from langchain_community.vectorstores.pgvector import PGVector import os # try: # CONNECTION_STRING = PGVector.connection_string_from_db_params( # driver="psycopg2", # host=os.getenv("POSTGRES_HOST"), # port=int(os.getenv("POSTGRES_PORT", 5432)), # database=os.getenv("POSTGRES_DB"), # user=os.getenv("POSTGRES_USER"), # password=os.getenv("POSTGRES_PASSWORD"), # ) # print("Successfully established the connection") # except Exception as e: # print("Error in establishing the connection with DB: {e}") print("Entered here") from dotenv import load_dotenv load_dotenv() from langchain_google_genai import GoogleGenerativeAIEmbeddings embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") from sqlalchemy import create_engine from langchain_postgres.vectorstores import PGVector from langchain_core.documents import Document document_1 = Document(page_content="fddsdfoo", metadata={"baz": "bar"}) document_2 = Document(page_content="thufeed", metadata={"bar": "baz"}) document_3 = Document(page_content="i wefsill be deleted :(") documents = [document_1, document_2, document_3] ids = ["1", "2", "3"] engine = create_engine(os.environ['CONNECTION_STRING']) vector_store = PGVector.from_documents( documents=documents, embedding=embeddings, connection=os.environ['CONNECTION_STRING'], collection_name="collection_name", use_jsonb=True, ) # vector_store.add_documents(documents=documents, ids=ids) print("Stored babe")