import streamlit as st from interface.utils import get_pipelines, extract_text_from_url, extract_text_from_file from interface.draw_pipelines import get_pipeline_graph def component_select_pipeline(container): pipeline_names, pipeline_funcs = get_pipelines() with container: selected_pipeline = st.selectbox( "Select pipeline", pipeline_names, index=pipeline_names.index("Keyword Search") if "Keyword Search" in pipeline_names else 0, ) if ( st.session_state["pipeline"] is None or st.session_state["pipeline"]["name"] != selected_pipeline ): ( search_pipeline, index_pipeline, ) = pipeline_funcs[pipeline_names.index(selected_pipeline)]() st.session_state["pipeline"] = { "name": selected_pipeline, "search_pipeline": search_pipeline, "index_pipeline": index_pipeline, } def component_show_pipeline(pipeline): """Draw the pipeline""" with st.expander("Show pipeline"): fig = get_pipeline_graph(pipeline) st.plotly_chart(fig, use_container_width=True) def component_show_search_result(container, results): with container: for idx, document in enumerate(results): st.markdown(f"### Match {idx+1}") st.markdown(f"**Text**: {document['text']}") st.markdown(f"**Document**: {document['id']}") if document["score"] is not None: st.markdown(f"**Score**: {document['score']:.3f}") st.markdown("---") def component_text_input(container): """Draw the Text Input widget""" with container: texts = [] doc_id = 1 with st.expander("Enter documents"): while True: text = st.text_input(f"Document {doc_id}", key=doc_id) if text != "": texts.append({"text": text}) doc_id += 1 st.markdown("---") else: break corpus = [ {"text": doc["text"], "id": doc_id} for doc_id, doc in enumerate(texts) ] return corpus def component_article_url(container): """Draw the Article URL widget""" with container: urls = [] doc_id = 1 with st.expander("Enter URLs"): while True: url = st.text_input(f"URL {doc_id}", key=doc_id) if url != "": urls.append({"text": extract_text_from_url(url)}) doc_id += 1 st.markdown("---") else: break corpus = [ {"text": doc["text"], "id": doc_id} for doc_id, doc in enumerate(urls) ] return corpus def component_file_input(container): """Draw the extract text from file widget""" with container: files = [] doc_id = 1 with st.expander("Enter Files"): while True: file = st.file_uploader("Upload a .txt, .pdf, .csv file", key=doc_id) if file != None: extracted_text = extract_text_from_file(file) if extracted_text != None: files.append({"text": extracted_text}) doc_id += 1 st.markdown("---") else: break else: break corpus = [ {"text": doc["text"], "id": doc_id} for doc_id, doc in enumerate(files) ] return corpus