Spaces:
Running
Running
File size: 7,500 Bytes
9aaa84f ae5a55c 9aaa84f ae5a55c 9aaa84f ae5a55c 9aaa84f ae5a55c 9aaa84f ae5a55c 9aaa84f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
from typing import Iterator
from text_generation import Client
import gradio as gr
model_id = 'deepseek-ai/deepseek-coder-1.3b-instruct'
API_URL = "https://api-inference.huggingface.co/models/" + model_id
HF_TOKEN = os.environ.get('HF_READ_TOKEN', None)
client = Client(
API_URL,
headers={'Authorization': f"Bearer {HF_TOKEN}"}
)
EOS_STRING = "</s>"
EOT_STRING = "<EOT>"
def get_prompt(message, chat_history, system_prompt):
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
message = message.strip() if do_strip else message
texts.append(f"{message} [/INST]")
return ''.join(texts)
def run(message, chat_history, system_prompt, max_new_tokens=1024, temperature=0.1, top_p=0.9, top_k=50):
prompt = get_prompt(message, chat_history, system_prompt)
generate_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature
)
stream = client.generate_stream(prompt, **generate_kwargs)
output = ''
for response in stream:
if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]):
return output
else:
output += response.token.text
yield output
return output
DEFAULT_SYSTEM_PROMPT = """
You are DeepSeek Coder. You are an AI assistant, you are moderately-polite and give only true information.
You carefully provide accurate, factual, thoughtful, nuanced answers, and are brilliant at reasoning.
If you think there might not be a correct answer, you say so. Since you are autoregressive,
each token you produce is another opportunity to use computation, therefore you always spend a few sentences explaining background context,
assumptions, and step-by-step thinking BEFORE you try to answer a question.
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4096
DESCRIPTION = """
# DeepSeek Coder 1.3b Chatbot
"""
def clear_and_save_textbox(message): return '', message
def display_input(message, history=[]):
history.append((message, ''))
return history
def delete_prev_fn(history=[]):
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k):
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
try:
first_response = next(generator)
yield history + [(message, first_response)]
except StopIteration:
yield history + [(message, '')]
for response in generator:
yield history + [(message, response)]
def process_example(message):
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
for x in generator:
pass
return '', x
def check_input_token_length(message, chat_history, system_prompt):
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label='DeepSeek')
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder='Hi, DeepSeek Coder',
scale=10
)
submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('Retry', variant='secondary')
undo_button = gr.Button('Undo', variant='secondary')
clear_button = gr.Button('Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False)
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1)
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ''),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=32).launch(show_api=False) |