ucsahin's picture
Update app.py
3139a51 verified
raw
history blame
4.48 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
processor = AutoProcessor.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-base", trust_remote_code=True)
model_od = AutoModelForCausalLM.from_pretrained("ucsahin/TraVisionLM-Object-Detection-v2", trust_remote_code=True)
model.to("cuda:0")
model_od.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history, max_tokens, temperature, top_p, top_k, repetition_penalty):
if message.files:
image = message.files[-1].path
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
print(hist)
if type(hist[0])==tuple:
[('/tmp/gradio/d2358aee8efc2902714f1b4ccc3089ec858104a3e7c8fc7a6ae702e1d0bcbcb0/oguzhan.jpg',), None]
image = hist[0][0]
if image is None:
gr.Error("Lütfen önce bir resim yükleyin.")
prompt = f"{message.text}"
image = Image.open(image).convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_tokens,
do_sample=True, temperature=temperature, top_p=top_p,
top_k=top_k, repetition_penalty=repetition_penalty
)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"{message.text}\n"
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(text_prompt):]
time.sleep(0.04)
yield generated_text_without_prompt
gr.set_static_paths(paths=["static/images/"])
logo_path = "static/images/logo-color-v2.png"
PLACEHOLDER = f"""
<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 30px">
<img src="/file={logo_path}" style="width: 60%; height: auto;">
<h3>Resim yükleyin ve bir soru sorun</h3>
</div>
"""
# with gr.Blocks() as demo:
# with gr.Tab("Open-ended Questions (Soru-cevap)"):
with gr.Accordion("Generation parameters", open=False) as parameter_accordion:
max_tokens_item = gr.Slider(64, 1024, value=512, step=64, label="Max tokens")
temperature_item = gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature")
top_p_item = gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p")
top_k_item = gr.Slider(0, 100, value=50, label="Top_k")
repeat_penalty_item = gr.Slider(0, 2, value=1.2, label="Repeat penalty")
demo = gr.ChatInterface(
title="TraVisionLM - Turkish Visual Language Model",
description="",
fn=bot_streaming,
chatbot=gr.Chatbot(placeholder=PLACEHOLDER, scale=1),
# examples=[{"text": "", "files":[""]},{"text": "", "files":[""]}],
additional_inputs=[max_tokens_item, temperature_item, top_p_item, top_k_item, repeat_penalty_item],
additional_inputs_accordion=parameter_accordion,
stop_btn="Stop Generation",
multimodal=True
)
# with gr.Tab("Object Detection (Obje Tespiti)"):
# gr.Image("tiger.jpg")
# gr.Button("New Tiger")
# demo = gr.ChatInterface(fn=bot_streaming, title="TraVisionLM - Turkish Visual Language Model",
# # examples=[{"text": "", "files":[""]},{"text": "", "files":[""]}],
# description="",
# additional_inputs=[
# gr.Slider(64, 1024, value=512, step=64, label="Max tokens"),
# gr.Slider(0.1, 2, value=0.6, step=0.1, label="Temperature"),
# gr.Slider(0, 1.0, value=0.9, step=0.05, label="Top_p"),
# gr.Slider(0, 100, value=50, label="Top_k"),
# gr.Slider(0, 2, value=1.2, label="Repeat penalty"),
# ],
# additional_inputs_accordion_name="Text generation parameters",
# # additional_inputs_accordion=
# stop_btn="Stop Generation", multimodal=True)
demo.launch(max_file_size="5mb")