import gradio as gr import torch from transformers import BertForSequenceClassification, BertTokenizer # load model tokenizer = BertTokenizer.from_pretrained("uget/sexual_content_dection") model = BertForSequenceClassification.from_pretrained("uget/sexual_content_dection") def predict(text): encoding = tokenizer(text, return_tensors="pt") encoding = {k: v.to(model.device) for k,v in encoding.items()} outputs = model(**encoding) probs = torch.sigmoid(outputs.logits) predictions = torch.argmax(probs, dim=-1) label_map = {0: "None", 1: "Sexual"} predicted_label = label_map[predictions.item()] print(f"Predictions:{predictions.item()}, Label:{predicted_label}") return {"predictions": predictions.item(), "label": predicted_label} demo = gr.Interface(fn=predict, inputs="text", outputs="text", examples=[["Tiffany Doll - Wine Makes Me Anal (31.03.2018)_1080p.mp4","{'predictions': 1, 'label': 'Sexual'}"], ["DVAJ-548_CH_SD","{'predictions': 1, 'label': 'Sexual'}"], ["MILK-217-UNCENSORED-LEAKピタコス Gカップ痴女 完全着衣で濃密5PLAY 椿りか 580 2.TS","{'predictions': 1, 'label': 'Sexual'}"],], title="Sexual Content Detection", description="Detects sexual content in text, Buy me a cup of coffee.", ) demo.launch(share=True)