uhygfd commited on
Commit
9ceca41
1 Parent(s): 9bc5eb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -20
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import gradio as gr
2
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
  import random
4
- from flask import Flask, request, jsonify
5
 
6
  # Загрузка модели и токенизатора
7
- model_name = "ai-forever/rugpt3small_based_on_gpt2"
8
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
9
  model = GPT2LMHeadModel.from_pretrained(model_name)
10
 
@@ -14,14 +13,14 @@ with open("dialogues.txt", "r", encoding="utf-8") as file:
14
 
15
  # Функция генерации ответа
16
  def generate(prompt, _=None):
17
- user_input = f"[USER]: {prompt}"
18
  inputs = tokenizer.encode(prompt, return_tensors="pt")
19
  outputs = model.generate(inputs, max_length=50, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
20
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
 
22
  # Прекращаем генерацию на строке [USER]
23
- if "[USER]" in response:
24
- response = response.split("[USER]")[0]
25
 
26
  bot_message = f"[BOT]: {random.choice(random_phrases)}, {response.strip()}"
27
  return bot_message
@@ -40,20 +39,5 @@ demo = gr.ChatInterface(
40
  undo_btn=None
41
  )
42
 
43
- # Flask приложение
44
- app = Flask(__name__)
45
-
46
- @app.route("/generate", methods=["POST"])
47
- def generate_api():
48
- data = request.json
49
- if "prompt" not in data:
50
- return jsonify({"error": "На что я должен отвечать, гений?"}), 400
51
-
52
- prompt = data["prompt"]
53
- response = generate(prompt)
54
- return jsonify({"response": response})
55
-
56
- # Запуск Gradio и Flask приложений
57
  if __name__ == "__main__":
58
  demo.launch(share=True)
59
- app.run(host="0.0.0.0", port=5000)
 
1
  import gradio as gr
2
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
  import random
 
4
 
5
  # Загрузка модели и токенизатора
6
+ model_name = "ai-forever/rugpt3large_based_on_gpt2"
7
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
  model = GPT2LMHeadModel.from_pretrained(model_name)
9
 
 
13
 
14
  # Функция генерации ответа
15
  def generate(prompt, _=None):
16
+ user_input = f"[USER]: {prompt}\n[BOT]: {random.choice(random_phrases)},"
17
  inputs = tokenizer.encode(prompt, return_tensors="pt")
18
  outputs = model.generate(inputs, max_length=50, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
19
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
 
21
  # Прекращаем генерацию на строке [USER]
22
+ if "[" in response:
23
+ response = response.split("[")[0]
24
 
25
  bot_message = f"[BOT]: {random.choice(random_phrases)}, {response.strip()}"
26
  return bot_message
 
39
  undo_btn=None
40
  )
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  if __name__ == "__main__":
43
  demo.launch(share=True)