File size: 4,170 Bytes
f6b7ba0
 
 
 
 
 
 
 
 
 
 
a5f9027
f6b7ba0
 
a5f9027
f6b7ba0
 
 
4dd73d1
f6b7ba0
 
 
 
 
 
 
3139a51
f6b7ba0
 
 
4dd73d1
f6b7ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f9027
a9a69bd
 
f6b7ba0
 
 
d79744b
 
 
 
 
 
 
 
f6b7ba0
 
 
 
 
 
 
 
 
 
d79744b
 
f6b7ba0
 
4dd73d1
a9a69bd
 
 
 
 
 
4dd73d1
f6b7ba0
 
 
 
 
 
4dd73d1
f6b7ba0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces

processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
# model_od = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-Object-Detection-v2", trust_remote_code=True)

model.to("cuda:0")
# model_od.to("cuda:0")

@spaces.GPU
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty):
    print(max_tokens, temperature, top_p, top_k, repetition_penalty)
    if message.files:
        image = message.files[-1].path
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0])==tuple:
                image = hist[0][0]

    if image is None:
        gr.Error("Lütfen önce bir resim yükleyin.")

    prompt = f"{message.text}"
    image = Image.open(image).convert("RGB")
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
    generation_kwargs = dict(
        inputs, streamer=streamer, max_new_tokens=max_tokens, 
        do_sample=True, temperature=temperature, top_p=top_p, 
        top_k=top_k, repetition_penalty=repetition_penalty
    )
    generated_text = ""

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    text_prompt = f"{message.text}\n"

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer[len(text_prompt):]
    
        time.sleep(0.04)
        yield generated_text_without_prompt


gr.set_static_paths(paths=["static/images/"])
logo_path = "static/images/logo-color-v2.png"

PLACEHOLDER = f"""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px">
    <img src="/file={logo_path}" style="width: 40%; height: auto; opacity: 80%">
    <h3>Resim yükleyin ve bir soru sorun!</h3>
    <p>Örnek resim ve soruları kullanabilirsiniz.</p>
</div>
"""

DESCRIPTION = f"""
### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷

Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖

Detaylar için [ucsahin/TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) kontrol etmeyi unutmayın!
"""

# with gr.Blocks() as demo:
    # with gr.Tab("Open-ended Questions (Soru-cevap)"):
with gr.Accordion("Generation parameters", open=False) as parameter_accordion:
    max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens")
    temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature")
    top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p")
    top_k_item = gr.Slider(0, 100, value=50, label="Top_k")
    repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty")

demo = gr.ChatInterface(
    title="TraVisionLM - Demo",
    description=DESCRIPTION,
    fn=bot_streaming,
    chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1),   
    examples=[
        [{"text": "Detaylı açıkla", "files":["./family.jpg"]}],
        [{"text": "Görüntüde uçaklar ne yapıyor?", "files":["./plane.jpg"]}],
        [{"text": "Kısaca açıkla", "files":["./dog.jpg"]}],
        [{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}],
        [{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}],
        [{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}]
    ], 
    additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item],
    additional_inputs_accordion=parameter_accordion, 
    stop_btn="Stop Generation", 
    multimodal=True
)


demo.launch(max_file_size="5mb")