Spaces:
Runtime error
Runtime error
File size: 3,587 Bytes
b1b3f23 d8edf39 fa636b5 8d20412 e3914b4 8d20412 8e67e6e b590d13 e3914b4 aa3b50d e3914b4 aa3b50d a9b677d 8d20412 a9b677d c38a7bb e3914b4 73c8e91 e572b7a 73c8e91 6b38cd2 e3914b4 4365fdc a9b677d e3914b4 a9b677d e3914b4 4790b80 decc6b2 e3914b4 73c8e91 fa636b5 e3914b4 a9b677d e3914b4 429b311 6b38cd2 429b311 6b38cd2 971bf27 73c8e91 971bf27 4365fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
from cgitb import enable
from pyexpat import model
from statistics import mode
import numpy as np
import gradio as gr
import argparse
import os
from os.path import exists, dirname
import sys
import json
import flask
from PIL import Image
parent_dir = dirname(os.path.abspath(os.getcwd()))
sys.path.append(parent_dir)
from bayes.explanations import BayesLocalExplanations, explain_many
from bayes.data_routines import get_dataset_by_name
from bayes.models import *
from image_posterior import create_gif
def get_image_data(inp_image):
"""Gets the image data and model."""
image = get_dataset_by_name(inp_image, get_label=False)
# print("image returned\n", image)
model_and_data = process_imagenet_get_model(image)
# print("model returned\n", model_and_data)
return image, model_and_data
def segmentation_generation(input_image, c_width, n_top, n_gif_imgs):
print("Inputs Received:", input_image, c_width, n_top, n_gif_imgs)
image, model_and_data = get_image_data(input_image)
# Unpack datax
xtest = model_and_data["xtest"]
ytest = model_and_data["ytest"]
segs = model_and_data["xtest_segs"]
get_model = model_and_data["model"]
label = model_and_data["label"]
# if (image_name == 'imagenet_diego'):
# label = 156
# elif (image_name == 'imagenet_french_bulldog'):
# label = 245
# Unpack instance and segments
instance = xtest[0]
segments = segs[0]
# Get wrapped model
cur_model = get_model(instance, segments)
# Get background data
xtrain = get_xtrain(segments)
prediction = np.argmax(cur_model(xtrain[:1]), axis=1)
# if image_name in ["imagenet_diego", "imagenet_french_bulldog"]:
# assert prediction == label, f"Prediction is {prediction} not {label}"
# Compute explanation
exp_init = BayesLocalExplanations(training_data=xtrain,
data="image",
kernel="lime",
categorical_features=np.arange(xtrain.shape[1]),
verbose=True)
rout = exp_init.explain(classifier_f=cur_model,
data=np.ones_like(xtrain[0]),
label=int(prediction[0]),
cred_width=c_width,
focus_sample=False,
l2=False)
# Create the gif of the explanation
return create_gif(rout['blr'], input_image, segments, instance, prediction[0], n_gif_imgs, n_top)
if __name__ == "__main__":
inp = gr.inputs.Image(label="Input Image (Or select an example)", type="pil")
out = [gr.outputs.HTML(label="Output GIF"), gr.outputs.Textbox(label="Prediction")]
iface = gr.Interface(
segmentation_generation,
[
inp,
gr.inputs.Slider(minimum=0.01, maximum=0.8, step=0.01, default=0.01, label="cred_width", optional=False),
gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="n_top_segs", optional=False),
gr.inputs.Slider(minimum=10, maximum=100, step=1, default=30, label="n_gif_images", optional=False),
],
outputs=out,
examples=[["./data/diego.png", 0.01, 7, 50],
["./data/french_bulldog.jpg", 0.01, 5, 50],
["./data/pepper.jpeg", 0.01, 5, 50],
["./data/bird.jpg", 0.01, 5, 50],
["./data/hockey.jpg", 0.01, 5, 50]]
)
iface.launch(enable_queue=True) |