""" Donut Copyright (c) 2022-present NAVER Corp. MIT License """ import argparse import datetime import json import os import random from io import BytesIO from os.path import basename from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.loggers.tensorboard import TensorBoardLogger from pytorch_lightning.plugins import CheckpointIO from pytorch_lightning.utilities import rank_zero_only from sconf import Config from donut import DonutDataset from lightning_module import DonutDataPLModule, DonutModelPLModule class CustomCheckpointIO(CheckpointIO): def save_checkpoint(self, checkpoint, path, storage_options=None): del checkpoint["state_dict"] torch.save(checkpoint, path) def load_checkpoint(self, path, storage_options=None): checkpoint = torch.load(path + "artifacts.ckpt") state_dict = torch.load(path + "pytorch_model.bin") checkpoint["state_dict"] = {"model." + key: value for key, value in state_dict.items()} return checkpoint def remove_checkpoint(self, path) -> None: return super().remove_checkpoint(path) @rank_zero_only def save_config_file(config, path): if not Path(path).exists(): os.makedirs(path) save_path = Path(path) / "config.yaml" print(config.dumps()) with open(save_path, "w") as f: f.write(config.dumps(modified_color=None, quote_str=True)) print(f"Config is saved at {save_path}") class ProgressBar(pl.callbacks.TQDMProgressBar): def __init__(self, config): super().__init__() self.enable = True self.config = config def disable(self): self.enable = False def get_metrics(self, trainer, model): items = super().get_metrics(trainer, model) items.pop("v_num", None) items["exp_name"] = f"{self.config.get('exp_name', '')}" items["exp_version"] = f"{self.config.get('exp_version', '')}" return items def set_seed(seed): pytorch_lightning_version = int(pl.__version__[0]) if pytorch_lightning_version < 2: pl.utilities.seed.seed_everything(seed, workers=True) else: import lightning_fabric lightning_fabric.utilities.seed.seed_everything(seed, workers=True) def train(config): set_seed(config.get("seed", 42)) model_module = DonutModelPLModule(config) data_module = DonutDataPLModule(config) # add datasets to data_module datasets = {"train": [], "validation": []} for i, dataset_name_or_path in enumerate(config.dataset_name_or_paths): task_name = os.path.basename(dataset_name_or_path) # e.g., cord-v2, docvqa, rvlcdip, ... # add categorical special tokens (optional) if task_name == "rvlcdip": model_module.model.decoder.add_special_tokens([ "", "", "", "", "
", "", "", "", "", "", "", "", "", "", "", "" ]) if task_name == "docvqa": model_module.model.decoder.add_special_tokens(["", ""]) for split in ["train", "validation"]: datasets[split].append( DonutDataset( dataset_name_or_path=dataset_name_or_path, donut_model=model_module.model, max_length=config.max_length, split=split, task_start_token=config.task_start_tokens[i] if config.get("task_start_tokens", None) else f"", prompt_end_token="" if "docvqa" in dataset_name_or_path else f"", sort_json_key=config.sort_json_key, ) ) # prompt_end_token is used for ignoring a given prompt in a loss function # for docvqa task, i.e., {"question": {used as a prompt}, "answer": {prediction target}}, # set prompt_end_token to "" data_module.train_datasets = datasets["train"] data_module.val_datasets = datasets["validation"] logger = TensorBoardLogger( save_dir=config.result_path, name=config.exp_name, version=config.exp_version, default_hp_metric=False, ) lr_callback = LearningRateMonitor(logging_interval="step") checkpoint_callback = ModelCheckpoint( monitor="val_metric", dirpath=Path(config.result_path) / config.exp_name / config.exp_version, filename="artifacts", save_top_k=1, save_last=False, mode="min", ) bar = ProgressBar(config) custom_ckpt = CustomCheckpointIO() trainer = pl.Trainer( num_nodes=config.get("num_nodes", 1), devices=torch.cuda.device_count(), strategy="ddp", accelerator="gpu", plugins=custom_ckpt, max_epochs=config.max_epochs, max_steps=config.max_steps, val_check_interval=config.val_check_interval, check_val_every_n_epoch=config.check_val_every_n_epoch, gradient_clip_val=config.gradient_clip_val, precision=16, num_sanity_val_steps=0, logger=logger, callbacks=[lr_callback, checkpoint_callback, bar], ) trainer.fit(model_module, data_module, ckpt_path=config.get("resume_from_checkpoint_path", None)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) parser.add_argument("--exp_version", type=str, required=False) args, left_argv = parser.parse_known_args() config = Config(args.config) config.argv_update(left_argv) config.exp_name = basename(args.config).split(".")[0] config.exp_version = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") if not args.exp_version else args.exp_version save_config_file(config, Path(config.result_path) / config.exp_name / config.exp_version) train(config)