ugaray96's picture
Updates landing page with latest changes
c397816 verified
raw
history blame
3.44 kB
import streamlit as st
from streamlit_option_menu import option_menu
from core.search_index import index, search
from interface.components import (
component_file_input,
component_show_pipeline,
component_show_search_result,
component_text_input,
component_article_url,
)
def page_landing_page(container):
with container:
st.header("Neural Search V2.1")
st.markdown(
"This is a tool to allow indexing & search content using neural capabilities"
)
st.markdown(
"It uses the [Haystack](https://haystack.deepset.ai/overview/intro) open-source framework for building search systems"
)
st.markdown(
"In this second version you can:"
"\n - Index raw text, URLs, CSVs, PDFs, Images and even audio!"
"\n - Use Dense Passage Retrieval, Keyword Search pipeline and DPR Ranker pipelines"
"\n - Search the indexed documents"
"\n - Read your responses out loud using the `audio_output` option!"
)
st.markdown(
"TODO list:"
"\n - File type classification and converter nodes"
"\n - Build other pipelines"
)
st.markdown(
"Follow development of the tool [here](https://github.com/ugm2/neural-search-demo)"
"\n\nDeveloped with πŸ’š by [@ugm2](https://github.com/ugm2)"
)
def page_search(container):
with container:
st.title("Query me!")
## SEARCH ##
query = st.text_input("Query")
component_show_pipeline(st.session_state["pipeline"], "search_pipeline")
if st.button("Search"):
with st.spinner("Searching..."):
st.session_state["search_results"] = search(
queries=[query],
pipeline=st.session_state["pipeline"]["search_pipeline"],
)
if st.session_state["search_results"] is not None:
component_show_search_result(
container=container, results=st.session_state["search_results"][0]
)
def page_index(container):
with container:
st.title("Index time!")
component_show_pipeline(st.session_state["pipeline"], "index_pipeline")
input_funcs = {
"Raw Text": (component_text_input, "card-text"),
"URL": (component_article_url, "link"),
"File": (component_file_input, "file-text"),
}
selected_input = option_menu(
None,
list(input_funcs.keys()),
icons=[f[1] for f in input_funcs.values()],
menu_icon="list",
default_index=0,
orientation="horizontal",
)
clear_index = st.sidebar.checkbox("Clear Index", True)
doc_id = st.session_state["doc_id"]
corpus, doc_id = input_funcs[selected_input][0](container, doc_id)
if len(corpus) > 0:
index_results = None
if st.button("Index"):
with st.spinner("Indexing..."):
index_results = index(
documents=corpus,
pipeline=st.session_state["pipeline"]["index_pipeline"],
clear_index=clear_index,
)
st.session_state["doc_id"] = doc_id
st.success(f"{len(index_results)} documents indexed successfully!")