Spaces:
Sleeping
Sleeping
File size: 3,908 Bytes
f6b7ba0 4dd73d1 f6b7ba0 3139a51 f6b7ba0 4dd73d1 f6b7ba0 a5f9027 a9a69bd f6b7ba0 d79744b f6b7ba0 d79744b f6b7ba0 4dd73d1 a9a69bd 4dd73d1 f6b7ba0 a337221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty):
print(max_tokens, temperature, top_p, top_k, repetition_penalty)
if message.files:
image = message.files[-1].path
else:
# if there's no image uploaded for this turn, look for images in the past turns
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
if image is None:
gr.Error("Lütfen önce bir resim yükleyin.")
prompt = f"{message.text}"
image = Image.open(image).convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_tokens,
do_sample=True, temperature=temperature, top_p=top_p,
top_k=top_k, repetition_penalty=repetition_penalty
)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"{message.text}\n"
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(text_prompt):]
time.sleep(0.04)
yield generated_text_without_prompt
gr.set_static_paths(paths=["static/images/"])
logo_path = "static/images/logo-color-v2.png"
PLACEHOLDER = f"""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px">
<img src="/file={logo_path}" style="width: 40%; height: auto; opacity: 80%">
<h3>Resim yükleyin ve bir soru sorun!</h3>
<p>Örnek resim ve soruları kullanabilirsiniz.</p>
</div>
"""
DESCRIPTION = f"""
### 875M parametreli küçük ama çok hızlı bir Türkçe Görsel Dil Modeli 🇹🇷🌟⚡️⚡️🇹🇷
Yüklediğiniz resimleri açıklatabilir ve onlarla ilgili ucu açık sorular sorabilirsiniz 🖼️🤖
Detaylar için [ucsahin/TraVisionLM-base](https://huggingface.co/ucsahin/TraVisionLM-base) kontrol etmeyi unutmayın!
"""
with gr.Accordion("Generation parameters", open=False) as parameter_accordion:
max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens")
temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature")
top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p")
top_k_item = gr.Slider(0, 100, value=50, label="Top_k")
repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty")
demo = gr.ChatInterface(
title="TraVisionLM - Demo",
description=DESCRIPTION,
fn=bot_streaming,
chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1),
examples=[
[{"text": "Detaylı açıkla", "files":["./family.jpg"]}],
[{"text": "Görüntüde uçaklar ne yapıyor?", "files":["./plane.jpg"]}],
[{"text": "Kısaca açıkla", "files":["./dog.jpg"]}],
[{"text": "Tren istasyonu kalabalık mı yoksa boş mu?", "files":["./train.jpg"]}],
[{"text": "Resimdeki araba hangi renk?", "files":["./car.jpg"]}],
[{"text": "Görüntünün odak noktası nedir?", "files":["./mandog.jpg"]}]
],
additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item],
additional_inputs_accordion=parameter_accordion,
stop_btn="Stop Generation",
multimodal=True
)
demo.launch(debug=True, max_file_size="5mb") |