File size: 23,719 Bytes
b20c0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# from ultralytics import YOLO
import os
import io
import base64
import time
from PIL import Image, ImageDraw, ImageFont
import json
import requests
# utility function
import os
from openai import AzureOpenAI

import json
import sys
import os
import cv2
import numpy as np
# %matplotlib inline
from matplotlib import pyplot as plt
import easyocr
from paddleocr import PaddleOCR
reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
    lang='en',  # other lang also available
    use_angle_cls=False,
    use_gpu=False,  # using cuda will conflict with pytorch in the same process
    show_log=False,
    max_batch_size=1024,
    use_dilation=True,  # improves accuracy
    det_db_score_mode='slow',  # improves accuracy
    rec_batch_num=1024)
import time
import base64

import os
import ast
import torch
from typing import Tuple, List, Union
from torchvision.ops import box_convert
import re
from torchvision.transforms import ToPILImage
import supervision as sv
import torchvision.transforms as T
from util.box_annotator import BoxAnnotator 


def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
    if not device:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    if model_name == "blip2":
        from transformers import Blip2Processor, Blip2ForConditionalGeneration
        processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
        if device == 'cpu':
            model = Blip2ForConditionalGeneration.from_pretrained(
            model_name_or_path, device_map=None, torch_dtype=torch.float32
        ) 
        else:
            model = Blip2ForConditionalGeneration.from_pretrained(
            model_name_or_path, device_map=None, torch_dtype=torch.float16
        ).to(device)
    elif model_name == "florence2":
        from transformers import AutoProcessor, AutoModelForCausalLM 
        processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
        if device == 'cpu':
            model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
        else:
            model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
    return {'model': model.to(device), 'processor': processor}


def get_yolo_model(model_path):
    from ultralytics import YOLO
    # Load the model.
    model = YOLO(model_path)
    return model


@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=None):
    # Number of samples per batch, --> 256 roughly takes 23 GB of GPU memory for florence model
    to_pil = ToPILImage()
    if starting_idx:
        non_ocr_boxes = filtered_boxes[starting_idx:]
    else:
        non_ocr_boxes = filtered_boxes
    croped_pil_image = []
    for i, coord in enumerate(non_ocr_boxes):
        try:
            xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
            ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
            cropped_image = image_source[ymin:ymax, xmin:xmax, :]
            cropped_image = cv2.resize(cropped_image, (64, 64))
            croped_pil_image.append(to_pil(cropped_image))
        except:
            continue

    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    if not prompt:
        if 'florence' in model.config.name_or_path:
            prompt = "<CAPTION>"
        else:
            prompt = "The image shows"
    
    generated_texts = []
    device = model.device
    # batch_size = 64
    for i in range(0, len(croped_pil_image), batch_size):
        start = time.time()
        batch = croped_pil_image[i:i+batch_size]
        t1 = time.time()
        if model.device.type == 'cuda':
            inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16)
        else:
            inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
        if 'florence' in model.config.name_or_path:
            generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=20,num_beams=1, do_sample=False)
        else:
            generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
        generated_text = [gen.strip() for gen in generated_text]
        generated_texts.extend(generated_text)
    
    return generated_texts



def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
    to_pil = ToPILImage()
    if ocr_bbox:
        non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
    else:
        non_ocr_boxes = filtered_boxes
    croped_pil_image = []
    for i, coord in enumerate(non_ocr_boxes):
        xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
        ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
        cropped_image = image_source[ymin:ymax, xmin:xmax, :]
        croped_pil_image.append(to_pil(cropped_image))

    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    device = model.device
    messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] 
    prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    batch_size = 5  # Number of samples per batch
    generated_texts = []

    for i in range(0, len(croped_pil_image), batch_size):
        images = croped_pil_image[i:i+batch_size]
        image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
        inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
        texts = [prompt] * len(images)
        for i, txt in enumerate(texts):
            input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
            inputs['input_ids'].append(input['input_ids'])
            inputs['attention_mask'].append(input['attention_mask'])
            inputs['pixel_values'].append(input['pixel_values'])
            inputs['image_sizes'].append(input['image_sizes'])
        max_len = max([x.shape[1] for x in inputs['input_ids']])
        for i, v in enumerate(inputs['input_ids']):
            inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
            inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
        inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}

        generation_args = { 
            "max_new_tokens": 25, 
            "temperature": 0.01, 
            "do_sample": False, 
        } 
        generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) 
        # # remove input tokens 
        generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
        response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        response = [res.strip('\n').strip() for res in response]
        generated_texts.extend(response)

    return generated_texts

def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
    assert ocr_bbox is None or isinstance(ocr_bbox, List)

    def box_area(box):
        return (box[2] - box[0]) * (box[3] - box[1])

    def intersection_area(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        return max(0, x2 - x1) * max(0, y2 - y1)

    def IoU(box1, box2):
        intersection = intersection_area(box1, box2)
        union = box_area(box1) + box_area(box2) - intersection + 1e-6
        if box_area(box1) > 0 and box_area(box2) > 0:
            ratio1 = intersection / box_area(box1)
            ratio2 = intersection / box_area(box2)
        else:
            ratio1, ratio2 = 0, 0
        return max(intersection / union, ratio1, ratio2)

    def is_inside(box1, box2):
        # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
        intersection = intersection_area(box1, box2)
        ratio1 = intersection / box_area(box1)
        return ratio1 > 0.95

    boxes = boxes.tolist()
    filtered_boxes = []
    if ocr_bbox:
        filtered_boxes.extend(ocr_bbox)
    # print('ocr_bbox!!!', ocr_bbox)
    for i, box1 in enumerate(boxes):
        # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
        is_valid_box = True
        for j, box2 in enumerate(boxes):
            # keep the smaller box
            if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
                is_valid_box = False
                break
        if is_valid_box:
            # add the following 2 lines to include ocr bbox
            if ocr_bbox:
                # only add the box if it does not overlap with any ocr bbox
                if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
                    filtered_boxes.append(box1)
            else:
                filtered_boxes.append(box1)
    return torch.tensor(filtered_boxes)


def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
    '''
    ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...]
    boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...]

    '''
    assert ocr_bbox is None or isinstance(ocr_bbox, List)

    def box_area(box):
        return (box[2] - box[0]) * (box[3] - box[1])

    def intersection_area(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        return max(0, x2 - x1) * max(0, y2 - y1)

    def IoU(box1, box2):
        intersection = intersection_area(box1, box2)
        union = box_area(box1) + box_area(box2) - intersection + 1e-6
        if box_area(box1) > 0 and box_area(box2) > 0:
            ratio1 = intersection / box_area(box1)
            ratio2 = intersection / box_area(box2)
        else:
            ratio1, ratio2 = 0, 0
        return max(intersection / union, ratio1, ratio2)

    def is_inside(box1, box2):
        # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
        intersection = intersection_area(box1, box2)
        ratio1 = intersection / box_area(box1)
        return ratio1 > 0.80

    # boxes = boxes.tolist()
    filtered_boxes = []
    if ocr_bbox:
        filtered_boxes.extend(ocr_bbox)
    # print('ocr_bbox!!!', ocr_bbox)
    for i, box1_elem in enumerate(boxes):
        box1 = box1_elem['bbox']
        is_valid_box = True
        for j, box2_elem in enumerate(boxes):
            # keep the smaller box
            box2 = box2_elem['bbox']
            if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
                is_valid_box = False
                break
        if is_valid_box:
            if ocr_bbox:
                # keep yolo boxes + prioritize ocr label
                box_added = False
                ocr_labels = ''
                for box3_elem in ocr_bbox:
                    if not box_added:
                        box3 = box3_elem['bbox']
                        if is_inside(box3, box1): # ocr inside icon
                            # box_added = True
                            # delete the box3_elem from ocr_bbox
                            try:
                                # gather all ocr labels
                                ocr_labels += box3_elem['content'] + ' '
                                filtered_boxes.remove(box3_elem)
                            except:
                                continue
                            # break
                        elif is_inside(box1, box3): # icon inside ocr, don't added this icon box, no need to check other ocr bbox bc no overlap between ocr bbox, icon can only be in one ocr box
                            box_added = True
                            break
                        else:
                            continue
                if not box_added:
                    if ocr_labels:
                        filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels,})
                    else:
                        filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, })
            else:
                filtered_boxes.append(box1)
    return filtered_boxes # torch.tensor(filtered_boxes)


def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_source = Image.open(image_path).convert("RGB")
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image, image_transformed


def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, 
             text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
    """    
    This function annotates an image with bounding boxes and labels.

    Parameters:
    image_source (np.ndarray): The source image to be annotated.
    boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
    logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
    phrases (List[str]): A list of labels for each bounding box.
    text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web

    Returns:
    np.ndarray: The annotated image.
    """
    h, w, _ = image_source.shape
    boxes = boxes * torch.Tensor([w, h, w, h])
    xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
    xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
    detections = sv.Detections(xyxy=xyxy)

    labels = [f"{phrase}" for phrase in range(boxes.shape[0])]

    box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
    annotated_frame = image_source.copy()
    annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))

    label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
    return annotated_frame, label_coordinates


def predict(model, image, caption, box_threshold, text_threshold):
    """ Use huggingface model to replace the original model
    """
    model, processor = model['model'], model['processor']
    device = model.device

    inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**inputs)

    results = processor.post_process_grounded_object_detection(
        outputs,
        inputs.input_ids,
        box_threshold=box_threshold, # 0.4,
        text_threshold=text_threshold, # 0.3,
        target_sizes=[image.size[::-1]]
    )[0]
    boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
    return boxes, logits, phrases


def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7):
    """ Use huggingface model to replace the original model
    """
    # model = model['model']
    if scale_img:
        result = model.predict(
        source=image,
        conf=box_threshold,
        imgsz=imgsz,
        iou=iou_threshold, # default 0.7
        )
    else:
        result = model.predict(
        source=image,
        conf=box_threshold,
        iou=iou_threshold, # default 0.7
        )
    boxes = result[0].boxes.xyxy#.tolist() # in pixel space
    conf = result[0].boxes.conf
    phrases = [str(i) for i in range(len(boxes))]

    return boxes, conf, phrases

def int_box_area(box, w, h):
    x1, y1, x2, y2 = box
    int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)]
    area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1])
    return area

def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=64):
    """Process either an image path or Image object
    
    Args:
        image_source: Either a file path (str) or PIL Image object
        ...
    """
    if isinstance(image_source, str):
        image_source = Image.open(image_source).convert("RGB")
    
    w, h = image_source.size
    if not imgsz:
        imgsz = (h, w)
    # print('image size:', w, h)
    xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
    xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
    image_source = np.asarray(image_source)
    phrases = [str(i) for i in range(len(phrases))]

    # annotate the image with labels
    if ocr_bbox:
        ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
        ocr_bbox=ocr_bbox.tolist()
    else:
        print('no ocr bbox!!!')
        ocr_bbox = None

    ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt,} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0] 
    xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
    filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
    
    # sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
    filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
    # get the index of the first 'content': None
    starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
    filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
    print('len(filtered_boxes):', len(filtered_boxes), starting_idx)

    # get parsed icon local semantics
    time1 = time.time()
    if use_local_semantics:
        caption_model = caption_model_processor['model']
        if 'phi3_v' in caption_model.config.model_type: 
            parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
        else:
            parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        icon_start = len(ocr_text)
        parsed_content_icon_ls = []
        # fill the filtered_boxes_elem None content with parsed_content_icon in order
        for i, box in enumerate(filtered_boxes_elem):
            if box['content'] is None:
                box['content'] = parsed_content_icon.pop(0)
        for i, txt in enumerate(parsed_content_icon):
            parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
        parsed_content_merged = ocr_text + parsed_content_icon_ls
    else:
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        parsed_content_merged = ocr_text
    print('time to get parsed content:', time.time()-time1)

    filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")

    phrases = [i for i in range(len(filtered_boxes))]
    
    # draw boxes
    if draw_bbox_config:
        annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
    else:
        annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
    
    pil_img = Image.fromarray(annotated_frame)
    buffered = io.BytesIO()
    pil_img.save(buffered, format="PNG")
    encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
    if output_coord_in_ratio:
        label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
        assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]

    return encoded_image, label_coordinates, filtered_boxes_elem


def get_xywh(input):
    x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
    x, y, w, h = int(x), int(y), int(w), int(h)
    return x, y, w, h

def get_xyxy(input):
    x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
    x, y, xp, yp = int(x), int(y), int(xp), int(yp)
    return x, y, xp, yp

def get_xywh_yolo(input):
    x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
    x, y, w, h = int(x), int(y), int(w), int(h)
    return x, y, w, h

def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
    if isinstance(image_source, str):
        image_source = Image.open(image_source)
    if image_source.mode == 'RGBA':
        # Convert RGBA to RGB to avoid alpha channel issues
        image_source = image_source.convert('RGB')
    image_np = np.array(image_source)
    w, h = image_source.size
    if use_paddleocr:
        if easyocr_args is None:
            text_threshold = 0.5
        else:
            text_threshold = easyocr_args['text_threshold']
        result = paddle_ocr.ocr(image_np, cls=False)[0]
        coord = [item[0] for item in result if item[1][1] > text_threshold]
        text = [item[1][0] for item in result if item[1][1] > text_threshold]
    else:  # EasyOCR
        if easyocr_args is None:
            easyocr_args = {}
        result = reader.readtext(image_np, **easyocr_args)
        coord = [item[0] for item in result]
        text = [item[1] for item in result]
    if display_img:
        opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
        bb = []
        for item in coord:
            x, y, a, b = get_xywh(item)
            bb.append((x, y, a, b))
            cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
        #  matplotlib expects RGB
        plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB))
    else:
        if output_bb_format == 'xywh':
            bb = [get_xywh(item) for item in coord]
        elif output_bb_format == 'xyxy':
            bb = [get_xyxy(item) for item in coord]
    return (text, bb), goal_filtering