Spaces:
Running
Running
File size: 25,756 Bytes
52d2ab4 d8b930e 52d2ab4 d8b930e 52d2ab4 8f30f7e 52d2ab4 1f02b53 52d2ab4 1f02b53 52d2ab4 1f02b53 52d2ab4 e0e609c 52d2ab4 e0e609c 52d2ab4 e0e609c 52d2ab4 e0e609c 52d2ab4 e0e609c 52d2ab4 e0e609c 52d2ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
import os
import numpy as np
import openai
import faiss
from transformers import BertTokenizer, BertModel
import torch
import json
import time
import warnings
import copy
import pickle
import random
import torch.nn.functional as F
seed_value = 42
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
warnings.filterwarnings("ignore")
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
KEY = os.environ['API_KEY']
openai.api_base = 'https://api.together.xyz'
llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = BertTokenizer.from_pretrained('facebook/contriever')
model = BertModel.from_pretrained('facebook/contriever').to(torch.device("cpu"))
import datetime
import json
import arxiv
def summarize_research_direction(papers):
prompt_qa = (
"Based on the list of the researcher's papers from different periods, please write a comprehensive first person persona. Focus more on recent papers. Be concise and clear (around 300 words)."
"Here are the papers from different periods: {papers}"
)
openai.api_key = KEY
input = {}
input['papers'] = papers
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed = 42, top_p=0)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed = 42, top_p=0)
content = completion.choices[0].message["content"]
return content
def get_authors(authors, first_author = False):
output = str()
if first_author == False:
output = ", ".join(str(author) for author in authors)
else:
output = authors[0]
return output
def sort_papers(papers):
output = dict()
keys = list(papers.keys())
keys.sort(reverse=True)
for key in keys:
output[key] = papers[key]
return output
def get_daily_papers(topic,query="slam", max_results=300):
"""
@param topic: str
@param query: str
@return paper_with_code: dict
"""
# output
content = dict()
Info = dict()
search_engine = arxiv.Search(
query = query,
max_results = max_results,
sort_by = arxiv.SortCriterion.SubmittedDate
)
newest_day = None
# cnt = 0
for result in search_engine.results():
# paper_id = result.get_short_id()
paper_title = result.title
paper_url = result.entry_id
# paper_abstract = result.summary
paper_abstract = result.summary.replace("\n"," ")
publish_time = result.published.date()
if newest_day is not None and not(newest_day == publish_time):
break
elif newest_day is None:
newest_day = publish_time
if publish_time in content:
content[publish_time]['abstract'].append(paper_title+ ": "+paper_abstract)
content[publish_time]['info'].append(paper_title+": "+paper_url)
# Info[publish_time].append(paper_title+": "+paper_url)
else:
content[publish_time] = {}
content[publish_time]['abstract'] = [paper_title+ ": "+paper_abstract]
content[publish_time]['info'] = [paper_title+": "+paper_url]
# cnt = cnt + 1
# content[publish_time] = [paper_abstract]
# Info[publish_time] =
# print(publish_time)
# content[paper_key] = f"|**{publish_time}**|**{paper_title}**|{paper_first_author} et.al.|[{paper_id}]({paper_url})|\n"
data = content
# print(cnt)
return data, newest_day
def papertitleAndLink(dataset):
formatted_papers = []
i = 0
# import pdb
# pdb.set_trace()
for title in dataset:
# import pdb
# pdb.set_trace()
i = i +1
formatted_papers.append("[%d] "%i + title)
# i = 0
# formatted_papers = [f"{"[%d]"%i + papers}" i = i + 1 for k in dataset.keys() for papers in dataset[k]['info']]
return ';\n'.join(formatted_papers)
def paperinfo(dataset):
# for k in dataset.keys():
formatted_papers = [f"{paper}" for k in dataset.keys() for paper in dataset[k]['abstract']]
return '; '.join(formatted_papers)
def generate_ideas (trend):
# prompt_qa = (
# "Now you are a researcher with this background {profile}, and here is a high-level summarized trend of a research field {trend}."
# "How do you view this field? Do you have any novel ideas or insights?"
# )
prompt_qa = (
"Here is a high-level summarized trend of a research field: {trend}."
"How do you view this field? Do you have any novel ideas or insights?"
"Please give me 3 to 5 novel ideas and insights in bullet points. Each bullet points should be concise, containing 2 or 3 sentences."
)
openai.api_key = KEY
content_l = []
input = {}
# input['profile'] = profile
input['trend'] = trend
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed = 42, top_p=0)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed = 42, top_p=0)
content = completion.choices[0].message["content"]
content_l.append(content)
return content_l
def summarize_research_field(profile, keywords, dataset,data_embedding):
# papers = paperinfo(dataset)
query_input = {}
input = {}
if profile is None:
prompt_qa = (
"Given some recent paper titles and abstracts. Could you summarize no more than 10 top keywords of high level research backgounds and trends."
# "Here are the keywords: {keywords}"
"Here are the retrieved paper abstracts: {papers}"
)
query_format = (
"Given the keywords, retrieve some recent paper titles and abstracts can represent research trends in this field."
"Here are the keywords: {keywords}"
)
# input['keywords'] = keywords
query_input['keywords'] = keywords
else:
prompt_qa = (
"Given some recent paper titles and abstracts. Could you summarize no more than 10 top keywords of high level research backgounds and trends."
# "Here is my profile: {profile}"
# "Here are the keywords: {keywords}"
"Here are the retrieved paper abstracts: {papers}"
)
query_format = (
"Given the profile of me, retrieve some recent paper titles and abstracts can represent research trends related to my profile."
"Here is my profile: {profile}"
# "Here are the keywords: {keywords}"
)
query_input['profile'] = profile
# import pdb
# pdb.set_trace()
openai.api_key = KEY
content_l = []
query = query_format.format_map(query_input)
query_embedding=get_bert_embedding([query])
# text_chunk_l = dataset
text_chunk_l = []
data_embedding_l=[]
# with open(dataset_path, 'r', encoding='utf-8') as file:
# dataset = json.load(file)
title_chunk = []
for k in dataset.keys():
# import pdb
# pdb.set_trace()
title_chunk.extend(dataset[k]['info'])
text_chunk_l.extend(dataset[k]['abstract'])
data_embedding_l.extend(data_embedding[k])
# import pdb
# pdb.set_trace()
# print(dataset[k]['info'])
# [p if 'graph' in p else "" for p in dataset[k]['info']]
chunks_embedding_text_all = data_embedding_l
ch_text_chunk=copy.copy(text_chunk_l)
ch_text_chunk_embed=copy.copy(chunks_embedding_text_all)
num_chunk = 10
# print("raw_chunk_length: ", raw_chunk_length)
neib_all = neiborhood_search(ch_text_chunk_embed, query_embedding, num_chunk)
neib_all=neib_all.reshape(-1)
context = []
retrieve_paper = []
for i in neib_all:
context.append(ch_text_chunk[i])
# if i not in retrieve_paper:
retrieve_paper.append(title_chunk[i])
# import pdb
# pdb.set_trace()
input['papers'] = '; '.join(context)
prompt = prompt_qa.format_map(input)
# import pdb
# pdb.set_trace()
# import pdb
# pdb.set_trace()
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], max_tokens=512)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], max_tokens= 512)
content = completion.choices[0].message["content"]
content_l.append(content)
return content_l, retrieve_paper
def update_json_file(filename,data_all, scheduler):
with open(filename,"r") as f:
content = f.read()
if not content:
m = {}
else:
m = json.loads(content)
json_data = m.copy()
# update papers in each keywords
for data in data_all:
for time in data.keys():
papers = data[time]
# print(papers.published)
json_data[time.strftime("%m/%d/%Y")] = papers
for time in json_data.keys():
papers = json_data[time]
papers['ch_abs']=copy.deepcopy(papers['abstract'])
# print(papers.published)
json_data[time] = papers
with scheduler.lock:
with open(filename,"w") as f_:
json.dump(json_data,f_)
return json_data
def update_pickle_file(filename, data_all, scheduler):
# if os.path.exists(filename):
# with open(filename,"rb") as f:
# m = pickle.loads(f)
# with open(filename,"rb") as f:
# content = f.read()
# if not content:
# m = {}
# else:
# m = json.load(content)
# if os.path.exists(filename):
with open(filename,"rb") as f:
content = f.read()
if not content:
m = {}
else:
m = pickle.loads(content)
# else:
# with open(filename, mode='w', encoding='utf-8') as ff:
# m = {}
# if os.path.exists(filename):
# with open(filename, "rb") as file:
# m = pickle.load(file)
# else:
# m = {}
# json_data = m.copy()
# else:
# with open(filename, mode='wb', encoding='utf-8') as ff:
# m = {}
# with open(filename, "rb") as file:
# m = pickle.load(file)
pickle_data = m.copy()
for time in data_all.keys():
embeddings = data_all[time]
pickle_data[time] =embeddings
with scheduler.lock:
with open(filename, "wb") as f:
pickle.dump(pickle_data, f)
return pickle_data
def json_to_md(filename):
"""
@param filename: str
@return None
"""
DateNow = datetime.date.today()
DateNow = str(DateNow)
DateNow = DateNow.replace('-','.')
with open(filename,"r") as f:
content = f.read()
if not content:
data = {}
else:
data = json.loads(content)
md_filename = "README.md"
# clean README.md if daily already exist else create it
with open(md_filename,"w+") as f:
pass
# write data into README.md
with open(md_filename,"a+") as f:
f.write("## Updated on " + DateNow + "\n\n")
for keyword in data.keys():
day_content = data[keyword]
if not day_content:
continue
# the head of each part
f.write(f"## {keyword}\n\n")
f.write("|Publish Date|Title|Authors|PDF|\n" + "|---|---|---|---|\n")
# sort papers by date
day_content = sort_papers(day_content)
for _,v in day_content.items():
if v is not None:
f.write(v)
f.write(f"\n")
print("finished")
def neiborhood_search(corpus_data, query_data, num=8):
d = 768 # dimension
neiborhood_num = num
xq = torch.cat(query_data, 0).cpu().numpy()
xb = torch.cat(corpus_data, 0).cpu().numpy()
index = faiss.IndexFlatIP(d)
xq = xq.astype('float32')
xb = xb.astype('float32')
faiss.normalize_L2(xq)
faiss.normalize_L2(xb)
index.add(xb) # add vectors to the index
D, I = index.search(xq, neiborhood_num)
return I
def get_passage_conclusion_through_LLM(text, question):
# prompt_qa = ("Given text:{context},given question:{question},based on this text and question, summarize the above text into a passage so that it can best answer this question.")
prompt_qa = (
"Given text:{context},based on this text, summarize the above text into a passage that cannot change its original meaning.")
openai.api_key = KEY
input = {}
input['context'] = text
input['question'] = question
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed = 42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed =42)
content = completion.choices[0].message["content"]
# print(content)
return content
def retain_useful_info(text, question):
prompt_qa = (
"Given text:{context},given question:{question},based on this text and question, summarize the text into a sentence that is most useful in answering this question.")
openai.api_key = KEY
input = {}
input['context'] = text
input['question'] = question
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}])
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}])
content = completion.choices[0].message["content"]
# print(content)
return content
def llm_summary(text_l):
# prompt_qa = ("Given text:{context},given question:{question},based on this text and question, summarize the above text into a passage so that it can best answer this question.")
text = ''
for inter in text_l:
text += inter
prompt_qa = (
"Given text:{context},based on this text, summarize the above text into a fluent passage that cannot change its original meaning.")
openai.api_key = KEY
input = {}
input['context'] = text
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed =42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed=42)
content = completion.choices[0].message["content"]
# print(content)
return content
def get_multi_query_through_LLM(question_data, generated_answers=None, support_material=None):
PROMPT_DICT = {
"without_answer": (
"The input will be a paragraph of text."
"Your task is to generate five as diverse, informative, and relevant, as possible versions of supporting materials, perspectives, fact. Provide these alternative materials, perspectives, fact. Each of them occupies a line."
"Original text: {question}"
"Answer:,Please output a list to split these five answers."),
"with_answer": (
"The input will be a paragraph of original text, a previously generated support material and a response for the text based on reviously generated support material by a naive agent, who may make mistakes."
"Your task is to generate five as diverse, informative, and relevant, as possible versions of supporting materials,perspectives, fact based on the the above information. Each of them occupies a line."
"Provide these alternative materials, perspectives, fact."
"Original text:{question}. "
"Previously generated support material (the text below are naive, and could be wrong, use with caution): {support_material} "
"Response:{answer}."
"Answer:,Please output a list to split these five answers."),
}
prompt_q, prompt_qa = PROMPT_DICT["without_answer"], PROMPT_DICT["with_answer"]
openai.api_key = KEY
### question_data
inter = {}
inter['question'] = question_data
if generated_answers != None:
inter['answer'] = generated_answers
inter['support_material'] = support_material
prompt = [prompt_qa.format_map(example) for example in [inter]]
else:
prompt = [prompt_q.format_map(example) for example in [inter]]
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt[0]}], temperature=0.6, seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt[0]}], temperature=0.6,seed =42)
content = completion.choices[0].message["content"]
for inter_ in content:
inter_ = inter_.strip('1.').strip('2.').strip('3.').strip('4.').strip('5.')
# print(content)
return content
def get_question_through_LLM(question, context):
prompt_s = question[0]
for i in range(len(context)):
prompt_s += "Documents %d: " % (i + 1) + context[i] + '\n'
prompt_qa = (prompt_s)
openai.api_key = KEY
content_l = []
# import pdb
# pdb.set_trace()
# for inter1 in range(len(context)):
# question_i = question[0]
# context_i=context[inter1]
# input={}
# input['question']=question_i
# input['context']=context_i
prompt = prompt_qa
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6, seed=42)
content = completion.choices[0].message["content"]
content_l.append(content)
# print(content)
return content_l
def get_response_through_LLM(question, context):
prompt_qa = ("Given text: {context}, based on this text, answer the question: {question}")
openai.api_key = KEY
content_l = []
# print(len(context))
# import pdb
# pdb.set_trace()
# print()
for inter1 in range(len(question)):
question_i = question[inter1]
context_i = context[inter1]
input = {}
input['question'] = question_i
input['context'] = context_i
prompt = prompt_qa.format_map(input)
# print(prompt)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
content = completion.choices[0].message["content"]
content_l.append(content)
# print("Answer for Pre Queston ", inter1, ": ")
# print(content,"\n")
return content_l
def get_response_through_LLM_answer(question, context, profile):
# import pdb
# pdb.set_trace()
if profile is None:
prompt_qa = (
"Answer the: {question}, based on materials: {context}"
)
else:
prompt_qa = (
"Answer the: {question}, based on materials: {context} and my profile: {profile}"
)
openai.api_key = KEY
content_l = []
# print(len(context))
# import pdb
# pdb.set_trace()
# print()
# print("Length of the question: ", len(question))
# print("Length of the context: ", len(context))
for inter1 in range(len(question)):
question_i = question[inter1]
context_i = context[inter1]
input = {}
input['question'] = question_i
input['context'] = context_i
if profile is not None:
profile_i = profile
input['profile'] = profile_i
# import pdb
# pdb.set_trace()
prompt = prompt_qa.format_map(input)
# print(prompt)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
content = completion.choices[0].message["content"]
content_l.append(content)
# print(content)
return content_l
def get_response_through_LLM_cross(question, context):
prompt_s = context + '\n'
prompt_s += "Based on the above documents, answer the question: {question} in short."
prompt_qa = (prompt_s)
openai.api_key = KEY
content_l = []
for inter1 in range(len(question)):
question_i = question[inter1]
input = {}
input['question'] = question_i
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
content = completion.choices[0].message["content"]
content_l.append(content)
# print(content)
return content_l
def get_bert_embedding(instructions):
# encoded_input_all = [tokenizer(text['instruction']+text['input'], return_tensors='pt').to(torch.device("cuda")) for text in instructions]
encoded_input_all = [tokenizer(text, return_tensors='pt', truncation=True,
max_length=512).to(torch.device("cpu")) for text in instructions]
with torch.no_grad():
emb_list = []
for inter in encoded_input_all:
emb = model(**inter)
emb_list.append(emb['last_hidden_state'].mean(1))
return emb_list
def calculate_similarity(tensor_list, input_tensor):
flattened_list = [t.flatten() for t in tensor_list]
flattened_tensor = input_tensor.flatten()
cosine_similarities = [F.cosine_similarity(flattened_tensor.unsqueeze(0), t.unsqueeze(0)) for t in flattened_list]
return cosine_similarities
def response_verify(question, context, verify = False):
if verify:
prompt_qa = (
"Input: Given question:{question}, given answer:{context}. Based on the provided question and its corresponding answer, perform the following steps:"
"Step 1: Determine if the answer is an actual answer or if it merely indicates that the question cannot be answered due to insufficient information. If the latter is true, just output 'idk' without any extra words "
"Step 2: If it is a valid answer, succinctly summarize both the question and answer into a coherent knowledge point, forming a fluent passage."
)
else:
prompt_qa = (
"Given question:{question},given answer:{context},based on the given question and corresponding answer, "
"summarize them into a knowledge point like a fluent passage.")
openai.api_key = KEY
content_l = []
for inter1 in range(len(question)):
question_i = question[inter1]
context_i = context[inter1]
input = {}
input['question'] = question_i
input['context'] = context_i
prompt = prompt_qa.format_map(input)
# print(prompt)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
except:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[
{"role": "user", "content": prompt}], temperature=0.6,seed=42)
content = completion.choices[0].message["content"]
content_l.append(content)
# print(content)
return content_l
|