config self.encoder = SwinEncoder( input_size=self.config.input_size, align_long_axis=self.config.align_long_axis, window_size=self.config.window_size, encoder_layer=self.config.encoder_layer, name_or_path=self.config.name_or_path, ) self.decoder = BARTDecoder( max_position_embeddings=self.config.max_position_embeddings, decoder_layer=self.config.decoder_layer, name_or_path=self.config.name_or_path, ) def forward(self, image_tensors: torch.Tensor, decoder_input_ids: torch.Tensor, decoder_labels: torch.Tensor): """ Calculate a loss given an input image and a desired token sequence, the model will be trained in a teacher-forcing manner Args: image_tensors: (batch_size, num_channels, height, width) decoder_input_ids: (batch_size, sequence_length, embedding_dim) decode_labels: (batch_size, sequence_length) """ encoder_outputs = self.encoder(image_tensors) decoder_outputs = self.decoder( input_ids=decoder_input_ids, encoder_hidden_states=encoder_outputs, labels=decoder_labels, ) return decoder_outputs def inference( self, image: PIL.Image = None, prompt: str = None, image_tensors: Optional[torch.Tensor] = None, prompt_tensors: Optional[torch.Tensor] = None, return_json: bool = True, return_attentions: bool = False, ): """ Generate a token sequence in an auto-regressive manner, the generated token sequence is convereted into an ordered JSON format Args: image: input document image (PIL.Image) prompt: task prompt (string) to guide Donut Decoder generation image_tensors: (1, num_channels, height, width) convert prompt to tensor if image_tensor is not fed prompt_tensors: (1, sequence_length) convert image to tensor if prompt_tensor is not fed """ # prepare backbone inputs (image and prompt) if image is None and image_tensors is None: raise ValueError("Expected either image or image_tensors") if all(v is None for v in {prompt, prompt_tensors}): raise ValueError("Expected either prompt or prompt_tensors") if image_tensors is None: image_tensors = self.encoder.prepare_input(image).unsqueeze(0) if self.device.type == "cuda": # half is not compatible in cpu implementation. image_tensors = image_tensors.half() image_tensors = image_tensors.to(self.device) if prompt_tensors is None: prompt_tensors = self.decoder.tokenizer(prompt, add_special_tokens=False, return_tensors="pt")["input_ids"] prompt_tensors = prompt_tensors.to(self.device) last_hidden_state = self.encoder(image_tensors) if self.device.type != "cuda": last_hidden_state = last_hidden_state.to(torch.float32) encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None) if len(encoder_outputs.last_hidden_state.size()) == 1: encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0) if len(prompt_tensors.size()) == 1: prompt_tensors = prompt_tensors.unsqueeze(0) # get decoder output decoder_output = self.decoder.model.generate( decoder_input_ids=prompt_tensors, encoder_outputs=encoder_outputs, max_length=self.config.max_length, early_stopping=True, pad_token_id=self.decoder.tokenizer.pad_token_id, eos_token_id=self.decoder.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.decoder.tokenizer.unk_token_id]], return_dict_in_generate=True, output_attentions=return_attentions, ) output = {"predictions": list()} for seq in self.decoder.tokenizer.batch_decode(decoder_output.sequences): seq = seq.replace(self.decoder.tokenizer.eos_token, "").replace(self.decoder.tokenizer.pad_token, "") seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token if return_json: output["predictions"].append(self.token2json(seq)) else: output["predictions"].append(seq) if return_attentions: output["attentions"] = { "self_attentions": decoder_output.decoder_attentions, "cross_attentions": decoder_output.cross_attentions, } return output def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): """ Convert an ordered JSON object into a token sequence """ if type(obj) == dict: if len(obj) == 1 and "text_sequence" in obj: return obj["text_sequence"] else: output = "" if sort_json_key: keys = sorted(obj.keys(), reverse=True) else: keys = obj.keys() for k in keys: if update_special_tokens_for_json_key: self.decoder.add_special_tokens([fr"", fr""]) output += ( fr"" + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + fr"" ) return output elif type(obj) == list: return r"".join( [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] ) else: obj = str(obj) if f"<{obj}/>" in self.decoder.tokenizer.all_special_tokens: obj = f"<{obj}/>" # for categorical special tokens return obj def token2json(self, tokens, is_inner_value=False): """ Convert a (generated) token seuqnce into an ordered JSON format """ output = dict() while tokens: start_token = re.search(r"", tokens, re.IGNORECASE) if start_token is None: break key = start_token.group(1) end_token = re.search(fr"", tokens, re.IGNORECASE) start_token = start_token.group() if end_token is None: tokens = tokens.replace(start_token, "") else: end_token = end_token.group() start_token_escaped = re.escape(start_token) end_token_escaped = re.escape(end_token) content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE) if content is not None: content = content.group(1).strip() if r""): leaf = leaf.strip() if ( leaf in self.decoder.tokenizer.get_added_vocab() and leaf[0] == "<" and leaf[-2:] == "/>" ): leaf = leaf[1:-2] # for categorical special tokens output[key].append(leaf) if len(output[key]) == 1: output[key] = output[key][0] tokens = tokens[tokens.find(end_token) + len(end_token) :].strip() if tokens[:6] == r"": # non-leaf nodes return [output] + self.token2json(tokens[6:], is_inner_value=True) if len(output): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, bytes, os.PathLike], *model_args, **kwargs, ): r""" Instantiate a pretrained donut model from a pre-trained model configuration Args: pretrained_model_name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local, e.g., `naver-clova-ix/donut-base`, or `naver-clova-ix/donut-base-finetuned-rvlcdip` """ model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs) # truncate or interplolate position embeddings of donut decoder max_length = kwargs.get("max_length", model.config.max_position_embeddings) if ( max_length != model.config.max_position_embeddings ): # if max_length of trained model differs max_length you want to train model.decoder.model.model.decoder.embed_positions.weight = torch.nn.Parameter( model.decoder.resize_bart_abs_pos_emb( model.decoder.model.model.decoder.embed_positions.weight, max_length + 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119 ) ) model.config.max_position_embeddings = max_length return model