File size: 4,062 Bytes
f6b7ba0
 
 
 
 
 
 
 
 
 
 
24f1fbc
f6b7ba0
 
24f1fbc
f6b7ba0
 
 
4dd73d1
24f1fbc
 
f6b7ba0
 
 
 
3139a51
f6b7ba0
 
 
4dd73d1
24f1fbc
f6b7ba0
 
 
 
20ad0b8
f6b7ba0
 
 
 
 
24f1fbc
 
f6b7ba0
24f1fbc
 
f6b7ba0
24f1fbc
 
 
f6b7ba0
 
 
 
 
 
 
a5f9027
a9a69bd
 
f6b7ba0
 
 
d79744b
 
 
 
 
 
 
 
f6b7ba0
 
 
 
 
 
 
 
d79744b
 
f6b7ba0
 
4dd73d1
a9a69bd
 
 
 
 
 
4dd73d1
f6b7ba0
 
 
 
 
 
a337221
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces

processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model_dpo = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-DPO", trust_remote_code=True)

model.to("cuda:0")
model_dpo.to("cuda:0")

@spaces.GPU
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty):
    print(max_tokens, temperature, top_p, top_k, repetition_penalty)
    if message['files']:
        image = message['files'][-1]['path']
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        for hist in history:
            if type(hist[0])==tuple:
                image = hist[0][0]

    if image is None:
        gr.Error("Lütfen önce bir resim yükleyin.")

    prompt = f"{message['text']}"
    image = Image.open(image).convert("RGB")
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")

    generation_kwargs = dict(
        inputs, max_new_tokens=max_tokens, 
        do_sample=True, temperature=temperature, top_p=top_p, 
        top_k=top_k, repetition_penalty=repetition_penalty
    )
    generated_text = ""

    model_outputs = model.generate(**generation_kwargs)
    dpo_outputs = model_dpo.generate(**generation_kwargs)

    model_output_text = processor.decode(model_outputs, skip_special_tokens=True)[len(prompt)+1]
    dpo_output_text = processor.decode(dpo_outputs, skip_special_tokens=True)[len(prompt)+1]
    
    generated_text = f"<h3>Base model cevabı:</h3>\n{model_output_text}\n<h3>DPO model cevabı:</h3>\n{dpo_output_text}"

    return generated_text


gr.set_static_paths(paths=["static/images/"])
logo_path = "static/images/logo-color-v2.png"

PLACEHOLDER = f"""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px">
    <img src="/file={logo_path}" style="width: 40%; height: auto; opacity: 80%">
    <h3>Resim yükleyin ve bir soru sorun!</h3>
    <p>Örnek resim ve soruları kullanabilirsiniz.</p>
</div>
"""

DESCRIPTION = f"""
### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷

Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖

Detaylar için [ucsahin/TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) kontrol etmeyi unutmayın!
"""

with gr.Accordion("Generation parameters", open=False) as parameter_accordion:
    max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens")
    temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature")
    top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p")
    top_k_item = gr.Slider(0, 100, value=50, label="Top_k")
    repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty")

demo = gr.ChatInterface(
    title="TraVisionLM - Demo",
    description=DESCRIPTION,
    fn=bot_streaming,
    chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1),   
    examples=[
        [{"text": "Detaylı açıkla", "files":["./family.jpg"]}],
        [{"text": "Görüntüde uçaklar ne yapıyor?", "files":["./plane.jpg"]}],
        [{"text": "Kısaca açıkla", "files":["./dog.jpg"]}],
        [{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}],
        [{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}],
        [{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}]
    ], 
    additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item],
    additional_inputs_accordion=parameter_accordion, 
    stop_btn="Stop Generation", 
    multimodal=True
)

demo.launch(debug=True, max_file_size="5mb")