ResearcherXman commited on
Commit
334996e
β€’
1 Parent(s): 977a8a5
examples/yann-lecun_resize.jpg ADDED
pipeline_stable_diffusion_xl_instantid.py CHANGED
@@ -1,1126 +1,408 @@
1
- # Copyright 2024 The InstantX Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
-
18
  import cv2
19
  import math
20
-
21
- import numpy as np
22
- import PIL.Image
23
  import torch
24
- import torch.nn.functional as F
25
- from transformers import CLIPTokenizer
26
 
27
- from diffusers.image_processor import PipelineImageInput
 
28
 
 
 
29
  from diffusers.models import ControlNetModel
30
 
31
- from diffusers.utils import (
32
- deprecate,
33
- logging,
34
- replace_example_docstring,
35
- )
36
- from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
37
- from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
38
 
39
- from diffusers import StableDiffusionXLControlNetPipeline
40
- from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
41
- from diffusers.utils.import_utils import is_xformers_available
42
 
43
- from ip_adapter.resampler import Resampler
 
44
 
45
- from ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor
46
- from ip_adapter.attention_processor import region_control
 
 
 
47
 
48
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
 
 
 
 
49
 
 
 
 
50
 
51
- EXAMPLE_DOC_STRING = """
52
- Examples:
53
- ```py
54
- >>> # !pip install opencv-python transformers accelerate insightface
55
- >>> import diffusers
56
- >>> from diffusers.utils import load_image
57
- >>> from diffusers.models import ControlNetModel
58
 
59
- >>> import cv2
60
- >>> import torch
61
- >>> import numpy as np
62
- >>> from PIL import Image
63
-
64
- >>> from insightface.app import FaceAnalysis
65
- >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
66
-
67
- >>> # download 'antelopev2' under ./models
68
- >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
69
- >>> app.prepare(ctx_id=0, det_size=(640, 640))
70
-
71
- >>> # download models under ./checkpoints
72
- >>> face_adapter = f'./checkpoints/ip-adapter.bin'
73
- >>> controlnet_path = f'./checkpoints/ControlNetModel'
74
-
75
- >>> # load IdentityNet
76
- >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
77
-
78
- >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
79
- ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
80
- ... )
81
- >>> pipe.cuda()
82
-
83
- >>> # load adapter
84
- >>> pipe.load_ip_adapter_instantid(face_adapter)
85
 
86
- >>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
87
- >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
88
 
89
- >>> # load an image
90
- >>> image = load_image("your-example.jpg")
91
-
92
- >>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
93
- >>> face_emb = face_info['embedding']
94
- >>> face_kps = draw_kps(face_image, face_info['kps'])
95
-
96
- >>> pipe.set_ip_adapter_scale(0.8)
97
-
98
- >>> # generate image
99
- >>> image = pipe(
100
- ... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
101
- ... ).images[0]
102
- ```
103
- """
104
-
105
-
106
- from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
107
- class LongPromptWeight(object):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
- """
110
- Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
111
- """
112
 
113
- def __init__(self) -> None:
114
- pass
115
-
116
- def parse_prompt_attention(self, text):
117
- """
118
- Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
119
- Accepted tokens are:
120
- (abc) - increases attention to abc by a multiplier of 1.1
121
- (abc:3.12) - increases attention to abc by a multiplier of 3.12
122
- [abc] - decreases attention to abc by a multiplier of 1.1
123
- \( - literal character '('
124
- \[ - literal character '['
125
- \) - literal character ')'
126
- \] - literal character ']'
127
- \\ - literal character '\'
128
- anything else - just text
129
-
130
- >>> parse_prompt_attention('normal text')
131
- [['normal text', 1.0]]
132
- >>> parse_prompt_attention('an (important) word')
133
- [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
134
- >>> parse_prompt_attention('(unbalanced')
135
- [['unbalanced', 1.1]]
136
- >>> parse_prompt_attention('\(literal\]')
137
- [['(literal]', 1.0]]
138
- >>> parse_prompt_attention('(unnecessary)(parens)')
139
- [['unnecessaryparens', 1.1]]
140
- >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
141
- [['a ', 1.0],
142
- ['house', 1.5730000000000004],
143
- [' ', 1.1],
144
- ['on', 1.0],
145
- [' a ', 1.1],
146
- ['hill', 0.55],
147
- [', sun, ', 1.1],
148
- ['sky', 1.4641000000000006],
149
- ['.', 1.1]]
150
- """
151
- import re
152
-
153
- re_attention = re.compile(
154
- r"""
155
- \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
156
- \)|]|[^\\()\[\]:]+|:
157
- """,
158
- re.X,
159
- )
160
-
161
- re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
162
-
163
- res = []
164
- round_brackets = []
165
- square_brackets = []
166
-
167
- round_bracket_multiplier = 1.1
168
- square_bracket_multiplier = 1 / 1.1
169
-
170
- def multiply_range(start_position, multiplier):
171
- for p in range(start_position, len(res)):
172
- res[p][1] *= multiplier
173
-
174
- for m in re_attention.finditer(text):
175
- text = m.group(0)
176
- weight = m.group(1)
177
-
178
- if text.startswith("\\"):
179
- res.append([text[1:], 1.0])
180
- elif text == "(":
181
- round_brackets.append(len(res))
182
- elif text == "[":
183
- square_brackets.append(len(res))
184
- elif weight is not None and len(round_brackets) > 0:
185
- multiply_range(round_brackets.pop(), float(weight))
186
- elif text == ")" and len(round_brackets) > 0:
187
- multiply_range(round_brackets.pop(), round_bracket_multiplier)
188
- elif text == "]" and len(square_brackets) > 0:
189
- multiply_range(square_brackets.pop(), square_bracket_multiplier)
190
- else:
191
- parts = re.split(re_break, text)
192
- for i, part in enumerate(parts):
193
- if i > 0:
194
- res.append(["BREAK", -1])
195
- res.append([part, 1.0])
196
-
197
- for pos in round_brackets:
198
- multiply_range(pos, round_bracket_multiplier)
199
-
200
- for pos in square_brackets:
201
- multiply_range(pos, square_bracket_multiplier)
202
-
203
- if len(res) == 0:
204
- res = [["", 1.0]]
205
-
206
- # merge runs of identical weights
207
- i = 0
208
- while i + 1 < len(res):
209
- if res[i][1] == res[i + 1][1]:
210
- res[i][0] += res[i + 1][0]
211
- res.pop(i + 1)
212
- else:
213
- i += 1
214
-
215
- return res
216
-
217
- def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
218
- """
219
- Get prompt token ids and weights, this function works for both prompt and negative prompt
220
-
221
- Args:
222
- pipe (CLIPTokenizer)
223
- A CLIPTokenizer
224
- prompt (str)
225
- A prompt string with weights
226
-
227
- Returns:
228
- text_tokens (list)
229
- A list contains token ids
230
- text_weight (list)
231
- A list contains the correspodent weight of token ids
232
-
233
- Example:
234
- import torch
235
- from transformers import CLIPTokenizer
236
-
237
- clip_tokenizer = CLIPTokenizer.from_pretrained(
238
- "stablediffusionapi/deliberate-v2"
239
- , subfolder = "tokenizer"
240
- , dtype = torch.float16
241
- )
242
-
243
- token_id_list, token_weight_list = get_prompts_tokens_with_weights(
244
- clip_tokenizer = clip_tokenizer
245
- ,prompt = "a (red:1.5) cat"*70
246
- )
247
- """
248
- texts_and_weights = self.parse_prompt_attention(prompt)
249
- text_tokens, text_weights = [], []
250
- for word, weight in texts_and_weights:
251
- # tokenize and discard the starting and the ending token
252
- token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
253
- # the returned token is a 1d list: [320, 1125, 539, 320]
254
-
255
- # merge the new tokens to the all tokens holder: text_tokens
256
- text_tokens = [*text_tokens, *token]
257
-
258
- # each token chunk will come with one weight, like ['red cat', 2.0]
259
- # need to expand weight for each token.
260
- chunk_weights = [weight] * len(token)
261
-
262
- # append the weight back to the weight holder: text_weights
263
- text_weights = [*text_weights, *chunk_weights]
264
- return text_tokens, text_weights
265
-
266
- def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
267
- """
268
- Produce tokens and weights in groups and pad the missing tokens
269
-
270
- Args:
271
- token_ids (list)
272
- The token ids from tokenizer
273
- weights (list)
274
- The weights list from function get_prompts_tokens_with_weights
275
- pad_last_block (bool)
276
- Control if fill the last token list to 75 tokens with eos
277
- Returns:
278
- new_token_ids (2d list)
279
- new_weights (2d list)
280
-
281
- Example:
282
- token_groups,weight_groups = group_tokens_and_weights(
283
- token_ids = token_id_list
284
- , weights = token_weight_list
285
- )
286
- """
287
- bos, eos = 49406, 49407
288
-
289
- # this will be a 2d list
290
- new_token_ids = []
291
- new_weights = []
292
- while len(token_ids) >= 75:
293
- # get the first 75 tokens
294
- head_75_tokens = [token_ids.pop(0) for _ in range(75)]
295
- head_75_weights = [weights.pop(0) for _ in range(75)]
296
-
297
- # extract token ids and weights
298
- temp_77_token_ids = [bos] + head_75_tokens + [eos]
299
- temp_77_weights = [1.0] + head_75_weights + [1.0]
300
-
301
- # add 77 token and weights chunk to the holder list
302
- new_token_ids.append(temp_77_token_ids)
303
- new_weights.append(temp_77_weights)
304
-
305
- # padding the left
306
- if len(token_ids) >= 0:
307
- padding_len = 75 - len(token_ids) if pad_last_block else 0
308
-
309
- temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
310
- new_token_ids.append(temp_77_token_ids)
311
-
312
- temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
313
- new_weights.append(temp_77_weights)
314
-
315
- return new_token_ids, new_weights
316
-
317
- def get_weighted_text_embeddings_sdxl(
318
- self,
319
- pipe: StableDiffusionXLPipeline,
320
- prompt: str = "",
321
- prompt_2: str = None,
322
- neg_prompt: str = "",
323
- neg_prompt_2: str = None,
324
- prompt_embeds=None,
325
- negative_prompt_embeds=None,
326
- pooled_prompt_embeds=None,
327
- negative_pooled_prompt_embeds=None,
328
- extra_emb=None,
329
- extra_emb_alpha=0.6,
330
- ):
331
- """
332
- This function can process long prompt with weights, no length limitation
333
- for Stable Diffusion XL
334
-
335
- Args:
336
- pipe (StableDiffusionPipeline)
337
- prompt (str)
338
- prompt_2 (str)
339
- neg_prompt (str)
340
- neg_prompt_2 (str)
341
- Returns:
342
- prompt_embeds (torch.Tensor)
343
- neg_prompt_embeds (torch.Tensor)
344
- """
345
- #
346
- if prompt_embeds is not None and \
347
- negative_prompt_embeds is not None and \
348
- pooled_prompt_embeds is not None and \
349
- negative_pooled_prompt_embeds is not None:
350
- return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
351
-
352
- if prompt_2:
353
- prompt = f"{prompt} {prompt_2}"
354
-
355
- if neg_prompt_2:
356
- neg_prompt = f"{neg_prompt} {neg_prompt_2}"
357
-
358
- eos = pipe.tokenizer.eos_token_id
359
-
360
- # tokenizer 1
361
- prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
362
- neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
363
-
364
- # tokenizer 2
365
- # prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
366
- # neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
367
- # tokenizer 2 ι‡εˆ° !! !!!! η­‰ε€šζ„ŸεΉε·ε’Œtokenizer 1ηš„ζ•ˆζžœδΈδΈ€θ‡΄
368
- prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
369
- neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
370
-
371
- # padding the shorter one for prompt set 1
372
- prompt_token_len = len(prompt_tokens)
373
- neg_prompt_token_len = len(neg_prompt_tokens)
374
-
375
- if prompt_token_len > neg_prompt_token_len:
376
- # padding the neg_prompt with eos token
377
- neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
378
- neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
379
- else:
380
- # padding the prompt
381
- prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
382
- prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
383
-
384
- # padding the shorter one for token set 2
385
- prompt_token_len_2 = len(prompt_tokens_2)
386
- neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
387
-
388
- if prompt_token_len_2 > neg_prompt_token_len_2:
389
- # padding the neg_prompt with eos token
390
- neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
391
- neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
392
- else:
393
- # padding the prompt
394
- prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
395
- prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
396
-
397
- embeds = []
398
- neg_embeds = []
399
-
400
- prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
401
-
402
- neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
403
- neg_prompt_tokens.copy(), neg_prompt_weights.copy()
404
- )
405
-
406
- prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
407
- prompt_tokens_2.copy(), prompt_weights_2.copy()
408
- )
409
-
410
- neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
411
- neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
412
- )
413
-
414
- # get prompt embeddings one by one is not working.
415
- for i in range(len(prompt_token_groups)):
416
- # get positive prompt embeddings with weights
417
- token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
418
- weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
419
-
420
- token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
421
-
422
- # use first text encoder
423
- prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
424
- prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
425
-
426
- # use second text encoder
427
- prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
428
- prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
429
- pooled_prompt_embeds = prompt_embeds_2[0]
430
-
431
- prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
432
- token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
433
-
434
- for j in range(len(weight_tensor)):
435
- if weight_tensor[j] != 1.0:
436
- token_embedding[j] = (
437
- token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
438
- )
439
-
440
- token_embedding = token_embedding.unsqueeze(0)
441
- embeds.append(token_embedding)
442
-
443
- # get negative prompt embeddings with weights
444
- neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
445
- neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
446
- neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
447
-
448
- # use first text encoder
449
- neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
450
- neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
451
-
452
- # use second text encoder
453
- neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
454
- neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
455
- negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
456
-
457
- neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
458
- neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
459
-
460
- for z in range(len(neg_weight_tensor)):
461
- if neg_weight_tensor[z] != 1.0:
462
- neg_token_embedding[z] = (
463
- neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
464
- )
465
-
466
- neg_token_embedding = neg_token_embedding.unsqueeze(0)
467
- neg_embeds.append(neg_token_embedding)
468
-
469
- prompt_embeds = torch.cat(embeds, dim=1)
470
- negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
471
-
472
- if extra_emb is not None:
473
- extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
474
- prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
475
- negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
476
- print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
477
-
478
- return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
479
-
480
- def get_prompt_embeds(self, *args, **kwargs):
481
- prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
482
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
483
- return prompt_embeds
484
-
485
 
486
- class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
 
 
 
487
 
488
- def cuda(self, dtype=torch.float16, use_xformers=False):
489
- self.to('cuda', dtype)
490
-
491
- if hasattr(self, 'image_proj_model'):
492
- self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
493
-
494
- if use_xformers:
495
- if is_xformers_available():
496
- import xformers
497
- from packaging import version
498
-
499
- xformers_version = version.parse(xformers.__version__)
500
- if xformers_version == version.parse("0.0.16"):
501
- logger.warn(
502
- "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
503
- )
504
- self.enable_xformers_memory_efficient_attention()
505
- else:
506
- raise ValueError("xformers is not available. Make sure it is installed correctly")
507
 
508
- def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
509
- self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
510
- self.set_ip_adapter(model_ckpt, num_tokens, scale)
 
511
 
512
- def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
513
 
514
- image_proj_model = Resampler(
515
- dim=1280,
516
- depth=4,
517
- dim_head=64,
518
- heads=20,
519
- num_queries=num_tokens,
520
- embedding_dim=image_emb_dim,
521
- output_dim=self.unet.config.cross_attention_dim,
522
- ff_mult=4,
523
- )
524
-
525
- image_proj_model.eval()
526
 
527
- self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
528
- state_dict = torch.load(model_ckpt, map_location="cpu")
529
- if 'image_proj' in state_dict:
530
- state_dict = state_dict["image_proj"]
531
- self.image_proj_model.load_state_dict(state_dict)
532
 
533
- self.image_proj_model_in_features = image_emb_dim
534
 
535
- def set_ip_adapter(self, model_ckpt, num_tokens, scale):
536
-
537
- unet = self.unet
538
- attn_procs = {}
539
- for name in unet.attn_processors.keys():
540
- cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
541
- if name.startswith("mid_block"):
542
- hidden_size = unet.config.block_out_channels[-1]
543
- elif name.startswith("up_blocks"):
544
- block_id = int(name[len("up_blocks.")])
545
- hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
546
- elif name.startswith("down_blocks"):
547
- block_id = int(name[len("down_blocks.")])
548
- hidden_size = unet.config.block_out_channels[block_id]
549
- if cross_attention_dim is None:
550
- attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
551
- else:
552
- attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
553
- cross_attention_dim=cross_attention_dim,
554
- scale=scale,
555
- num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
556
- unet.set_attn_processor(attn_procs)
557
-
558
- state_dict = torch.load(model_ckpt, map_location="cpu")
559
- ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
560
- if 'ip_adapter' in state_dict:
561
- state_dict = state_dict['ip_adapter']
562
- ip_layers.load_state_dict(state_dict)
563
 
564
- def set_ip_adapter_scale(self, scale):
565
- unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
566
- for attn_processor in unet.attn_processors.values():
567
- if isinstance(attn_processor, IPAttnProcessor):
568
- attn_processor.scale = scale
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
 
570
- def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
571
-
572
- if isinstance(prompt_image_emb, torch.Tensor):
573
- prompt_image_emb = prompt_image_emb.clone().detach()
574
- else:
575
- prompt_image_emb = torch.tensor(prompt_image_emb)
576
-
577
- prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
578
- prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
579
-
580
- if do_classifier_free_guidance:
581
- prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
582
- else:
583
- prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
584
-
585
- prompt_image_emb = self.image_proj_model(prompt_image_emb)
586
- return prompt_image_emb
587
 
588
- @torch.no_grad()
589
- @replace_example_docstring(EXAMPLE_DOC_STRING)
590
- def __call__(
591
- self,
592
- prompt: Union[str, List[str]] = None,
593
- prompt_2: Optional[Union[str, List[str]]] = None,
594
- image: PipelineImageInput = None,
595
- height: Optional[int] = None,
596
- width: Optional[int] = None,
597
- num_inference_steps: int = 50,
598
- guidance_scale: float = 5.0,
599
- negative_prompt: Optional[Union[str, List[str]]] = None,
600
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
601
- num_images_per_prompt: Optional[int] = 1,
602
- eta: float = 0.0,
603
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
604
- latents: Optional[torch.FloatTensor] = None,
605
- prompt_embeds: Optional[torch.FloatTensor] = None,
606
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
607
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
608
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
609
- image_embeds: Optional[torch.FloatTensor] = None,
610
- output_type: Optional[str] = "pil",
611
- return_dict: bool = True,
612
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
613
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
614
- guess_mode: bool = False,
615
- control_guidance_start: Union[float, List[float]] = 0.0,
616
- control_guidance_end: Union[float, List[float]] = 1.0,
617
- original_size: Tuple[int, int] = None,
618
- crops_coords_top_left: Tuple[int, int] = (0, 0),
619
- target_size: Tuple[int, int] = None,
620
- negative_original_size: Optional[Tuple[int, int]] = None,
621
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
622
- negative_target_size: Optional[Tuple[int, int]] = None,
623
- clip_skip: Optional[int] = None,
624
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
625
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
626
- control_mask = None,
627
- **kwargs,
628
- ):
629
- r"""
630
- The call function to the pipeline for generation.
631
 
632
- Args:
633
- prompt (`str` or `List[str]`, *optional*):
634
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
635
- prompt_2 (`str` or `List[str]`, *optional*):
636
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
637
- used in both text-encoders.
638
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
639
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
640
- The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
641
- specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
642
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
643
- and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
644
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
645
- input to a single ControlNet.
646
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
647
- The height in pixels of the generated image. Anything below 512 pixels won't work well for
648
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
649
- and checkpoints that are not specifically fine-tuned on low resolutions.
650
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
651
- The width in pixels of the generated image. Anything below 512 pixels won't work well for
652
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
653
- and checkpoints that are not specifically fine-tuned on low resolutions.
654
- num_inference_steps (`int`, *optional*, defaults to 50):
655
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
656
- expense of slower inference.
657
- guidance_scale (`float`, *optional*, defaults to 5.0):
658
- A higher guidance scale value encourages the model to generate images closely linked to the text
659
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
660
- negative_prompt (`str` or `List[str]`, *optional*):
661
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
662
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
663
- negative_prompt_2 (`str` or `List[str]`, *optional*):
664
- The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
665
- and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
666
- num_images_per_prompt (`int`, *optional*, defaults to 1):
667
- The number of images to generate per prompt.
668
- eta (`float`, *optional*, defaults to 0.0):
669
- Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
670
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
671
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
672
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
673
- generation deterministic.
674
- latents (`torch.FloatTensor`, *optional*):
675
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
676
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
677
- tensor is generated by sampling using the supplied random `generator`.
678
- prompt_embeds (`torch.FloatTensor`, *optional*):
679
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
680
- provided, text embeddings are generated from the `prompt` input argument.
681
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
682
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
683
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
684
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
685
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
686
- not provided, pooled text embeddings are generated from `prompt` input argument.
687
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
688
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
689
- weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
690
- argument.
691
- image_embeds (`torch.FloatTensor`, *optional*):
692
- Pre-generated image embeddings.
693
- output_type (`str`, *optional*, defaults to `"pil"`):
694
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
695
- return_dict (`bool`, *optional*, defaults to `True`):
696
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
697
- plain tuple.
698
- cross_attention_kwargs (`dict`, *optional*):
699
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
700
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
701
- controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
702
- The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
703
- to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
704
- the corresponding scale as a list.
705
- guess_mode (`bool`, *optional*, defaults to `False`):
706
- The ControlNet encoder tries to recognize the content of the input image even if you remove all
707
- prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
708
- control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
709
- The percentage of total steps at which the ControlNet starts applying.
710
- control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
711
- The percentage of total steps at which the ControlNet stops applying.
712
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
713
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
714
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
715
- explained in section 2.2 of
716
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
717
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
718
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
719
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
720
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
721
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
722
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
723
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
724
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
725
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
726
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
727
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
728
- micro-conditioning as explained in section 2.2 of
729
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
730
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
731
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
732
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
733
- micro-conditioning as explained in section 2.2 of
734
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
735
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
736
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
737
- To negatively condition the generation process based on a target image resolution. It should be as same
738
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
739
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
740
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
741
- clip_skip (`int`, *optional*):
742
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
743
- the output of the pre-final layer will be used for computing the prompt embeddings.
744
- callback_on_step_end (`Callable`, *optional*):
745
- A function that calls at the end of each denoising steps during the inference. The function is called
746
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
747
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
748
- `callback_on_step_end_tensor_inputs`.
749
- callback_on_step_end_tensor_inputs (`List`, *optional*):
750
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
751
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
752
- `._callback_tensor_inputs` attribute of your pipeine class.
753
 
754
- Examples:
 
 
 
 
 
 
755
 
756
- Returns:
757
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
758
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
759
- otherwise a `tuple` is returned containing the output images.
760
- """
761
- lpw = LongPromptWeight()
762
 
763
- callback = kwargs.pop("callback", None)
764
- callback_steps = kwargs.pop("callback_steps", None)
 
765
 
766
- if callback is not None:
767
- deprecate(
768
- "callback",
769
- "1.0.0",
770
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
771
- )
772
- if callback_steps is not None:
773
- deprecate(
774
- "callback_steps",
775
- "1.0.0",
776
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
777
- )
778
-
779
- controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
780
-
781
- # align format for control guidance
782
- if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
783
- control_guidance_start = len(control_guidance_end) * [control_guidance_start]
784
- elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
785
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
786
- elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
787
- mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
788
- control_guidance_start, control_guidance_end = (
789
- mult * [control_guidance_start],
790
- mult * [control_guidance_end],
 
 
 
 
 
 
 
 
 
 
 
 
 
791
  )
792
-
793
- # 1. Check inputs. Raise error if not correct
794
- self.check_inputs(
795
- prompt,
796
- prompt_2,
797
- image,
798
- callback_steps,
799
- negative_prompt,
800
- negative_prompt_2,
801
- prompt_embeds,
802
- negative_prompt_embeds,
803
- pooled_prompt_embeds,
804
- negative_pooled_prompt_embeds,
805
- controlnet_conditioning_scale,
806
- control_guidance_start,
807
- control_guidance_end,
808
- callback_on_step_end_tensor_inputs,
809
- )
810
-
811
- self._guidance_scale = guidance_scale
812
- self._clip_skip = clip_skip
813
- self._cross_attention_kwargs = cross_attention_kwargs
814
-
815
- # 2. Define call parameters
816
- if prompt is not None and isinstance(prompt, str):
817
- batch_size = 1
818
- elif prompt is not None and isinstance(prompt, list):
819
- batch_size = len(prompt)
820
- else:
821
- batch_size = prompt_embeds.shape[0]
822
-
823
- device = self._execution_device
824
-
825
- if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
826
- controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
827
-
828
- global_pool_conditions = (
829
- controlnet.config.global_pool_conditions
830
- if isinstance(controlnet, ControlNetModel)
831
- else controlnet.nets[0].config.global_pool_conditions
832
- )
833
- guess_mode = guess_mode or global_pool_conditions
834
-
835
- # 3.1 Encode input prompt
836
- (
837
- prompt_embeds,
838
- negative_prompt_embeds,
839
- pooled_prompt_embeds,
840
- negative_pooled_prompt_embeds,
841
- ) = lpw.get_weighted_text_embeddings_sdxl(
842
- pipe=self,
843
- prompt=prompt,
844
- neg_prompt=negative_prompt,
845
- prompt_embeds=prompt_embeds,
846
- negative_prompt_embeds=negative_prompt_embeds,
847
- pooled_prompt_embeds=pooled_prompt_embeds,
848
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
849
- )
850
-
851
- # 3.2 Encode image prompt
852
- prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
853
- device,
854
- self.unet.dtype,
855
- self.do_classifier_free_guidance)
856
-
857
- # 4. Prepare image
858
- if isinstance(controlnet, ControlNetModel):
859
- image = self.prepare_image(
860
- image=image,
861
- width=width,
862
- height=height,
863
- batch_size=batch_size * num_images_per_prompt,
864
- num_images_per_prompt=num_images_per_prompt,
865
- device=device,
866
- dtype=controlnet.dtype,
867
- do_classifier_free_guidance=self.do_classifier_free_guidance,
868
- guess_mode=guess_mode,
869
  )
870
- height, width = image.shape[-2:]
871
- elif isinstance(controlnet, MultiControlNetModel):
872
- images = []
873
-
874
- for image_ in image:
875
- image_ = self.prepare_image(
876
- image=image_,
877
- width=width,
878
- height=height,
879
- batch_size=batch_size * num_images_per_prompt,
880
- num_images_per_prompt=num_images_per_prompt,
881
- device=device,
882
- dtype=controlnet.dtype,
883
- do_classifier_free_guidance=self.do_classifier_free_guidance,
884
- guess_mode=guess_mode,
885
  )
886
-
887
- images.append(image_)
888
-
889
- image = images
890
- height, width = image[0].shape[-2:]
891
- else:
892
- assert False
893
-
894
- # 4.1 Region control
895
- if control_mask is not None:
896
- mask_weight_image = control_mask
897
- mask_weight_image = np.array(mask_weight_image)
898
- mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
899
- mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
900
- mask_weight_image_tensor = mask_weight_image_tensor[None, None]
901
- h, w = mask_weight_image_tensor.shape[-2:]
902
- control_mask_wight_image_list = []
903
- for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
904
- scale_mask_weight_image_tensor = F.interpolate(
905
- mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
906
- control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
907
- region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
908
- region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
909
- else:
910
- control_mask_wight_image_list = None
911
- region_control.prompt_image_conditioning = [dict(region_mask=None)]
912
-
913
- # 5. Prepare timesteps
914
- self.scheduler.set_timesteps(num_inference_steps, device=device)
915
- timesteps = self.scheduler.timesteps
916
- self._num_timesteps = len(timesteps)
917
-
918
- # 6. Prepare latent variables
919
- num_channels_latents = self.unet.config.in_channels
920
- latents = self.prepare_latents(
921
- batch_size * num_images_per_prompt,
922
- num_channels_latents,
923
- height,
924
- width,
925
- prompt_embeds.dtype,
926
- device,
927
- generator,
928
- latents,
929
- )
930
-
931
- # 6.5 Optionally get Guidance Scale Embedding
932
- timestep_cond = None
933
- if self.unet.config.time_cond_proj_dim is not None:
934
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
935
- timestep_cond = self.get_guidance_scale_embedding(
936
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
937
- ).to(device=device, dtype=latents.dtype)
938
-
939
- # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
940
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
941
-
942
- # 7.1 Create tensor stating which controlnets to keep
943
- controlnet_keep = []
944
- for i in range(len(timesteps)):
945
- keeps = [
946
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
947
- for s, e in zip(control_guidance_start, control_guidance_end)
948
- ]
949
- controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
950
-
951
- # 7.2 Prepare added time ids & embeddings
952
- if isinstance(image, list):
953
- original_size = original_size or image[0].shape[-2:]
954
- else:
955
- original_size = original_size or image.shape[-2:]
956
- target_size = target_size or (height, width)
957
-
958
- add_text_embeds = pooled_prompt_embeds
959
- if self.text_encoder_2 is None:
960
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
961
- else:
962
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
963
-
964
- add_time_ids = self._get_add_time_ids(
965
- original_size,
966
- crops_coords_top_left,
967
- target_size,
968
- dtype=prompt_embeds.dtype,
969
- text_encoder_projection_dim=text_encoder_projection_dim,
970
- )
971
-
972
- if negative_original_size is not None and negative_target_size is not None:
973
- negative_add_time_ids = self._get_add_time_ids(
974
- negative_original_size,
975
- negative_crops_coords_top_left,
976
- negative_target_size,
977
- dtype=prompt_embeds.dtype,
978
- text_encoder_projection_dim=text_encoder_projection_dim,
979
- )
980
- else:
981
- negative_add_time_ids = add_time_ids
982
-
983
- if self.do_classifier_free_guidance:
984
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
985
- add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
986
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
987
-
988
- prompt_embeds = prompt_embeds.to(device)
989
- add_text_embeds = add_text_embeds.to(device)
990
- add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
991
- encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
992
-
993
- # 8. Denoising loop
994
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
995
- is_unet_compiled = is_compiled_module(self.unet)
996
- is_controlnet_compiled = is_compiled_module(self.controlnet)
997
- is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
998
-
999
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1000
- for i, t in enumerate(timesteps):
1001
- # Relevant thread:
1002
- # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1003
- if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1004
- torch._inductor.cudagraph_mark_step_begin()
1005
- # expand the latents if we are doing classifier free guidance
1006
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1007
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1008
-
1009
- added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1010
-
1011
- # controlnet(s) inference
1012
- if guess_mode and self.do_classifier_free_guidance:
1013
- # Infer ControlNet only for the conditional batch.
1014
- control_model_input = latents
1015
- control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1016
- controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1017
- controlnet_added_cond_kwargs = {
1018
- "text_embeds": add_text_embeds.chunk(2)[1],
1019
- "time_ids": add_time_ids.chunk(2)[1],
1020
- }
1021
- else:
1022
- control_model_input = latent_model_input
1023
- controlnet_prompt_embeds = prompt_embeds
1024
- controlnet_added_cond_kwargs = added_cond_kwargs
1025
-
1026
- if isinstance(controlnet_keep[i], list):
1027
- cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1028
- else:
1029
- controlnet_cond_scale = controlnet_conditioning_scale
1030
- if isinstance(controlnet_cond_scale, list):
1031
- controlnet_cond_scale = controlnet_cond_scale[0]
1032
- cond_scale = controlnet_cond_scale * controlnet_keep[i]
1033
-
1034
- down_block_res_samples, mid_block_res_sample = self.controlnet(
1035
- control_model_input,
1036
- t,
1037
- encoder_hidden_states=prompt_image_emb,
1038
- controlnet_cond=image,
1039
- conditioning_scale=cond_scale,
1040
- guess_mode=guess_mode,
1041
- added_cond_kwargs=controlnet_added_cond_kwargs,
1042
- return_dict=False,
1043
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044
 
1045
- # controlnet mask
1046
- if control_mask_wight_image_list is not None:
1047
- down_block_res_samples = [
1048
- down_block_res_sample * mask_weight
1049
- for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
1050
- ]
1051
- mid_block_res_sample *= control_mask_wight_image_list[-1]
1052
-
1053
- if guess_mode and self.do_classifier_free_guidance:
1054
- # Infered ControlNet only for the conditional batch.
1055
- # To apply the output of ControlNet to both the unconditional and conditional batches,
1056
- # add 0 to the unconditional batch to keep it unchanged.
1057
- down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1058
- mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1059
-
1060
- # predict the noise residual
1061
- noise_pred = self.unet(
1062
- latent_model_input,
1063
- t,
1064
- encoder_hidden_states=encoder_hidden_states,
1065
- timestep_cond=timestep_cond,
1066
- cross_attention_kwargs=self.cross_attention_kwargs,
1067
- down_block_additional_residuals=down_block_res_samples,
1068
- mid_block_additional_residual=mid_block_res_sample,
1069
- added_cond_kwargs=added_cond_kwargs,
1070
- return_dict=False,
1071
- )[0]
1072
-
1073
- # perform guidance
1074
- if self.do_classifier_free_guidance:
1075
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1076
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1077
-
1078
- # compute the previous noisy sample x_t -> x_t-1
1079
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1080
-
1081
- if callback_on_step_end is not None:
1082
- callback_kwargs = {}
1083
- for k in callback_on_step_end_tensor_inputs:
1084
- callback_kwargs[k] = locals()[k]
1085
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1086
-
1087
- latents = callback_outputs.pop("latents", latents)
1088
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1089
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1090
-
1091
- # call the callback, if provided
1092
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1093
- progress_bar.update()
1094
- if callback is not None and i % callback_steps == 0:
1095
- step_idx = i // getattr(self.scheduler, "order", 1)
1096
- callback(step_idx, t, latents)
1097
-
1098
- if not output_type == "latent":
1099
- # make sure the VAE is in float32 mode, as it overflows in float16
1100
- needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1101
- if needs_upcasting:
1102
- self.upcast_vae()
1103
- latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1104
-
1105
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1106
-
1107
- # cast back to fp16 if needed
1108
- if needs_upcasting:
1109
- self.vae.to(dtype=torch.float16)
1110
- else:
1111
- image = latents
1112
-
1113
- if not output_type == "latent":
1114
- # apply watermark if available
1115
- if self.watermark is not None:
1116
- image = self.watermark.apply_watermark(image)
1117
-
1118
- image = self.image_processor.postprocess(image, output_type=output_type)
1119
-
1120
- # Offload all models
1121
- self.maybe_free_model_hooks()
1122
-
1123
- if not return_dict:
1124
- return (image,)
1125
-
1126
- return StableDiffusionXLPipelineOutput(images=image)
 
1
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import cv2
3
  import math
 
 
 
4
  import torch
5
+ import random
6
+ import numpy as np
7
 
8
+ import PIL
9
+ from PIL import Image
10
 
11
+ import diffusers
12
+ from diffusers.utils import load_image
13
  from diffusers.models import ControlNetModel
14
 
15
+ import insightface
16
+ from insightface.app import FaceAnalysis
 
 
 
 
 
17
 
18
+ from style_template import styles
19
+ from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
 
20
 
21
+ import spaces
22
+ import gradio as gr
23
 
24
+ # global variable
25
+ MAX_SEED = np.iinfo(np.int32).max
26
+ device = "cuda" if torch.cuda.is_available() else "cpu"
27
+ STYLE_NAMES = list(styles.keys())
28
+ DEFAULT_STYLE_NAME = "Watercolor"
29
 
30
+ # download checkpoints
31
+ from huggingface_hub import hf_hub_download
32
+ hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
33
+ hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
34
+ hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
35
 
36
+ # Load face encoder
37
+ app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
38
+ app.prepare(ctx_id=0, det_size=(640, 640))
39
 
40
+ # Path to InstantID models
41
+ face_adapter = f'./checkpoints/ip-adapter.bin'
42
+ controlnet_path = f'./checkpoints/ControlNetModel'
 
 
 
 
43
 
44
+ # Load pipeline
45
+ controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ base_model_path = 'GHArt/Unstable_Diffusers_YamerMIX_V9_xl_fp16'
 
48
 
49
+ pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
50
+ base_model_path,
51
+ controlnet=controlnet,
52
+ torch_dtype=torch.float16,
53
+ safety_checker=None,
54
+ feature_extractor=None,
55
+ )
56
+ pipe.cuda()
57
+ pipe.load_ip_adapter_instantid(face_adapter)
58
+
59
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
60
+ if randomize_seed:
61
+ seed = random.randint(0, MAX_SEED)
62
+ return seed
63
+
64
+ def swap_to_gallery(images):
65
+ return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
66
+
67
+ def upload_example_to_gallery(images, prompt, style, negative_prompt):
68
+ return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
69
+
70
+ def remove_back_to_files():
71
+ return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
72
+
73
+ def remove_tips():
74
+ return gr.update(visible=False)
75
+
76
+ def get_example():
77
+ case = [
78
+ [
79
+ ['./examples/yann-lecun_resize.jpg'],
80
+ "a man",
81
+ "Snow",
82
+ "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
83
+ ],
84
+ [
85
+ ['./examples/musk_resize.jpeg'],
86
+ "a man",
87
+ "Mars",
88
+ "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
89
+ ],
90
+ [
91
+ ['./examples/sam_resize.png'],
92
+ "a man",
93
+ "Jungle",
94
+ "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
95
+ ],
96
+ [
97
+ ['./examples/schmidhuber_resize.png'],
98
+ "a man",
99
+ "Neon",
100
+ "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
101
+ ],
102
+ [
103
+ ['./examples/kaifu_resize.png'],
104
+ "a man",
105
+ "Vibrant Color",
106
+ "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
107
+ ],
108
+ ]
109
+ return case
110
+
111
+ def convert_from_cv2_to_image(img: np.ndarray) -> Image:
112
+ return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
113
+
114
+ def convert_from_image_to_cv2(img: Image) -> np.ndarray:
115
+ return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
116
+
117
+ def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
118
+ stickwidth = 4
119
+ limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
120
+ kps = np.array(kps)
121
+
122
+ w, h = image_pil.size
123
+ out_img = np.zeros([h, w, 3])
124
+
125
+ for i in range(len(limbSeq)):
126
+ index = limbSeq[i]
127
+ color = color_list[index[0]]
128
+
129
+ x = kps[index][:, 0]
130
+ y = kps[index][:, 1]
131
+ length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
132
+ angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
133
+ polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
134
+ out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
135
+ out_img = (out_img * 0.6).astype(np.uint8)
136
+
137
+ for idx_kp, kp in enumerate(kps):
138
+ color = color_list[idx_kp]
139
+ x, y = kp
140
+ out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
141
+
142
+ out_img_pil = Image.fromarray(out_img.astype(np.uint8))
143
+ return out_img_pil
144
+
145
+ def resize_img(input_image, max_side=1280, min_side=1024, size=None,
146
+ pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):
147
+
148
+ w, h = input_image.size
149
+ if size is not None:
150
+ w_resize_new, h_resize_new = size
151
+ else:
152
+ ratio = min_side / min(h, w)
153
+ w, h = round(ratio*w), round(ratio*h)
154
+ ratio = max_side / max(h, w)
155
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
156
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
157
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
158
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
159
+
160
+ if pad_to_max_side:
161
+ res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
162
+ offset_x = (max_side - w_resize_new) // 2
163
+ offset_y = (max_side - h_resize_new) // 2
164
+ res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
165
+ input_image = Image.fromarray(res)
166
+ return input_image
167
+
168
+ def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
169
+ p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
170
+ return p.replace("{prompt}", positive), n + ' ' + negative
171
+
172
+ @spaces.GPU
173
+ def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
174
+
175
+ if face_image is None:
176
+ raise gr.Error(f"Cannot find any input face image! Please upload the face image")
177
 
178
+ if prompt is None:
179
+ prompt = "a person"
 
180
 
181
+ # apply the style template
182
+ prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
+ face_image = load_image(face_image[0])
185
+ face_image = resize_img(face_image)
186
+ face_image_cv2 = convert_from_image_to_cv2(face_image)
187
+ height, width, _ = face_image_cv2.shape
188
 
189
+ # Extract face features
190
+ face_info = app.get(face_image_cv2)
191
+
192
+ if len(face_info) == 0:
193
+ raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
194
+
195
+ face_info = face_info[-1]
196
+ face_emb = face_info['embedding']
197
+ face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
 
 
 
 
 
 
 
 
 
 
198
 
199
+ if pose_image is not None:
200
+ pose_image = load_image(pose_image[0])
201
+ pose_image = resize_img(pose_image)
202
+ pose_image_cv2 = convert_from_image_to_cv2(pose_image)
203
 
204
+ face_info = app.get(pose_image_cv2)
205
 
206
+ if len(face_info) == 0:
207
+ raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
 
 
 
 
 
 
 
 
 
 
208
 
209
+ face_info = face_info[-1]
210
+ face_kps = draw_kps(pose_image, face_info['kps'])
 
 
 
211
 
212
+ width, height = face_kps.size
213
 
214
+ if enhance_face_region:
215
+ control_mask = np.zeros([height, width, 3])
216
+ x1, y1, x2, y2 = face_info['bbox']
217
+ x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
218
+ control_mask[y1:y2, x1:x2] = 255
219
+ control_mask = Image.fromarray(control_mask.astype(np.uint8))
220
+ else:
221
+ control_mask = None
222
+
223
+ generator = torch.Generator(device=device).manual_seed(seed)
224
+
225
+ print("Start inference...")
226
+ print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
+ pipe.set_ip_adapter_scale(adapter_strength_ratio)
229
+ images = pipe(
230
+ prompt=prompt,
231
+ negative_prompt=negative_prompt,
232
+ image_embeds=face_emb,
233
+ image=face_kps,
234
+ control_mask=control_mask,
235
+ controlnet_conditioning_scale=float(identitynet_strength_ratio),
236
+ num_inference_steps=num_steps,
237
+ guidance_scale=guidance_scale,
238
+ height=height,
239
+ width=width,
240
+ generator=generator
241
+ ).images
242
+
243
+ return images, gr.update(visible=True)
244
+
245
+ ### Description
246
+ title = r"""
247
+ <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
248
+ """
249
 
250
+ description = r"""
251
+ <b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
 
253
+ How to use:<br>
254
+ 1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred.
255
+ 2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose.
256
+ 3. Enter a text prompt as done in normal text-to-image models.
257
+ 4. Click the <b>Submit</b> button to start customizing.
258
+ 5. Share your customizd photo with your friends, enjoy😊!
259
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
 
261
+ article = r"""
262
+ ---
263
+ πŸ“ **Citation**
264
+ <br>
265
+ If our work is helpful for your research or applications, please cite us via:
266
+ ```bibtex
267
+ @article{wang2024instantid,
268
+ title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
269
+ author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
270
+ journal={arXiv preprint arXiv:2401.07519},
271
+ year={2024}
272
+ }
273
+ ```
274
+ πŸ“§ **Contact**
275
+ <br>
276
+ If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
277
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
 
279
+ tips = r"""
280
+ ### Usage tips of InstantID
281
+ 1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
282
+ 2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
283
+ 3. If text control is not as expected, decrease ip_adapter_scale.
284
+ 4. Find a good base model always makes a difference.
285
+ """
286
 
287
+ css = '''
288
+ .gradio-container {width: 85% !important}
289
+ '''
290
+ with gr.Blocks(css=css) as demo:
 
 
291
 
292
+ # description
293
+ gr.Markdown(title)
294
+ gr.Markdown(description)
295
 
296
+ with gr.Row():
297
+ with gr.Column():
298
+
299
+ # upload face image
300
+ face_files = gr.Files(
301
+ label="Upload a photo of your face",
302
+ file_types=["image"]
303
+ )
304
+ uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
305
+ with gr.Column(visible=False) as clear_button_face:
306
+ remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm")
307
+
308
+ # optional: upload a reference pose image
309
+ pose_files = gr.Files(
310
+ label="Upload a reference pose image (optional)",
311
+ file_types=["image"]
312
+ )
313
+ uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
314
+ with gr.Column(visible=False) as clear_button_pose:
315
+ remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm")
316
+
317
+ # prompt
318
+ prompt = gr.Textbox(label="Prompt",
319
+ info="Give simple prompt is enough to achieve good face fedility",
320
+ placeholder="A photo of a person",
321
+ value="")
322
+
323
+ submit = gr.Button("Submit", variant="primary")
324
+
325
+ style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
326
+
327
+ # strength
328
+ identitynet_strength_ratio = gr.Slider(
329
+ label="IdentityNet strength (for fedility)",
330
+ minimum=0,
331
+ maximum=1.5,
332
+ step=0.05,
333
+ value=0.80,
334
  )
335
+ adapter_strength_ratio = gr.Slider(
336
+ label="Image adapter strength (for detail)",
337
+ minimum=0,
338
+ maximum=1.5,
339
+ step=0.05,
340
+ value=0.80,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
  )
342
+
343
+ with gr.Accordion(open=False, label="Advanced Options"):
344
+ negative_prompt = gr.Textbox(
345
+ label="Negative Prompt",
346
+ placeholder="low quality",
347
+ value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
 
 
 
 
 
 
 
 
 
348
  )
349
+ num_steps = gr.Slider(
350
+ label="Number of sample steps",
351
+ minimum=20,
352
+ maximum=100,
353
+ step=1,
354
+ value=30,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
  )
356
+ guidance_scale = gr.Slider(
357
+ label="Guidance scale",
358
+ minimum=0.1,
359
+ maximum=10.0,
360
+ step=0.1,
361
+ value=5,
362
+ )
363
+ seed = gr.Slider(
364
+ label="Seed",
365
+ minimum=0,
366
+ maximum=MAX_SEED,
367
+ step=1,
368
+ value=42,
369
+ )
370
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
371
+ enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
372
+
373
+ with gr.Column():
374
+ gallery = gr.Gallery(label="Generated Images")
375
+ usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
376
+
377
+ face_files.upload(fn=swap_to_gallery, inputs=face_files, outputs=[uploaded_faces, clear_button_face, face_files])
378
+ pose_files.upload(fn=swap_to_gallery, inputs=pose_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
379
+
380
+ remove_and_reupload_faces.click(fn=remove_back_to_files, outputs=[uploaded_faces, clear_button_face, face_files])
381
+ remove_and_reupload_poses.click(fn=remove_back_to_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
382
+
383
+ submit.click(
384
+ fn=remove_tips,
385
+ outputs=usage_tips,
386
+ ).then(
387
+ fn=randomize_seed_fn,
388
+ inputs=[seed, randomize_seed],
389
+ outputs=seed,
390
+ queue=False,
391
+ api_name=False,
392
+ ).then(
393
+ fn=generate_image,
394
+ inputs=[face_files, pose_files, prompt, negative_prompt, style, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed],
395
+ outputs=[gallery, usage_tips]
396
+ )
397
+
398
+ gr.Examples(
399
+ examples=get_example(),
400
+ inputs=[face_files, prompt, style, negative_prompt],
401
+ run_on_click=True,
402
+ fn=upload_example_to_gallery,
403
+ outputs=[uploaded_faces, clear_button_face, face_files],
404
+ )
405
+
406
+ gr.Markdown(article)
407
 
408
+ demo.launch()