ujan2003's picture
Update app.py
160f6b8 verified
raw
history blame
3.16 kB
from flask import Flask, request, jsonify
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
import os
import logging
from werkzeug.utils import secure_filename
# Initialize Flask app
app = Flask(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Set up uploads folder
UPLOAD_FOLDER = "uploads"
if not os.path.exists(UPLOAD_FOLDER):
try:
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.chmod(UPLOAD_FOLDER, 0o755) # Set proper permissions
except Exception as e:
logging.error(f"❌ Error creating uploads directory: {e}")
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
# Allowed file types
ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"}
def allowed_file(filename):
"""Check if file has an allowed extension."""
return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS
# Load trained model
try:
model = tf.keras.models.load_model("trained.h5")
logging.info("βœ… Model loaded successfully.")
except Exception as e:
logging.error(f"❌ Error loading model: {e}")
model = None
def preprocess_image(img_path):
"""Preprocesses the image for model prediction."""
try:
img = image.load_img(img_path, target_size=(150, 150)) # Resize to model input size
img_array = image.img_to_array(img) / 255.0 # Normalize
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
except Exception as e:
logging.error(f"❌ Error in image preprocessing: {e}")
return None
@app.route("/predict", methods=["POST"])
def predict():
"""Handles image upload and model prediction."""
if model is None:
return jsonify({"error": "Model not loaded. Check server logs for details."}), 500
if "file" not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files["file"]
if file.filename == "":
return jsonify({"error": "No selected file"}), 400
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file_path = os.path.join(app.config["UPLOAD_FOLDER"], filename)
file.save(file_path)
img_array = preprocess_image(file_path)
if img_array is None:
os.remove(file_path)
return jsonify({"error": "Invalid image format"}), 400
try:
prediction = model.predict(img_array)[0][0]
except Exception as e:
os.remove(file_path)
logging.error(f"❌ Prediction Error: {e}")
return jsonify({"error": "Error making prediction"}), 500
os.remove(file_path) # Cleanup
result = "Pneumonia Detected" if prediction > 0.5 else "No Pneumonia"
confidence = float(prediction) if prediction > 0.5 else 1 - float(prediction)
return jsonify({"result": result, "confidence": round(confidence * 100, 2)})
return jsonify({"error": "Invalid file format"}), 400
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True, threaded=True)