ResearcherXman commited on
Commit
a6b78fb
β€’
1 Parent(s): 760d36d
Files changed (1) hide show
  1. pipeline_stable_diffusion_xl_instantid.py +1087 -369
pipeline_stable_diffusion_xl_instantid.py CHANGED
@@ -1,408 +1,1126 @@
1
- import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import cv2
3
  import math
4
- import torch
5
- import random
6
  import numpy as np
 
 
 
 
7
 
8
- import PIL
9
- from PIL import Image
10
 
11
- import diffusers
12
- from diffusers.utils import load_image
13
  from diffusers.models import ControlNetModel
14
 
15
- import insightface
16
- from insightface.app import FaceAnalysis
 
 
 
 
 
17
 
18
- from style_template import styles
19
- from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
 
20
 
21
- import spaces
22
- import gradio as gr
23
 
24
- # global variable
25
- MAX_SEED = np.iinfo(np.int32).max
26
- device = "cuda" if torch.cuda.is_available() else "cpu"
27
- STYLE_NAMES = list(styles.keys())
28
- DEFAULT_STYLE_NAME = "Watercolor"
29
 
30
- # download checkpoints
31
- from huggingface_hub import hf_hub_download
32
- hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
33
- hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
34
- hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
35
 
36
- # Load face encoder
37
- app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
38
- app.prepare(ctx_id=0, det_size=(640, 640))
39
 
40
- # Path to InstantID models
41
- face_adapter = f'./checkpoints/ip-adapter.bin'
42
- controlnet_path = f'./checkpoints/ControlNetModel'
 
 
 
 
43
 
44
- # Load pipeline
45
- controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
 
 
 
 
 
46
 
47
- base_model_path = 'GHArt/Unstable_Diffusers_YamerMIX_V9_xl_fp16'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
- pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
50
- base_model_path,
51
- controlnet=controlnet,
52
- torch_dtype=torch.float16,
53
- safety_checker=None,
54
- feature_extractor=None,
55
- )
56
- pipe.cuda()
57
- pipe.load_ip_adapter_instantid(face_adapter)
58
-
59
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
60
- if randomize_seed:
61
- seed = random.randint(0, MAX_SEED)
62
- return seed
63
-
64
- def swap_to_gallery(images):
65
- return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
66
-
67
- def upload_example_to_gallery(images, prompt, style, negative_prompt):
68
- return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
69
-
70
- def remove_back_to_files():
71
- return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
72
-
73
- def remove_tips():
74
- return gr.update(visible=False)
75
-
76
- def get_example():
77
- case = [
78
- [
79
- ['./examples/yann-lecun_resize.jpg'],
80
- "a man",
81
- "Snow",
82
- "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
83
- ],
84
- [
85
- ['./examples/musk_resize.jpeg'],
86
- "a man",
87
- "Mars",
88
- "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
89
- ],
90
- [
91
- ['./examples/sam_resize.png'],
92
- "a man",
93
- "Jungle",
94
- "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
95
- ],
96
- [
97
- ['./examples/schmidhuber_resize.png'],
98
- "a man",
99
- "Neon",
100
- "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
101
- ],
102
- [
103
- ['./examples/kaifu_resize.png'],
104
- "a man",
105
- "Vibrant Color",
106
- "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
107
- ],
108
- ]
109
- return case
110
-
111
- def convert_from_cv2_to_image(img: np.ndarray) -> Image:
112
- return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
113
-
114
- def convert_from_image_to_cv2(img: Image) -> np.ndarray:
115
- return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
116
-
117
- def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
118
- stickwidth = 4
119
- limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
120
- kps = np.array(kps)
121
-
122
- w, h = image_pil.size
123
- out_img = np.zeros([h, w, 3])
124
-
125
- for i in range(len(limbSeq)):
126
- index = limbSeq[i]
127
- color = color_list[index[0]]
128
-
129
- x = kps[index][:, 0]
130
- y = kps[index][:, 1]
131
- length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
132
- angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
133
- polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
134
- out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
135
- out_img = (out_img * 0.6).astype(np.uint8)
136
-
137
- for idx_kp, kp in enumerate(kps):
138
- color = color_list[idx_kp]
139
- x, y = kp
140
- out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
141
-
142
- out_img_pil = Image.fromarray(out_img.astype(np.uint8))
143
- return out_img_pil
144
-
145
- def resize_img(input_image, max_side=1280, min_side=1024, size=None,
146
- pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):
147
-
148
- w, h = input_image.size
149
- if size is not None:
150
- w_resize_new, h_resize_new = size
151
- else:
152
- ratio = min_side / min(h, w)
153
- w, h = round(ratio*w), round(ratio*h)
154
- ratio = max_side / max(h, w)
155
- input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
156
- w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
157
- h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
158
- input_image = input_image.resize([w_resize_new, h_resize_new], mode)
159
-
160
- if pad_to_max_side:
161
- res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
162
- offset_x = (max_side - w_resize_new) // 2
163
- offset_y = (max_side - h_resize_new) // 2
164
- res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
165
- input_image = Image.fromarray(res)
166
- return input_image
167
-
168
- def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
169
- p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
170
- return p.replace("{prompt}", positive), n + ' ' + negative
171
-
172
- @spaces.GPU
173
- def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
174
-
175
- if face_image is None:
176
- raise gr.Error(f"Cannot find any input face image! Please upload the face image")
177
-
178
- if prompt is None:
179
- prompt = "a person"
180
-
181
- # apply the style template
182
- prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
183
 
184
- face_image = load_image(face_image[0])
185
- face_image = resize_img(face_image)
186
- face_image_cv2 = convert_from_image_to_cv2(face_image)
187
- height, width, _ = face_image_cv2.shape
188
 
189
- # Extract face features
190
- face_info = app.get(face_image_cv2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
- if len(face_info) == 0:
193
- raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
194
 
195
- face_info = face_info[-1]
196
- face_emb = face_info['embedding']
197
- face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
- if pose_image is not None:
200
- pose_image = load_image(pose_image[0])
201
- pose_image = resize_img(pose_image)
202
- pose_image_cv2 = convert_from_image_to_cv2(pose_image)
203
 
204
- face_info = app.get(pose_image_cv2)
205
 
206
- if len(face_info) == 0:
207
- raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
 
 
 
 
 
 
 
 
 
 
208
 
209
- face_info = face_info[-1]
210
- face_kps = draw_kps(pose_image, face_info['kps'])
 
 
 
211
 
212
- width, height = face_kps.size
213
-
214
- if enhance_face_region:
215
- control_mask = np.zeros([height, width, 3])
216
- x1, y1, x2, y2 = face_info['bbox']
217
- x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
218
- control_mask[y1:y2, x1:x2] = 255
219
- control_mask = Image.fromarray(control_mask.astype(np.uint8))
220
- else:
221
- control_mask = None
222
 
223
- generator = torch.Generator(device=device).manual_seed(seed)
224
-
225
- print("Start inference...")
226
- print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
- pipe.set_ip_adapter_scale(adapter_strength_ratio)
229
- images = pipe(
230
- prompt=prompt,
231
- negative_prompt=negative_prompt,
232
- image_embeds=face_emb,
233
- image=face_kps,
234
- control_mask=control_mask,
235
- controlnet_conditioning_scale=float(identitynet_strength_ratio),
236
- num_inference_steps=num_steps,
237
- guidance_scale=guidance_scale,
238
- height=height,
239
- width=width,
240
- generator=generator
241
- ).images
242
-
243
- return images, gr.update(visible=True)
244
-
245
- ### Description
246
- title = r"""
247
- <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
248
- """
249
 
250
- description = r"""
251
- <b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
 
253
- How to use:<br>
254
- 1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred.
255
- 2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose.
256
- 3. Enter a text prompt as done in normal text-to-image models.
257
- 4. Click the <b>Submit</b> button to start customizing.
258
- 5. Share your customizd photo with your friends, enjoy😊!
259
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
 
261
- article = r"""
262
- ---
263
- πŸ“ **Citation**
264
- <br>
265
- If our work is helpful for your research or applications, please cite us via:
266
- ```bibtex
267
- @article{wang2024instantid,
268
- title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
269
- author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
270
- journal={arXiv preprint arXiv:2401.07519},
271
- year={2024}
272
- }
273
- ```
274
- πŸ“§ **Contact**
275
- <br>
276
- If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
277
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
 
279
- tips = r"""
280
- ### Usage tips of InstantID
281
- 1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
282
- 2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
283
- 3. If text control is not as expected, decrease ip_adapter_scale.
284
- 4. Find a good base model always makes a difference.
285
- """
286
 
287
- css = '''
288
- .gradio-container {width: 85% !important}
289
- '''
290
- with gr.Blocks(css=css) as demo:
 
 
291
 
292
- # description
293
- gr.Markdown(title)
294
- gr.Markdown(description)
295
 
296
- with gr.Row():
297
- with gr.Column():
298
-
299
- # upload face image
300
- face_files = gr.Files(
301
- label="Upload a photo of your face",
302
- file_types=["image"]
303
- )
304
- uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
305
- with gr.Column(visible=False) as clear_button_face:
306
- remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm")
307
-
308
- # optional: upload a reference pose image
309
- pose_files = gr.Files(
310
- label="Upload a reference pose image (optional)",
311
- file_types=["image"]
312
- )
313
- uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
314
- with gr.Column(visible=False) as clear_button_pose:
315
- remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm")
316
-
317
- # prompt
318
- prompt = gr.Textbox(label="Prompt",
319
- info="Give simple prompt is enough to achieve good face fedility",
320
- placeholder="A photo of a person",
321
- value="")
322
-
323
- submit = gr.Button("Submit", variant="primary")
324
-
325
- style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
326
-
327
- # strength
328
- identitynet_strength_ratio = gr.Slider(
329
- label="IdentityNet strength (for fedility)",
330
- minimum=0,
331
- maximum=1.5,
332
- step=0.05,
333
- value=0.80,
334
  )
335
- adapter_strength_ratio = gr.Slider(
336
- label="Image adapter strength (for detail)",
337
- minimum=0,
338
- maximum=1.5,
339
- step=0.05,
340
- value=0.80,
341
  )
342
-
343
- with gr.Accordion(open=False, label="Advanced Options"):
344
- negative_prompt = gr.Textbox(
345
- label="Negative Prompt",
346
- placeholder="low quality",
347
- value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
348
- )
349
- num_steps = gr.Slider(
350
- label="Number of sample steps",
351
- minimum=20,
352
- maximum=100,
353
- step=1,
354
- value=30,
355
- )
356
- guidance_scale = gr.Slider(
357
- label="Guidance scale",
358
- minimum=0.1,
359
- maximum=10.0,
360
- step=0.1,
361
- value=5,
362
- )
363
- seed = gr.Slider(
364
- label="Seed",
365
- minimum=0,
366
- maximum=MAX_SEED,
367
- step=1,
368
- value=42,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
  )
370
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
371
- enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
372
-
373
- with gr.Column():
374
- gallery = gr.Gallery(label="Generated Images")
375
- usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
376
-
377
- face_files.upload(fn=swap_to_gallery, inputs=face_files, outputs=[uploaded_faces, clear_button_face, face_files])
378
- pose_files.upload(fn=swap_to_gallery, inputs=pose_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
379
-
380
- remove_and_reupload_faces.click(fn=remove_back_to_files, outputs=[uploaded_faces, clear_button_face, face_files])
381
- remove_and_reupload_poses.click(fn=remove_back_to_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
382
-
383
- submit.click(
384
- fn=remove_tips,
385
- outputs=usage_tips,
386
- ).then(
387
- fn=randomize_seed_fn,
388
- inputs=[seed, randomize_seed],
389
- outputs=seed,
390
- queue=False,
391
- api_name=False,
392
- ).then(
393
- fn=generate_image,
394
- inputs=[face_files, pose_files, prompt, negative_prompt, style, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed],
395
- outputs=[gallery, usage_tips]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396
  )
397
-
398
- gr.Examples(
399
- examples=get_example(),
400
- inputs=[face_files, prompt, style, negative_prompt],
401
- run_on_click=True,
402
- fn=upload_example_to_gallery,
403
- outputs=[uploaded_faces, clear_button_face, face_files],
404
- )
405
-
406
- gr.Markdown(article)
407
 
408
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
  import cv2
19
  import math
20
+
 
21
  import numpy as np
22
+ import PIL.Image
23
+ import torch
24
+ import torch.nn.functional as F
25
+ from transformers import CLIPTokenizer
26
 
27
+ from diffusers.image_processor import PipelineImageInput
 
28
 
 
 
29
  from diffusers.models import ControlNetModel
30
 
31
+ from diffusers.utils import (
32
+ deprecate,
33
+ logging,
34
+ replace_example_docstring,
35
+ )
36
+ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
37
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
38
 
39
+ from diffusers import StableDiffusionXLControlNetPipeline
40
+ from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
41
+ from diffusers.utils.import_utils import is_xformers_available
42
 
43
+ from ip_adapter.resampler import Resampler
 
44
 
45
+ from ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor
46
+ from ip_adapter.attention_processor import region_control
 
 
 
47
 
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
 
 
 
 
49
 
 
 
 
50
 
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> # !pip install opencv-python transformers accelerate insightface
55
+ >>> import diffusers
56
+ >>> from diffusers.utils import load_image
57
+ >>> from diffusers.models import ControlNetModel
58
 
59
+ >>> import cv2
60
+ >>> import torch
61
+ >>> import numpy as np
62
+ >>> from PIL import Image
63
+
64
+ >>> from insightface.app import FaceAnalysis
65
+ >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
66
 
67
+ >>> # download 'antelopev2' under ./models
68
+ >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
69
+ >>> app.prepare(ctx_id=0, det_size=(640, 640))
70
+
71
+ >>> # download models under ./checkpoints
72
+ >>> face_adapter = f'./checkpoints/ip-adapter.bin'
73
+ >>> controlnet_path = f'./checkpoints/ControlNetModel'
74
+
75
+ >>> # load IdentityNet
76
+ >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
77
+
78
+ >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
79
+ ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
80
+ ... )
81
+ >>> pipe.cuda()
82
+
83
+ >>> # load adapter
84
+ >>> pipe.load_ip_adapter_instantid(face_adapter)
85
 
86
+ >>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
87
+ >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
88
+
89
+ >>> # load an image
90
+ >>> image = load_image("your-example.jpg")
91
+
92
+ >>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
93
+ >>> face_emb = face_info['embedding']
94
+ >>> face_kps = draw_kps(face_image, face_info['kps'])
95
+
96
+ >>> pipe.set_ip_adapter_scale(0.8)
97
+
98
+ >>> # generate image
99
+ >>> image = pipe(
100
+ ... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
101
+ ... ).images[0]
102
+ ```
103
+ """
104
+
105
+
106
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
107
+ class LongPromptWeight(object):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ """
110
+ Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
111
+ """
 
112
 
113
+ def __init__(self) -> None:
114
+ pass
115
+
116
+ def parse_prompt_attention(self, text):
117
+ """
118
+ Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
119
+ Accepted tokens are:
120
+ (abc) - increases attention to abc by a multiplier of 1.1
121
+ (abc:3.12) - increases attention to abc by a multiplier of 3.12
122
+ [abc] - decreases attention to abc by a multiplier of 1.1
123
+ \( - literal character '('
124
+ \[ - literal character '['
125
+ \) - literal character ')'
126
+ \] - literal character ']'
127
+ \\ - literal character '\'
128
+ anything else - just text
129
+
130
+ >>> parse_prompt_attention('normal text')
131
+ [['normal text', 1.0]]
132
+ >>> parse_prompt_attention('an (important) word')
133
+ [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
134
+ >>> parse_prompt_attention('(unbalanced')
135
+ [['unbalanced', 1.1]]
136
+ >>> parse_prompt_attention('\(literal\]')
137
+ [['(literal]', 1.0]]
138
+ >>> parse_prompt_attention('(unnecessary)(parens)')
139
+ [['unnecessaryparens', 1.1]]
140
+ >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
141
+ [['a ', 1.0],
142
+ ['house', 1.5730000000000004],
143
+ [' ', 1.1],
144
+ ['on', 1.0],
145
+ [' a ', 1.1],
146
+ ['hill', 0.55],
147
+ [', sun, ', 1.1],
148
+ ['sky', 1.4641000000000006],
149
+ ['.', 1.1]]
150
+ """
151
+ import re
152
+
153
+ re_attention = re.compile(
154
+ r"""
155
+ \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
156
+ \)|]|[^\\()\[\]:]+|:
157
+ """,
158
+ re.X,
159
+ )
160
+
161
+ re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
162
+
163
+ res = []
164
+ round_brackets = []
165
+ square_brackets = []
166
+
167
+ round_bracket_multiplier = 1.1
168
+ square_bracket_multiplier = 1 / 1.1
169
+
170
+ def multiply_range(start_position, multiplier):
171
+ for p in range(start_position, len(res)):
172
+ res[p][1] *= multiplier
173
+
174
+ for m in re_attention.finditer(text):
175
+ text = m.group(0)
176
+ weight = m.group(1)
177
+
178
+ if text.startswith("\\"):
179
+ res.append([text[1:], 1.0])
180
+ elif text == "(":
181
+ round_brackets.append(len(res))
182
+ elif text == "[":
183
+ square_brackets.append(len(res))
184
+ elif weight is not None and len(round_brackets) > 0:
185
+ multiply_range(round_brackets.pop(), float(weight))
186
+ elif text == ")" and len(round_brackets) > 0:
187
+ multiply_range(round_brackets.pop(), round_bracket_multiplier)
188
+ elif text == "]" and len(square_brackets) > 0:
189
+ multiply_range(square_brackets.pop(), square_bracket_multiplier)
190
+ else:
191
+ parts = re.split(re_break, text)
192
+ for i, part in enumerate(parts):
193
+ if i > 0:
194
+ res.append(["BREAK", -1])
195
+ res.append([part, 1.0])
196
+
197
+ for pos in round_brackets:
198
+ multiply_range(pos, round_bracket_multiplier)
199
+
200
+ for pos in square_brackets:
201
+ multiply_range(pos, square_bracket_multiplier)
202
+
203
+ if len(res) == 0:
204
+ res = [["", 1.0]]
205
+
206
+ # merge runs of identical weights
207
+ i = 0
208
+ while i + 1 < len(res):
209
+ if res[i][1] == res[i + 1][1]:
210
+ res[i][0] += res[i + 1][0]
211
+ res.pop(i + 1)
212
+ else:
213
+ i += 1
214
+
215
+ return res
216
+
217
+ def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
218
+ """
219
+ Get prompt token ids and weights, this function works for both prompt and negative prompt
220
+
221
+ Args:
222
+ pipe (CLIPTokenizer)
223
+ A CLIPTokenizer
224
+ prompt (str)
225
+ A prompt string with weights
226
+
227
+ Returns:
228
+ text_tokens (list)
229
+ A list contains token ids
230
+ text_weight (list)
231
+ A list contains the correspodent weight of token ids
232
+
233
+ Example:
234
+ import torch
235
+ from transformers import CLIPTokenizer
236
+
237
+ clip_tokenizer = CLIPTokenizer.from_pretrained(
238
+ "stablediffusionapi/deliberate-v2"
239
+ , subfolder = "tokenizer"
240
+ , dtype = torch.float16
241
+ )
242
+
243
+ token_id_list, token_weight_list = get_prompts_tokens_with_weights(
244
+ clip_tokenizer = clip_tokenizer
245
+ ,prompt = "a (red:1.5) cat"*70
246
+ )
247
+ """
248
+ texts_and_weights = self.parse_prompt_attention(prompt)
249
+ text_tokens, text_weights = [], []
250
+ for word, weight in texts_and_weights:
251
+ # tokenize and discard the starting and the ending token
252
+ token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
253
+ # the returned token is a 1d list: [320, 1125, 539, 320]
254
+
255
+ # merge the new tokens to the all tokens holder: text_tokens
256
+ text_tokens = [*text_tokens, *token]
257
+
258
+ # each token chunk will come with one weight, like ['red cat', 2.0]
259
+ # need to expand weight for each token.
260
+ chunk_weights = [weight] * len(token)
261
+
262
+ # append the weight back to the weight holder: text_weights
263
+ text_weights = [*text_weights, *chunk_weights]
264
+ return text_tokens, text_weights
265
+
266
+ def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
267
+ """
268
+ Produce tokens and weights in groups and pad the missing tokens
269
+
270
+ Args:
271
+ token_ids (list)
272
+ The token ids from tokenizer
273
+ weights (list)
274
+ The weights list from function get_prompts_tokens_with_weights
275
+ pad_last_block (bool)
276
+ Control if fill the last token list to 75 tokens with eos
277
+ Returns:
278
+ new_token_ids (2d list)
279
+ new_weights (2d list)
280
+
281
+ Example:
282
+ token_groups,weight_groups = group_tokens_and_weights(
283
+ token_ids = token_id_list
284
+ , weights = token_weight_list
285
+ )
286
+ """
287
+ bos, eos = 49406, 49407
288
+
289
+ # this will be a 2d list
290
+ new_token_ids = []
291
+ new_weights = []
292
+ while len(token_ids) >= 75:
293
+ # get the first 75 tokens
294
+ head_75_tokens = [token_ids.pop(0) for _ in range(75)]
295
+ head_75_weights = [weights.pop(0) for _ in range(75)]
296
+
297
+ # extract token ids and weights
298
+ temp_77_token_ids = [bos] + head_75_tokens + [eos]
299
+ temp_77_weights = [1.0] + head_75_weights + [1.0]
300
+
301
+ # add 77 token and weights chunk to the holder list
302
+ new_token_ids.append(temp_77_token_ids)
303
+ new_weights.append(temp_77_weights)
304
+
305
+ # padding the left
306
+ if len(token_ids) >= 0:
307
+ padding_len = 75 - len(token_ids) if pad_last_block else 0
308
+
309
+ temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
310
+ new_token_ids.append(temp_77_token_ids)
311
+
312
+ temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
313
+ new_weights.append(temp_77_weights)
314
+
315
+ return new_token_ids, new_weights
316
+
317
+ def get_weighted_text_embeddings_sdxl(
318
+ self,
319
+ pipe: StableDiffusionXLPipeline,
320
+ prompt: str = "",
321
+ prompt_2: str = None,
322
+ neg_prompt: str = "",
323
+ neg_prompt_2: str = None,
324
+ prompt_embeds=None,
325
+ negative_prompt_embeds=None,
326
+ pooled_prompt_embeds=None,
327
+ negative_pooled_prompt_embeds=None,
328
+ extra_emb=None,
329
+ extra_emb_alpha=0.6,
330
+ ):
331
+ """
332
+ This function can process long prompt with weights, no length limitation
333
+ for Stable Diffusion XL
334
+
335
+ Args:
336
+ pipe (StableDiffusionPipeline)
337
+ prompt (str)
338
+ prompt_2 (str)
339
+ neg_prompt (str)
340
+ neg_prompt_2 (str)
341
+ Returns:
342
+ prompt_embeds (torch.Tensor)
343
+ neg_prompt_embeds (torch.Tensor)
344
+ """
345
+ #
346
+ if prompt_embeds is not None and \
347
+ negative_prompt_embeds is not None and \
348
+ pooled_prompt_embeds is not None and \
349
+ negative_pooled_prompt_embeds is not None:
350
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
351
+
352
+ if prompt_2:
353
+ prompt = f"{prompt} {prompt_2}"
354
+
355
+ if neg_prompt_2:
356
+ neg_prompt = f"{neg_prompt} {neg_prompt_2}"
357
+
358
+ eos = pipe.tokenizer.eos_token_id
359
+
360
+ # tokenizer 1
361
+ prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
362
+ neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
363
+
364
+ # tokenizer 2
365
+ # prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
366
+ # neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
367
+ # tokenizer 2 ι‡εˆ° !! !!!! η­‰ε€šζ„ŸεΉε·ε’Œtokenizer 1ηš„ζ•ˆζžœδΈδΈ€θ‡΄
368
+ prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
369
+ neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
370
+
371
+ # padding the shorter one for prompt set 1
372
+ prompt_token_len = len(prompt_tokens)
373
+ neg_prompt_token_len = len(neg_prompt_tokens)
374
+
375
+ if prompt_token_len > neg_prompt_token_len:
376
+ # padding the neg_prompt with eos token
377
+ neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
378
+ neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
379
+ else:
380
+ # padding the prompt
381
+ prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
382
+ prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
383
+
384
+ # padding the shorter one for token set 2
385
+ prompt_token_len_2 = len(prompt_tokens_2)
386
+ neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
387
+
388
+ if prompt_token_len_2 > neg_prompt_token_len_2:
389
+ # padding the neg_prompt with eos token
390
+ neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
391
+ neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
392
+ else:
393
+ # padding the prompt
394
+ prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
395
+ prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
396
+
397
+ embeds = []
398
+ neg_embeds = []
399
+
400
+ prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
401
+
402
+ neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
403
+ neg_prompt_tokens.copy(), neg_prompt_weights.copy()
404
+ )
405
+
406
+ prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
407
+ prompt_tokens_2.copy(), prompt_weights_2.copy()
408
+ )
409
+
410
+ neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
411
+ neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
412
+ )
413
+
414
+ # get prompt embeddings one by one is not working.
415
+ for i in range(len(prompt_token_groups)):
416
+ # get positive prompt embeddings with weights
417
+ token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
418
+ weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
419
+
420
+ token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
421
+
422
+ # use first text encoder
423
+ prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
424
+ prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
425
+
426
+ # use second text encoder
427
+ prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
428
+ prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
429
+ pooled_prompt_embeds = prompt_embeds_2[0]
430
+
431
+ prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
432
+ token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
433
+
434
+ for j in range(len(weight_tensor)):
435
+ if weight_tensor[j] != 1.0:
436
+ token_embedding[j] = (
437
+ token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
438
+ )
439
+
440
+ token_embedding = token_embedding.unsqueeze(0)
441
+ embeds.append(token_embedding)
442
+
443
+ # get negative prompt embeddings with weights
444
+ neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
445
+ neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
446
+ neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
447
+
448
+ # use first text encoder
449
+ neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
450
+ neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
451
+
452
+ # use second text encoder
453
+ neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
454
+ neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
455
+ negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
456
+
457
+ neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
458
+ neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
459
+
460
+ for z in range(len(neg_weight_tensor)):
461
+ if neg_weight_tensor[z] != 1.0:
462
+ neg_token_embedding[z] = (
463
+ neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
464
+ )
465
+
466
+ neg_token_embedding = neg_token_embedding.unsqueeze(0)
467
+ neg_embeds.append(neg_token_embedding)
468
+
469
+ prompt_embeds = torch.cat(embeds, dim=1)
470
+ negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
471
+
472
+ if extra_emb is not None:
473
+ extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
474
+ prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
475
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
476
+ print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
477
+
478
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
479
+
480
+ def get_prompt_embeds(self, *args, **kwargs):
481
+ prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
482
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
483
+ return prompt_embeds
484
+
485
 
486
+ class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
 
487
 
488
+ def cuda(self, dtype=torch.float16, use_xformers=False):
489
+ self.to('cuda', dtype)
490
+
491
+ if hasattr(self, 'image_proj_model'):
492
+ self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
493
+
494
+ if use_xformers:
495
+ if is_xformers_available():
496
+ import xformers
497
+ from packaging import version
498
+
499
+ xformers_version = version.parse(xformers.__version__)
500
+ if xformers_version == version.parse("0.0.16"):
501
+ logger.warn(
502
+ "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
503
+ )
504
+ self.enable_xformers_memory_efficient_attention()
505
+ else:
506
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
507
 
508
+ def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
509
+ self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
510
+ self.set_ip_adapter(model_ckpt, num_tokens, scale)
 
511
 
512
+ def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
513
 
514
+ image_proj_model = Resampler(
515
+ dim=1280,
516
+ depth=4,
517
+ dim_head=64,
518
+ heads=20,
519
+ num_queries=num_tokens,
520
+ embedding_dim=image_emb_dim,
521
+ output_dim=self.unet.config.cross_attention_dim,
522
+ ff_mult=4,
523
+ )
524
+
525
+ image_proj_model.eval()
526
 
527
+ self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
528
+ state_dict = torch.load(model_ckpt, map_location="cpu")
529
+ if 'image_proj' in state_dict:
530
+ state_dict = state_dict["image_proj"]
531
+ self.image_proj_model.load_state_dict(state_dict)
532
 
533
+ self.image_proj_model_in_features = image_emb_dim
 
 
 
 
 
 
 
 
 
534
 
535
+ def set_ip_adapter(self, model_ckpt, num_tokens, scale):
536
+
537
+ unet = self.unet
538
+ attn_procs = {}
539
+ for name in unet.attn_processors.keys():
540
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
541
+ if name.startswith("mid_block"):
542
+ hidden_size = unet.config.block_out_channels[-1]
543
+ elif name.startswith("up_blocks"):
544
+ block_id = int(name[len("up_blocks.")])
545
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
546
+ elif name.startswith("down_blocks"):
547
+ block_id = int(name[len("down_blocks.")])
548
+ hidden_size = unet.config.block_out_channels[block_id]
549
+ if cross_attention_dim is None:
550
+ attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
551
+ else:
552
+ attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
553
+ cross_attention_dim=cross_attention_dim,
554
+ scale=scale,
555
+ num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
556
+ unet.set_attn_processor(attn_procs)
557
+
558
+ state_dict = torch.load(model_ckpt, map_location="cpu")
559
+ ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
560
+ if 'ip_adapter' in state_dict:
561
+ state_dict = state_dict['ip_adapter']
562
+ ip_layers.load_state_dict(state_dict)
563
 
564
+ def set_ip_adapter_scale(self, scale):
565
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
566
+ for attn_processor in unet.attn_processors.values():
567
+ if isinstance(attn_processor, IPAttnProcessor):
568
+ attn_processor.scale = scale
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
 
570
+ def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
571
+
572
+ if isinstance(prompt_image_emb, torch.Tensor):
573
+ prompt_image_emb = prompt_image_emb.clone().detach()
574
+ else:
575
+ prompt_image_emb = torch.tensor(prompt_image_emb)
576
+
577
+ prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
578
+ prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
579
+
580
+ if do_classifier_free_guidance:
581
+ prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
582
+ else:
583
+ prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
584
+
585
+ prompt_image_emb = self.image_proj_model(prompt_image_emb)
586
+ return prompt_image_emb
587
 
588
+ @torch.no_grad()
589
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
590
+ def __call__(
591
+ self,
592
+ prompt: Union[str, List[str]] = None,
593
+ prompt_2: Optional[Union[str, List[str]]] = None,
594
+ image: PipelineImageInput = None,
595
+ height: Optional[int] = None,
596
+ width: Optional[int] = None,
597
+ num_inference_steps: int = 50,
598
+ guidance_scale: float = 5.0,
599
+ negative_prompt: Optional[Union[str, List[str]]] = None,
600
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
601
+ num_images_per_prompt: Optional[int] = 1,
602
+ eta: float = 0.0,
603
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
604
+ latents: Optional[torch.FloatTensor] = None,
605
+ prompt_embeds: Optional[torch.FloatTensor] = None,
606
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
607
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
608
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
609
+ image_embeds: Optional[torch.FloatTensor] = None,
610
+ output_type: Optional[str] = "pil",
611
+ return_dict: bool = True,
612
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
613
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
614
+ guess_mode: bool = False,
615
+ control_guidance_start: Union[float, List[float]] = 0.0,
616
+ control_guidance_end: Union[float, List[float]] = 1.0,
617
+ original_size: Tuple[int, int] = None,
618
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
619
+ target_size: Tuple[int, int] = None,
620
+ negative_original_size: Optional[Tuple[int, int]] = None,
621
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
622
+ negative_target_size: Optional[Tuple[int, int]] = None,
623
+ clip_skip: Optional[int] = None,
624
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
625
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
626
+ control_mask = None,
627
+ **kwargs,
628
+ ):
629
+ r"""
630
+ The call function to the pipeline for generation.
631
 
632
+ Args:
633
+ prompt (`str` or `List[str]`, *optional*):
634
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
635
+ prompt_2 (`str` or `List[str]`, *optional*):
636
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
637
+ used in both text-encoders.
638
+ image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
639
+ `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
640
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
641
+ specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
642
+ accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
643
+ and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
644
+ `init`, images must be passed as a list such that each element of the list can be correctly batched for
645
+ input to a single ControlNet.
646
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
647
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
648
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
649
+ and checkpoints that are not specifically fine-tuned on low resolutions.
650
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
651
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
652
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
653
+ and checkpoints that are not specifically fine-tuned on low resolutions.
654
+ num_inference_steps (`int`, *optional*, defaults to 50):
655
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
656
+ expense of slower inference.
657
+ guidance_scale (`float`, *optional*, defaults to 5.0):
658
+ A higher guidance scale value encourages the model to generate images closely linked to the text
659
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
660
+ negative_prompt (`str` or `List[str]`, *optional*):
661
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
662
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
663
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
664
+ The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
665
+ and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
666
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
667
+ The number of images to generate per prompt.
668
+ eta (`float`, *optional*, defaults to 0.0):
669
+ Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
670
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
671
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
672
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
673
+ generation deterministic.
674
+ latents (`torch.FloatTensor`, *optional*):
675
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
676
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
677
+ tensor is generated by sampling using the supplied random `generator`.
678
+ prompt_embeds (`torch.FloatTensor`, *optional*):
679
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
680
+ provided, text embeddings are generated from the `prompt` input argument.
681
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
682
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
683
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
684
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
685
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
686
+ not provided, pooled text embeddings are generated from `prompt` input argument.
687
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
688
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
689
+ weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
690
+ argument.
691
+ image_embeds (`torch.FloatTensor`, *optional*):
692
+ Pre-generated image embeddings.
693
+ output_type (`str`, *optional*, defaults to `"pil"`):
694
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
695
+ return_dict (`bool`, *optional*, defaults to `True`):
696
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
697
+ plain tuple.
698
+ cross_attention_kwargs (`dict`, *optional*):
699
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
700
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
701
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
702
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
703
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
704
+ the corresponding scale as a list.
705
+ guess_mode (`bool`, *optional*, defaults to `False`):
706
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
707
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
708
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
709
+ The percentage of total steps at which the ControlNet starts applying.
710
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
711
+ The percentage of total steps at which the ControlNet stops applying.
712
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
713
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
714
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
715
+ explained in section 2.2 of
716
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
717
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
718
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
719
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
720
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
721
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
722
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
723
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
724
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
725
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
726
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
727
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
728
+ micro-conditioning as explained in section 2.2 of
729
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
730
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
731
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
732
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
733
+ micro-conditioning as explained in section 2.2 of
734
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
735
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
736
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
737
+ To negatively condition the generation process based on a target image resolution. It should be as same
738
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
739
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
740
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
741
+ clip_skip (`int`, *optional*):
742
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
743
+ the output of the pre-final layer will be used for computing the prompt embeddings.
744
+ callback_on_step_end (`Callable`, *optional*):
745
+ A function that calls at the end of each denoising steps during the inference. The function is called
746
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
747
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
748
+ `callback_on_step_end_tensor_inputs`.
749
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
750
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
751
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
752
+ `._callback_tensor_inputs` attribute of your pipeine class.
753
 
754
+ Examples:
 
 
 
 
 
 
755
 
756
+ Returns:
757
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
758
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
759
+ otherwise a `tuple` is returned containing the output images.
760
+ """
761
+ lpw = LongPromptWeight()
762
 
763
+ callback = kwargs.pop("callback", None)
764
+ callback_steps = kwargs.pop("callback_steps", None)
 
765
 
766
+ if callback is not None:
767
+ deprecate(
768
+ "callback",
769
+ "1.0.0",
770
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771
  )
772
+ if callback_steps is not None:
773
+ deprecate(
774
+ "callback_steps",
775
+ "1.0.0",
776
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
 
777
  )
778
+
779
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
780
+
781
+ # align format for control guidance
782
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
783
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
784
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
785
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
786
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
787
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
788
+ control_guidance_start, control_guidance_end = (
789
+ mult * [control_guidance_start],
790
+ mult * [control_guidance_end],
791
+ )
792
+
793
+ # 1. Check inputs. Raise error if not correct
794
+ self.check_inputs(
795
+ prompt,
796
+ prompt_2,
797
+ image,
798
+ callback_steps,
799
+ negative_prompt,
800
+ negative_prompt_2,
801
+ prompt_embeds,
802
+ negative_prompt_embeds,
803
+ pooled_prompt_embeds,
804
+ negative_pooled_prompt_embeds,
805
+ controlnet_conditioning_scale,
806
+ control_guidance_start,
807
+ control_guidance_end,
808
+ callback_on_step_end_tensor_inputs,
809
+ )
810
+
811
+ self._guidance_scale = guidance_scale
812
+ self._clip_skip = clip_skip
813
+ self._cross_attention_kwargs = cross_attention_kwargs
814
+
815
+ # 2. Define call parameters
816
+ if prompt is not None and isinstance(prompt, str):
817
+ batch_size = 1
818
+ elif prompt is not None and isinstance(prompt, list):
819
+ batch_size = len(prompt)
820
+ else:
821
+ batch_size = prompt_embeds.shape[0]
822
+
823
+ device = self._execution_device
824
+
825
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
826
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
827
+
828
+ global_pool_conditions = (
829
+ controlnet.config.global_pool_conditions
830
+ if isinstance(controlnet, ControlNetModel)
831
+ else controlnet.nets[0].config.global_pool_conditions
832
+ )
833
+ guess_mode = guess_mode or global_pool_conditions
834
+
835
+ # 3.1 Encode input prompt
836
+ (
837
+ prompt_embeds,
838
+ negative_prompt_embeds,
839
+ pooled_prompt_embeds,
840
+ negative_pooled_prompt_embeds,
841
+ ) = lpw.get_weighted_text_embeddings_sdxl(
842
+ pipe=self,
843
+ prompt=prompt,
844
+ neg_prompt=negative_prompt,
845
+ prompt_embeds=prompt_embeds,
846
+ negative_prompt_embeds=negative_prompt_embeds,
847
+ pooled_prompt_embeds=pooled_prompt_embeds,
848
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
849
+ )
850
+
851
+ # 3.2 Encode image prompt
852
+ prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
853
+ device,
854
+ self.unet.dtype,
855
+ self.do_classifier_free_guidance)
856
+
857
+ # 4. Prepare image
858
+ if isinstance(controlnet, ControlNetModel):
859
+ image = self.prepare_image(
860
+ image=image,
861
+ width=width,
862
+ height=height,
863
+ batch_size=batch_size * num_images_per_prompt,
864
+ num_images_per_prompt=num_images_per_prompt,
865
+ device=device,
866
+ dtype=controlnet.dtype,
867
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
868
+ guess_mode=guess_mode,
869
+ )
870
+ height, width = image.shape[-2:]
871
+ elif isinstance(controlnet, MultiControlNetModel):
872
+ images = []
873
+
874
+ for image_ in image:
875
+ image_ = self.prepare_image(
876
+ image=image_,
877
+ width=width,
878
+ height=height,
879
+ batch_size=batch_size * num_images_per_prompt,
880
+ num_images_per_prompt=num_images_per_prompt,
881
+ device=device,
882
+ dtype=controlnet.dtype,
883
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
884
+ guess_mode=guess_mode,
885
  )
886
+
887
+ images.append(image_)
888
+
889
+ image = images
890
+ height, width = image[0].shape[-2:]
891
+ else:
892
+ assert False
893
+
894
+ # 4.1 Region control
895
+ if control_mask is not None:
896
+ mask_weight_image = control_mask
897
+ mask_weight_image = np.array(mask_weight_image)
898
+ mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
899
+ mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
900
+ mask_weight_image_tensor = mask_weight_image_tensor[None, None]
901
+ h, w = mask_weight_image_tensor.shape[-2:]
902
+ control_mask_wight_image_list = []
903
+ for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
904
+ scale_mask_weight_image_tensor = F.interpolate(
905
+ mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
906
+ control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
907
+ region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
908
+ region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
909
+ else:
910
+ control_mask_wight_image_list = None
911
+ region_control.prompt_image_conditioning = [dict(region_mask=None)]
912
+
913
+ # 5. Prepare timesteps
914
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
915
+ timesteps = self.scheduler.timesteps
916
+ self._num_timesteps = len(timesteps)
917
+
918
+ # 6. Prepare latent variables
919
+ num_channels_latents = self.unet.config.in_channels
920
+ latents = self.prepare_latents(
921
+ batch_size * num_images_per_prompt,
922
+ num_channels_latents,
923
+ height,
924
+ width,
925
+ prompt_embeds.dtype,
926
+ device,
927
+ generator,
928
+ latents,
929
  )
 
 
 
 
 
 
 
 
 
 
930
 
931
+ # 6.5 Optionally get Guidance Scale Embedding
932
+ timestep_cond = None
933
+ if self.unet.config.time_cond_proj_dim is not None:
934
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
935
+ timestep_cond = self.get_guidance_scale_embedding(
936
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
937
+ ).to(device=device, dtype=latents.dtype)
938
+
939
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
940
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
941
+
942
+ # 7.1 Create tensor stating which controlnets to keep
943
+ controlnet_keep = []
944
+ for i in range(len(timesteps)):
945
+ keeps = [
946
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
947
+ for s, e in zip(control_guidance_start, control_guidance_end)
948
+ ]
949
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
950
+
951
+ # 7.2 Prepare added time ids & embeddings
952
+ if isinstance(image, list):
953
+ original_size = original_size or image[0].shape[-2:]
954
+ else:
955
+ original_size = original_size or image.shape[-2:]
956
+ target_size = target_size or (height, width)
957
+
958
+ add_text_embeds = pooled_prompt_embeds
959
+ if self.text_encoder_2 is None:
960
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
961
+ else:
962
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
963
+
964
+ add_time_ids = self._get_add_time_ids(
965
+ original_size,
966
+ crops_coords_top_left,
967
+ target_size,
968
+ dtype=prompt_embeds.dtype,
969
+ text_encoder_projection_dim=text_encoder_projection_dim,
970
+ )
971
+
972
+ if negative_original_size is not None and negative_target_size is not None:
973
+ negative_add_time_ids = self._get_add_time_ids(
974
+ negative_original_size,
975
+ negative_crops_coords_top_left,
976
+ negative_target_size,
977
+ dtype=prompt_embeds.dtype,
978
+ text_encoder_projection_dim=text_encoder_projection_dim,
979
+ )
980
+ else:
981
+ negative_add_time_ids = add_time_ids
982
+
983
+ if self.do_classifier_free_guidance:
984
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
985
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
986
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
987
+
988
+ prompt_embeds = prompt_embeds.to(device)
989
+ add_text_embeds = add_text_embeds.to(device)
990
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
991
+ encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
992
+
993
+ # 8. Denoising loop
994
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
995
+ is_unet_compiled = is_compiled_module(self.unet)
996
+ is_controlnet_compiled = is_compiled_module(self.controlnet)
997
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
998
+
999
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1000
+ for i, t in enumerate(timesteps):
1001
+ # Relevant thread:
1002
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1003
+ if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1004
+ torch._inductor.cudagraph_mark_step_begin()
1005
+ # expand the latents if we are doing classifier free guidance
1006
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1007
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1008
+
1009
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1010
+
1011
+ # controlnet(s) inference
1012
+ if guess_mode and self.do_classifier_free_guidance:
1013
+ # Infer ControlNet only for the conditional batch.
1014
+ control_model_input = latents
1015
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1016
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1017
+ controlnet_added_cond_kwargs = {
1018
+ "text_embeds": add_text_embeds.chunk(2)[1],
1019
+ "time_ids": add_time_ids.chunk(2)[1],
1020
+ }
1021
+ else:
1022
+ control_model_input = latent_model_input
1023
+ controlnet_prompt_embeds = prompt_embeds
1024
+ controlnet_added_cond_kwargs = added_cond_kwargs
1025
+
1026
+ if isinstance(controlnet_keep[i], list):
1027
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1028
+ else:
1029
+ controlnet_cond_scale = controlnet_conditioning_scale
1030
+ if isinstance(controlnet_cond_scale, list):
1031
+ controlnet_cond_scale = controlnet_cond_scale[0]
1032
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1033
+
1034
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1035
+ control_model_input,
1036
+ t,
1037
+ encoder_hidden_states=prompt_image_emb,
1038
+ controlnet_cond=image,
1039
+ conditioning_scale=cond_scale,
1040
+ guess_mode=guess_mode,
1041
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1042
+ return_dict=False,
1043
+ )
1044
+
1045
+ # controlnet mask
1046
+ if control_mask_wight_image_list is not None:
1047
+ down_block_res_samples = [
1048
+ down_block_res_sample * mask_weight
1049
+ for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
1050
+ ]
1051
+ mid_block_res_sample *= control_mask_wight_image_list[-1]
1052
+
1053
+ if guess_mode and self.do_classifier_free_guidance:
1054
+ # Infered ControlNet only for the conditional batch.
1055
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1056
+ # add 0 to the unconditional batch to keep it unchanged.
1057
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1058
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1059
+
1060
+ # predict the noise residual
1061
+ noise_pred = self.unet(
1062
+ latent_model_input,
1063
+ t,
1064
+ encoder_hidden_states=encoder_hidden_states,
1065
+ timestep_cond=timestep_cond,
1066
+ cross_attention_kwargs=self.cross_attention_kwargs,
1067
+ down_block_additional_residuals=down_block_res_samples,
1068
+ mid_block_additional_residual=mid_block_res_sample,
1069
+ added_cond_kwargs=added_cond_kwargs,
1070
+ return_dict=False,
1071
+ )[0]
1072
+
1073
+ # perform guidance
1074
+ if self.do_classifier_free_guidance:
1075
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1076
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1077
+
1078
+ # compute the previous noisy sample x_t -> x_t-1
1079
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1080
+
1081
+ if callback_on_step_end is not None:
1082
+ callback_kwargs = {}
1083
+ for k in callback_on_step_end_tensor_inputs:
1084
+ callback_kwargs[k] = locals()[k]
1085
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1086
+
1087
+ latents = callback_outputs.pop("latents", latents)
1088
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1089
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1090
+
1091
+ # call the callback, if provided
1092
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1093
+ progress_bar.update()
1094
+ if callback is not None and i % callback_steps == 0:
1095
+ step_idx = i // getattr(self.scheduler, "order", 1)
1096
+ callback(step_idx, t, latents)
1097
+
1098
+ if not output_type == "latent":
1099
+ # make sure the VAE is in float32 mode, as it overflows in float16
1100
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1101
+ if needs_upcasting:
1102
+ self.upcast_vae()
1103
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1104
+
1105
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1106
+
1107
+ # cast back to fp16 if needed
1108
+ if needs_upcasting:
1109
+ self.vae.to(dtype=torch.float16)
1110
+ else:
1111
+ image = latents
1112
+
1113
+ if not output_type == "latent":
1114
+ # apply watermark if available
1115
+ if self.watermark is not None:
1116
+ image = self.watermark.apply_watermark(image)
1117
+
1118
+ image = self.image_processor.postprocess(image, output_type=output_type)
1119
+
1120
+ # Offload all models
1121
+ self.maybe_free_model_hooks()
1122
+
1123
+ if not return_dict:
1124
+ return (image,)
1125
+
1126
+ return StableDiffusionXLPipelineOutput(images=image)