File size: 7,474 Bytes
f343995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e572b7a
f343995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e572b7a
f343995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3b50d
 
 
 
 
 
 
f343995
f71417b
f343995
aa3b50d
f343995
 
 
 
 
aa3b50d
f343995
 
aa3b50d
 
 
 
 
f343995
 
 
 
aa3b50d
 
 
f343995
aa3b50d
 
f343995
 
 
aa3b50d
 
 
 
 
f343995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e572b7a
f343995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3b50d
0554f4e
aa3b50d
 
 
 
 
 
 
 
 
 
 
f343995
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""Routines for processing data."""
import numpy as np
import os
import pandas as pd
from PIL import Image
from skimage.segmentation import slic, mark_boundaries

import torch
from torchvision import datasets, transforms

# The number of segments to use for the images
NSEGMENTS = 20
PARAMS = {
    'protected_class': 1,
    'unprotected_class': 0,
    'positive_outcome': 1,
    'negative_outcome': 0
}
IMAGENET_LABELS = {
    'french_bulldog': 245,
    'scuba_diver': 983,
    'corn': 987,
    'broccoli': 927
}

def get_and_preprocess_compas_data():
    """Handle processing of COMPAS according to: https://github.com/propublica/compas-analysis
    
    Parameters
    ----------
    params : Params
    Returns
    ----------
    Pandas data frame X of processed data, np.ndarray y, and list of column names
    """
    PROTECTED_CLASS = PARAMS['protected_class']
    UNPROTECTED_CLASS = PARAMS['unprotected_class']
    POSITIVE_OUTCOME = PARAMS['positive_outcome']
    NEGATIVE_OUTCOME = PARAMS['negative_outcome']

    compas_df = pd.read_csv("./data/compas-scores-two-years.csv", index_col=0)
    compas_df = compas_df.loc[(compas_df['days_b_screening_arrest'] <= 30) &
                              (compas_df['days_b_screening_arrest'] >= -30) &
                              (compas_df['is_recid'] != -1) &
                              (compas_df['c_charge_degree'] != "O") &
                              (compas_df['score_text'] != "NA")]

    compas_df['length_of_stay'] = (pd.to_datetime(compas_df['c_jail_out']) - pd.to_datetime(compas_df['c_jail_in'])).dt.days
    X = compas_df[['age', 'two_year_recid','c_charge_degree', 'race', 'sex', 'priors_count', 'length_of_stay']]

    # if person has high score give them the _negative_ model outcome
    y = np.array([NEGATIVE_OUTCOME if score == 'High' else POSITIVE_OUTCOME for score in compas_df['score_text']])
    sens = X.pop('race')

    # assign African-American as the protected class
    X = pd.get_dummies(X)
    sensitive_attr = np.array(pd.get_dummies(sens).pop('African-American'))
    X['race'] = sensitive_attr

    # make sure everything is lining up
    assert all((sens == 'African-American') == (X['race'] == PROTECTED_CLASS))
    cols = [col for col in X]

    categorical_features = [1, 4, 5, 6, 7, 8]

    output = {
        "X": X.values,
        "y": y,
        "column_names": cols,
        "cat_indices": categorical_features
    }
    
    return output

def get_and_preprocess_german():
    """"Handle processing of German.  We use a preprocessed version of German from Ustun et. al.
    https://arxiv.org/abs/1809.06514.  Thanks Berk!
    Parameters:
    ----------
    params : Params
    Returns:
    ----------
    Pandas data frame X of processed data, np.ndarray y, and list of column names
    """
    PROTECTED_CLASS = PARAMS['protected_class']
    UNPROTECTED_CLASS = PARAMS['unprotected_class']
    POSITIVE_OUTCOME = PARAMS['positive_outcome']
    NEGATIVE_OUTCOME = PARAMS['negative_outcome']

    X = pd.read_csv("./data/german_processed.csv")
    y = X["GoodCustomer"]

    X = X.drop(["GoodCustomer", "PurposeOfLoan"], axis=1)
    X['Gender'] = [1 if v == "Male" else 0 for v in X['Gender'].values]

    y = np.array([POSITIVE_OUTCOME if p == 1 else NEGATIVE_OUTCOME for p in y.values])
    categorical_features = [0, 1, 2] + list(range(9, X.shape[1]))

    output = {
        "X": X.values,
        "y": y,
        "column_names": [c for c in X],
        "cat_indices": categorical_features,
    }

    return output

def get_PIL_transf(): 
    """Gets the PIL image transformation."""
    transf = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.CenterCrop(224)
    ])    
    return transf  

# def load_image(path):
#     """Loads an image by path."""
#     with open(os.path.abspath(path), 'rb') as f:
#         with Image.open(f) as img:
#             return img.convert('RGB') 

def load_image(pil_image):
    """Loads an image by path."""
    return pil_image.convert('RGB') 

def get_imagenet(pil_image, get_label=True):
    """Gets the imagenet data.

    Arguments:
        name: The name of the imagenet dataset
    """
    # images_paths = []

    # Store all the paths of the images
    # data_dir = os.path.join("./data", name)
    # for (dirpath, dirnames, filenames) in os.walk(data_dir):
    #     for fn in filenames:
    #         if fn != ".DS_Store":
    #             images_paths.append(os.path.join(dirpath, fn))
    
    # Load & do transforms for the images
    pill_transf = get_PIL_transf()
    images, segs = [], []
    img = load_image(pil_image)
    PIL_transformed_image = np.array(pill_transf(img))
    segments = slic(PIL_transformed_image, n_segments=NSEGMENTS, compactness=100, sigma=1)

    images.append(PIL_transformed_image)
    segs.append(segments)

    images = np.array(images)

    # if get_label:
    #     assert name in IMAGENET_LABELS, "Get label set to True but name not in known imagenet labels"
    #     y = np.ones(images.shape[0]) * IMAGENET_LABELS[name]
    # else:
    y = np.ones(images.shape[0]) * -1

    segs = np.array(segs)

    output = {
        "X": images,
        "y": y,
        "segments": segs
    }

    return output


def get_mnist(num):
    """Gets the MNIST data for a certain digit.

    Arguments: 
        num: The mnist digit to get
    """

    # Get the mnist data
    test_loader = torch.utils.data.DataLoader(datasets.MNIST('./data/mnist', 
                                                             train=False, 
                                                             download=True, 
                                                             transform=transforms.Compose([transforms.ToTensor(),
                                                                                            transforms.Normalize((0.1307,), (0.3081,))
                                                                                           ])),
                                                             batch_size=1, 
                                                             shuffle=False)

    all_test_mnist_of_label_num, all_test_segments_of_label_num = [], []

    # Get all instances of label num
    for data, y in test_loader:
        if y[0] == num:
            # Apply segmentation
            sample = np.squeeze(data.numpy().astype('double'),axis=0)
            segments = slic(sample.reshape(28,28,1), n_segments=NSEGMENTS, compactness=1, sigma=0.1).reshape(1,28,28)
            all_test_mnist_of_label_num.append(sample)
            all_test_segments_of_label_num.append(segments)

    all_test_mnist_of_label_num = np.array(all_test_mnist_of_label_num)
    all_test_segments_of_label_num = np.array(all_test_segments_of_label_num)

    output = {
        "X": all_test_mnist_of_label_num,
        "y": np.ones(all_test_mnist_of_label_num.shape[0]) * num,
        "segments": all_test_segments_of_label_num
    }

    return output

def get_dataset_by_name(inp_image, get_label=True):
    d = get_imagenet(inp_image, get_label=get_label)
    # if name == "compas":
    #     d = get_and_preprocess_compas_data()
    # elif name == "german":
    #     d = get_and_preprocess_german()
    # elif "mnist" in name:
    #     d = get_mnist(int(name[-1]))
    # elif "imagenet" in name:
    #     d = get_imagenet(name[9:], get_label=get_label)
    # else:
    #     raise NameError("Unkown dataset %s", name)
    # d['name'] = name
    return d