Spaces:
Runtime error
Runtime error
Commit
·
6b89d0b
1
Parent(s):
f560fb5
First model version
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +29 -0
- Dockerfile.back +35 -0
- Dockerfile.latestbackup +42 -0
- LICENSE.md +661 -0
- README.md +7 -9
- app.py +106 -0
- app.py.back2 +123 -0
- app.pyback +123 -0
- batch.py +43 -0
- checkpoints/0102_xiaoma_pe/config.yaml +172 -0
- checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt +3 -0
- checkpoints/0109_hifigan_bigpopcs_hop128/config.yaml +241 -0
- checkpoints/0109_hifigan_bigpopcs_hop128/model_ckpt_steps_1512000.ckpt +3 -0
- checkpoints/Unnamed/config.yaml +445 -0
- checkpoints/Unnamed/config_nsf.yaml +445 -0
- checkpoints/Unnamed/lightning_logs/lastest/hparams.yaml +1 -0
- checkpoints/Unnamed/model_ckpt_steps_192000.ckpt +3 -0
- checkpoints/hubert/hubert_soft.pt +3 -0
- checkpoints/nsf_hifigan/NOTICE.txt +74 -0
- checkpoints/nsf_hifigan/NOTICE.zh-CN.txt +72 -0
- checkpoints/nsf_hifigan/config.json +38 -0
- ckpt.jpg +0 -0
- config.yaml +349 -0
- doc/train_and_inference.markdown +210 -0
- flask_api.py +54 -0
- infer.py +98 -0
- infer_tools/__init__.py +0 -0
- infer_tools/__pycache__/__init__.cpython-38.pyc +0 -0
- infer_tools/__pycache__/infer_tool.cpython-38.pyc +0 -0
- infer_tools/__pycache__/slicer.cpython-38.pyc +0 -0
- infer_tools/f0_temp.json +0 -0
- infer_tools/infer_tool.py +342 -0
- infer_tools/new_chunks_temp.json +1 -0
- infer_tools/slicer.py +158 -0
- inference.ipynb +0 -0
- models/genshin/__init__.py +0 -0
- models/genshin/config.yaml +445 -0
- models/genshin/raiden.ckpt +3 -0
- modules/commons/__pycache__/common_layers.cpython-38.pyc +0 -0
- modules/commons/__pycache__/espnet_positional_embedding.cpython-38.pyc +0 -0
- modules/commons/__pycache__/ssim.cpython-38.pyc +0 -0
- modules/commons/common_layers.py +671 -0
- modules/commons/espnet_positional_embedding.py +113 -0
- modules/commons/ssim.py +391 -0
- modules/fastspeech/__pycache__/fs2.cpython-38.pyc +0 -0
- modules/fastspeech/__pycache__/pe.cpython-38.pyc +0 -0
- modules/fastspeech/__pycache__/tts_modules.cpython-38.pyc +0 -0
- modules/fastspeech/fs2.py +255 -0
- modules/fastspeech/pe.py +149 -0
- modules/fastspeech/tts_modules.py +364 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM misakiminato/cuda-python:cu12.0.0-py3.8.16-devel-ubuntu18.04
|
2 |
+
WORKDIR /app
|
3 |
+
|
4 |
+
COPY ./requirements.txt /app/requirements.txt
|
5 |
+
COPY ./packages.txt /app/packages.txt
|
6 |
+
RUN pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
7 |
+
RUN apt-get update && xargs -r -a /app/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
|
8 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
9 |
+
|
10 |
+
|
11 |
+
# Set up a new user named "user" with user ID 1000
|
12 |
+
RUN useradd -m -u 1000 user
|
13 |
+
|
14 |
+
# Switch to the "user" user
|
15 |
+
USER user
|
16 |
+
|
17 |
+
# Set home to the user's home directory
|
18 |
+
ENV HOME=/home/user \
|
19 |
+
PATH=/home/user/.local/bin:$PATH
|
20 |
+
|
21 |
+
# Set the working directory to the user's home directory
|
22 |
+
WORKDIR $HOME/app
|
23 |
+
|
24 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
25 |
+
COPY --chown=user . $HOME/app
|
26 |
+
|
27 |
+
|
28 |
+
EXPOSE 8501
|
29 |
+
CMD streamlit run app.py --server.maxUploadSize 1024 --server.enableWebsocketCompression=false --server.enableXsrfProtection=false
|
Dockerfile.back
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.0.0-base-ubuntu20.04
|
2 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
3 |
+
ENV PYTHONUNBUFFERED=1
|
4 |
+
|
5 |
+
WORKDIR /app
|
6 |
+
# Install python, git & ffmpeg
|
7 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
8 |
+
build-essential \
|
9 |
+
python3.8=3.8.10* \
|
10 |
+
python3-pip \
|
11 |
+
git \
|
12 |
+
ffmpeg \
|
13 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
14 |
+
COPY ./requirements.txt /app/requirements.txt
|
15 |
+
COPY ./packages.txt /app/packages.txt
|
16 |
+
RUN pip install --upgrade pip
|
17 |
+
RUN pip install pyproject-toml
|
18 |
+
RUN pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
19 |
+
RUN apt-get update && xargs -r -a /app/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
|
20 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
21 |
+
RUN pip3 install --no-cache-dir numba==0.56.3
|
22 |
+
RUN pip install --no-binary :all: pyworld
|
23 |
+
|
24 |
+
WORKDIR /app
|
25 |
+
# Set up a new user named "user" with user ID 1000
|
26 |
+
RUN useradd -m -u 1000 user
|
27 |
+
# Set the working directory to the user's home directory
|
28 |
+
WORKDIR $HOME/app
|
29 |
+
|
30 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
31 |
+
COPY --chown=user . $HOME/app
|
32 |
+
|
33 |
+
EXPOSE 8501
|
34 |
+
CMD nvidia-smi -l
|
35 |
+
CMD streamlit run app.py --server.maxUploadSize 1024 --server.enableWebsocketCompression=false --server.enableXsrfProtection=false
|
Dockerfile.latestbackup
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.0.0-base-ubuntu20.04
|
2 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
3 |
+
ENV PYTHONUNBUFFERED=1
|
4 |
+
ENV PYTHON_INCLUDE /usr/include/python3.8
|
5 |
+
ENV PYTHON_LIB /usr/lib/x86_64-linux-gnu/libpython3.8.so
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
# Install python, git & ffmpeg
|
9 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
10 |
+
build-essential \
|
11 |
+
python3.9 \
|
12 |
+
python3-pip \
|
13 |
+
git \
|
14 |
+
ffmpeg \
|
15 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
16 |
+
COPY ./requirements.txt /app/requirements.txt
|
17 |
+
COPY ./packages.txt /app/packages.txt
|
18 |
+
RUN pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
19 |
+
RUN apt-get update && xargs -r -a /app/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
|
20 |
+
RUN apt-get update && apt-get install -y python3-dev
|
21 |
+
RUN apt-get update && apt-get install -y build-essential
|
22 |
+
RUN which python3
|
23 |
+
RUN which python3-config
|
24 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
25 |
+
RUN apt-get update && apt-get install -y build-essential
|
26 |
+
RUN pip3 install --no-cache-dir numba==0.56.3
|
27 |
+
RUN pip install --upgrade pip setuptools wheel
|
28 |
+
RUN pip3 install --no-binary :all: pyworld
|
29 |
+
RUN pip install soundfile
|
30 |
+
|
31 |
+
WORKDIR /app
|
32 |
+
# Set up a new user named "user" with user ID 1000
|
33 |
+
RUN useradd -m -u 1000 user
|
34 |
+
# Set the working directory to the user's home directory
|
35 |
+
WORKDIR $HOME/app
|
36 |
+
|
37 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
38 |
+
COPY --chown=user . $HOME/app
|
39 |
+
|
40 |
+
EXPOSE 8501
|
41 |
+
CMD nvidia-smi -l
|
42 |
+
CMD streamlit run app.py --server.maxUploadSize 1024 --server.enableWebsocketCompression=false --server.enableXsrfProtection=false
|
LICENSE.md
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
README.md
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: DiffSVC Inference
|
3 |
+
emoji: 🎙
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: orange
|
6 |
+
sdk: docker
|
7 |
+
app_port: 8501
|
|
|
8 |
pinned: false
|
9 |
+
duplicated_from: DIFF-SVCModel/Inference
|
10 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
import requests
|
10 |
+
from pathlib import Path
|
11 |
+
global ckpt_temp_file
|
12 |
+
global audio_temp_file
|
13 |
+
global config_temp_file
|
14 |
+
###################################################
|
15 |
+
from utils.hparams import hparams
|
16 |
+
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
|
17 |
+
import numpy as np
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import IPython.display as ipd
|
20 |
+
import utils
|
21 |
+
import librosa
|
22 |
+
import torchcrepe
|
23 |
+
from infer import *
|
24 |
+
import logging
|
25 |
+
from infer_tools.infer_tool import *
|
26 |
+
import io
|
27 |
+
|
28 |
+
spk_dict = {
|
29 |
+
"雷电将军": {"model_name": './models/genshin/raiden.ckpt', "config_name": './models/genshin/config.yaml'}
|
30 |
+
}
|
31 |
+
|
32 |
+
project_name = "Unnamed"
|
33 |
+
model_path = spk_dict['雷电将军']['model_name']
|
34 |
+
config_path= spk_dict['雷电将军']['config_name']
|
35 |
+
hubert_gpu = False
|
36 |
+
svc_model = Svc(project_name, config_path, hubert_gpu, model_path)
|
37 |
+
|
38 |
+
def vc_fn(sid, audio_record, audio_upload, tran, pndm_speedup=20):
|
39 |
+
print(sid)
|
40 |
+
if audio_upload is not None:
|
41 |
+
audio_path = audio_upload
|
42 |
+
elif audio_record is not None:
|
43 |
+
audio_path = audio_record
|
44 |
+
else:
|
45 |
+
return "你需要上传wav文件或使用网页内置的录音!", None
|
46 |
+
|
47 |
+
tran = int(tran)
|
48 |
+
pndm_speedup = int(pndm_speedup)
|
49 |
+
print('model loaded')
|
50 |
+
# demoaudio, sr = librosa.load(audio_path)
|
51 |
+
key = tran # 音高调整,支持正负(半音)
|
52 |
+
# 加速倍数
|
53 |
+
pndm_speedup = 20
|
54 |
+
wav_gen='queeeeee.wav'
|
55 |
+
|
56 |
+
# Show the spinner and run the run_clip function inside the 'with' block
|
57 |
+
f0_tst, f0_pred, audio = run_clip(svc_model, file_path=audio_path, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05,
|
58 |
+
use_gt_mel=False, add_noise_step=500, project_name=project_name, out_path=wav_gen)
|
59 |
+
|
60 |
+
return "Success", (hparams['audio_sample_rate'], audio)
|
61 |
+
|
62 |
+
|
63 |
+
app = gr.Blocks()
|
64 |
+
with app:
|
65 |
+
with gr.Tabs():
|
66 |
+
with gr.TabItem("Basic"):
|
67 |
+
gr.Markdown(value="""
|
68 |
+
本模型为sovits_f0(含AI猫雷2.0音色),支持**60s以内**的**无伴奏**wav、mp3(单声道)格式,或使用**网页内置**的录音(二选一)
|
69 |
+
|
70 |
+
转换效果取决于源音频语气、节奏是否与目标音色相近,以及音域是否超出目标音色音域范围
|
71 |
+
|
72 |
+
猫雷音色低音音域效果不佳,如转换男声歌声,建议变调升 **6-10key**
|
73 |
+
|
74 |
+
该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc),如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
|
75 |
+
""")
|
76 |
+
speaker_id = gr.Dropdown(label="音色", choices=['雷电将军'], value="雷电将军")
|
77 |
+
record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
|
78 |
+
upload_input = gr.Audio(source="upload", label="上传音频(长度小于60秒)", type="filepath",
|
79 |
+
elem_id="audio_inputs")
|
80 |
+
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
81 |
+
vc_speedup = gr.Number(label="加速倍数", value=20)
|
82 |
+
vc_submit = gr.Button("转换", variant="primary")
|
83 |
+
out_audio = gr.Audio(label="Output Audio")
|
84 |
+
gr.Markdown(value="""
|
85 |
+
输出信息为音高平均偏差半音数量,体现转换音频的跑调情况(一般平均小于0.5个半音)
|
86 |
+
""")
|
87 |
+
out_message = gr.Textbox(label="Output")
|
88 |
+
gr.Markdown(value="""f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
|
89 |
+
若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
|
90 |
+
""")
|
91 |
+
# f0_image = gr.Image(label="f0曲线")
|
92 |
+
vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform, vc_speedup],
|
93 |
+
[out_message, out_audio])
|
94 |
+
with gr.TabItem("使用说明"):
|
95 |
+
gr.Markdown(value="""
|
96 |
+
0、合集:https://github.com/IceKyrin/sovits_guide/blob/main/README.md
|
97 |
+
1、仅支持sovit_f0(sovits2.0)模型
|
98 |
+
2、自行下载hubert-soft-0d54a1f4.pt改名为hubert.pt放置于pth文件夹下(已经下好了)
|
99 |
+
https://github.com/bshall/hubert/releases/tag/v0.1
|
100 |
+
3、pth文件夹下放置sovits2.0的模型
|
101 |
+
4、与模型配套的xxx.json,需有speaker项——人物列表
|
102 |
+
5、放无伴奏的音频、或网页内置录音,不要放奇奇怪怪的格式
|
103 |
+
6、仅供交流使用,不对用户行为负责
|
104 |
+
""")
|
105 |
+
|
106 |
+
app.launch()
|
app.py.back2
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
import requests
|
10 |
+
from pathlib import Path
|
11 |
+
temp_dir = os.path.expanduser("~/app")
|
12 |
+
global ckpt_temp_file
|
13 |
+
global audio_temp_file
|
14 |
+
global config_temp_file
|
15 |
+
###################################################
|
16 |
+
from utils.hparams import hparams
|
17 |
+
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
|
18 |
+
import numpy as np
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import IPython.display as ipd
|
21 |
+
import utils
|
22 |
+
import librosa
|
23 |
+
import torchcrepe
|
24 |
+
from infer import *
|
25 |
+
import logging
|
26 |
+
from infer_tools.infer_tool import *
|
27 |
+
import io
|
28 |
+
|
29 |
+
clip_completed = False
|
30 |
+
def render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title):
|
31 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
32 |
+
title = int(title)
|
33 |
+
project_name = "Unnamed"
|
34 |
+
model_path = ckpt_temp_file
|
35 |
+
config_path= config_temp_file
|
36 |
+
hubert_gpu=True
|
37 |
+
svc_model = Svc(project_name,config_path,hubert_gpu, model_path)
|
38 |
+
print('model loaded')
|
39 |
+
wav_fn = audio_temp_file
|
40 |
+
demoaudio, sr = librosa.load(wav_fn)
|
41 |
+
key = title # 音高调整,支持正负(半音)
|
42 |
+
# 加速倍数
|
43 |
+
pndm_speedup = 20
|
44 |
+
wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩
|
45 |
+
|
46 |
+
# Show the spinner and run the run_clip function inside the 'with' block
|
47 |
+
with st.spinner("Rendering Audio..."):
|
48 |
+
f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05,
|
49 |
+
use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen)
|
50 |
+
clip_completed = True
|
51 |
+
if clip_completed:
|
52 |
+
# If the 'run_clip' function has completed, use the st.audio function to show an audio player for the file stored in the 'wav_gen' variable
|
53 |
+
st.audio(wav_gen)
|
54 |
+
|
55 |
+
#######################################################
|
56 |
+
st.set_page_config(
|
57 |
+
page_title="DiffSVC Render",
|
58 |
+
page_icon="🧊",
|
59 |
+
initial_sidebar_state="expanded",
|
60 |
+
)
|
61 |
+
############
|
62 |
+
st.title('DIFF-SVC Render')
|
63 |
+
|
64 |
+
###CKPT LOADER
|
65 |
+
with tempfile.TemporaryDirectory(dir=os.path.expanduser("~/app")) as temp_dir:
|
66 |
+
ckpt = st.file_uploader("Choose your CKPT", type= 'ckpt')
|
67 |
+
# Check if user uploaded a CKPT file
|
68 |
+
if ckpt is not None:
|
69 |
+
#TEMP FUNCTION
|
70 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix='.ckpt', delete=False) as temp:
|
71 |
+
# Get the file contents as bytes
|
72 |
+
bytes_data = ckpt.getvalue()
|
73 |
+
# Write the bytes to the temporary file
|
74 |
+
temp.write(bytes_data)
|
75 |
+
ckpt_temp_file = temp.name
|
76 |
+
# Print the temporary file name
|
77 |
+
print(temp.name)
|
78 |
+
|
79 |
+
# Display the file path
|
80 |
+
if "ckpt_temp_file" in locals():
|
81 |
+
st.success("File saved to: {}".format(ckpt_temp_file))
|
82 |
+
|
83 |
+
# File uploader
|
84 |
+
config = st.file_uploader("Choose your config", type= 'yaml')
|
85 |
+
|
86 |
+
# Check if user uploaded a config file
|
87 |
+
if config is not None:
|
88 |
+
#TEMP FUNCTION
|
89 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix='.yaml', delete=False) as temp:
|
90 |
+
# Get the file contents as bytes
|
91 |
+
bytes_data = config.getvalue()
|
92 |
+
# Write the bytes to the temporary file
|
93 |
+
temp.write(bytes_data)
|
94 |
+
config_temp_file = temp.name
|
95 |
+
# Print the temporary file name
|
96 |
+
print(temp.name)
|
97 |
+
|
98 |
+
# Display the file path
|
99 |
+
if "config_temp_file" in locals():
|
100 |
+
st.success("File saved to: {}".format(config_temp_file))
|
101 |
+
|
102 |
+
audio = st.file_uploader("Choose your audio", type=["wav", "mp3"])
|
103 |
+
|
104 |
+
# Check if user uploaded an audio file
|
105 |
+
if audio is not None:
|
106 |
+
#TEMP FUNCTION
|
107 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix='.wav', delete=False) as temp:
|
108 |
+
# Get the file contents as bytes
|
109 |
+
bytes_data = audio.getvalue()
|
110 |
+
# Write the bytes to the temporary file
|
111 |
+
temp.write(bytes_data)
|
112 |
+
audio_temp_file = temp.name
|
113 |
+
# Print the temporary file name
|
114 |
+
print(temp.name)
|
115 |
+
|
116 |
+
# Display the file path
|
117 |
+
if "audio_temp_file" in locals():
|
118 |
+
st.success("File saved to: {}".format(audio_temp_file))
|
119 |
+
# Add a text input for the title with a default value of 0
|
120 |
+
title = st.text_input("Key", value="0")
|
121 |
+
# Add a button to start the rendering process
|
122 |
+
if st.button("Render audio"):
|
123 |
+
render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title)
|
app.pyback
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import shutil
|
9 |
+
import requests
|
10 |
+
from pathlib import Path
|
11 |
+
temp_dir = os.path.expanduser("/~app")
|
12 |
+
global ckpt_temp_file
|
13 |
+
global audio_temp_file
|
14 |
+
global config_temp_file
|
15 |
+
###################################################
|
16 |
+
from utils.hparams import hparams
|
17 |
+
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
|
18 |
+
import numpy as np
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import IPython.display as ipd
|
21 |
+
import utils
|
22 |
+
import librosa
|
23 |
+
import torchcrepe
|
24 |
+
from infer import *
|
25 |
+
import logging
|
26 |
+
from infer_tools.infer_tool import *
|
27 |
+
import io
|
28 |
+
|
29 |
+
clip_completed = False
|
30 |
+
def render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title):
|
31 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
32 |
+
title = int(title)
|
33 |
+
project_name = "Unnamed"
|
34 |
+
model_path = ckpt_temp_file
|
35 |
+
config_path= config_temp_file
|
36 |
+
hubert_gpu=True
|
37 |
+
svc_model = Svc(project_name,config_path,hubert_gpu, model_path)
|
38 |
+
print('model loaded')
|
39 |
+
wav_fn = audio_temp_file
|
40 |
+
demoaudio, sr = librosa.load(wav_fn)
|
41 |
+
key = title # 音高调整,支持正负(半音)
|
42 |
+
# 加速倍数
|
43 |
+
pndm_speedup = 20
|
44 |
+
wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩
|
45 |
+
|
46 |
+
# Show the spinner and run the run_clip function inside the 'with' block
|
47 |
+
with st.spinner("Rendering Audio..."):
|
48 |
+
f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05,
|
49 |
+
use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen)
|
50 |
+
clip_completed = True
|
51 |
+
if clip_completed:
|
52 |
+
# If the 'run_clip' function has completed, use the st.audio function to show an audio player for the file stored in the 'wav_gen' variable
|
53 |
+
st.audio(wav_gen)
|
54 |
+
|
55 |
+
#######################################################
|
56 |
+
st.set_page_config(
|
57 |
+
page_title="DiffSVC Render",
|
58 |
+
page_icon="🧊",
|
59 |
+
initial_sidebar_state="expanded",
|
60 |
+
)
|
61 |
+
############
|
62 |
+
st.title('DIFF-SVC Render')
|
63 |
+
|
64 |
+
###CKPT LOADER
|
65 |
+
with tempfile.TemporaryDirectory(dir=os.path.expanduser("/~app")) as temp_dir:
|
66 |
+
ckpt = st.file_uploader("Choose your CKPT", type= 'ckpt')
|
67 |
+
# Check if user uploaded a CKPT file
|
68 |
+
if ckpt is not None:
|
69 |
+
#TEMP FUNCTION
|
70 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix='.ckpt', delete=False, dir=temp_dir) as temp:
|
71 |
+
# Get the file contents as bytes
|
72 |
+
bytes_data = ckpt.getvalue()
|
73 |
+
# Write the bytes to the temporary file
|
74 |
+
temp.write(bytes_data)
|
75 |
+
ckpt_temp_file = temp.name
|
76 |
+
# Print the temporary file name
|
77 |
+
print(temp.name)
|
78 |
+
|
79 |
+
# Display the file path
|
80 |
+
if "ckpt_temp_file" in locals():
|
81 |
+
st.success("File saved to: {}".format(ckpt_temp_file))
|
82 |
+
|
83 |
+
# File uploader
|
84 |
+
config = st.file_uploader("Choose your config", type= 'yaml')
|
85 |
+
|
86 |
+
# Check if user uploaded a config file
|
87 |
+
if config is not None:
|
88 |
+
#TEMP FUNCTION
|
89 |
+
with tempfile.NamedTemporaryFile(mode="w", suffix='.yaml', delete=False, dir=temp_dir) as temp:
|
90 |
+
# Get the file contents as bytes
|
91 |
+
bytes_data = config.getvalue()
|
92 |
+
# Write the bytes to the temporary file
|
93 |
+
temp.write(bytes_data)
|
94 |
+
config_temp_file = temp.name
|
95 |
+
# Print the temporary file name
|
96 |
+
print(temp.name)
|
97 |
+
|
98 |
+
# Display the file path
|
99 |
+
if "config_temp_file" in locals():
|
100 |
+
st.success("File saved to: {}".format(config_temp_file))
|
101 |
+
|
102 |
+
audio = st.file_uploader("Choose your audio", type=["wav", "mp3"])
|
103 |
+
|
104 |
+
# Check if user uploaded an audio file
|
105 |
+
if audio is not None:
|
106 |
+
#TEMP FUNCTION
|
107 |
+
with tempfile.NamedTemporaryFile(mode="wb", suffix='.wav', delete=False, dir=temp_dir) as temp:
|
108 |
+
# Get the file contents as bytes
|
109 |
+
bytes_data = audio.getvalue()
|
110 |
+
# Write the bytes to the temporary file
|
111 |
+
temp.write(bytes_data)
|
112 |
+
audio_temp_file = temp.name
|
113 |
+
# Print the temporary file name
|
114 |
+
print(temp.name)
|
115 |
+
|
116 |
+
# Display the file path
|
117 |
+
if "audio_temp_file" in locals():
|
118 |
+
st.success("File saved to: {}".format(audio_temp_file))
|
119 |
+
# Add a text input for the title with a default value of 0
|
120 |
+
title = st.text_input("Key", value="0")
|
121 |
+
# Add a button to start the rendering process
|
122 |
+
if st.button("Render audio"):
|
123 |
+
render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title)
|
batch.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile
|
2 |
+
|
3 |
+
from infer_tools import infer_tool
|
4 |
+
from infer_tools.infer_tool import Svc
|
5 |
+
|
6 |
+
|
7 |
+
def run_clip(svc_model, key, acc, use_pe, use_crepe, thre, use_gt_mel, add_noise_step, project_name='', f_name=None,
|
8 |
+
file_path=None, out_path=None):
|
9 |
+
raw_audio_path = f_name
|
10 |
+
infer_tool.format_wav(raw_audio_path)
|
11 |
+
_f0_tst, _f0_pred, _audio = svc_model.infer(raw_audio_path, key=key, acc=acc, singer=True, use_pe=use_pe,
|
12 |
+
use_crepe=use_crepe,
|
13 |
+
thre=thre, use_gt_mel=use_gt_mel, add_noise_step=add_noise_step)
|
14 |
+
out_path = f'./singer_data/{f_name.split("/")[-1]}'
|
15 |
+
soundfile.write(out_path, _audio, 44100, 'PCM_16')
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
# 工程文件夹名,训练时用的那个
|
20 |
+
project_name = "firefox"
|
21 |
+
model_path = f'./checkpoints/{project_name}/clean_model_ckpt_steps_100000.ckpt'
|
22 |
+
config_path = f'./checkpoints/{project_name}/config.yaml'
|
23 |
+
|
24 |
+
# 支持多个wav/ogg文件,放在raw文件夹下,带扩展名
|
25 |
+
file_names = infer_tool.get_end_file("./batch", "wav")
|
26 |
+
trans = [-6] # 音高调整,支持正负(半音),数量与上一行对应,不足的自动按第一个移调参数补齐
|
27 |
+
# 加速倍数
|
28 |
+
accelerate = 50
|
29 |
+
hubert_gpu = True
|
30 |
+
cut_time = 30
|
31 |
+
|
32 |
+
# 下面不动
|
33 |
+
infer_tool.mkdir(["./batch", "./singer_data"])
|
34 |
+
infer_tool.fill_a_to_b(trans, file_names)
|
35 |
+
|
36 |
+
model = Svc(project_name, config_path, hubert_gpu, model_path)
|
37 |
+
count = 0
|
38 |
+
for f_name, tran in zip(file_names, trans):
|
39 |
+
print(f_name)
|
40 |
+
run_clip(model, key=tran, acc=accelerate, use_crepe=False, thre=0.05, use_pe=False, use_gt_mel=False,
|
41 |
+
add_noise_step=500, f_name=f_name, project_name=project_name)
|
42 |
+
count += 1
|
43 |
+
print(f"process:{round(count * 100 / len(file_names), 2)}%")
|
checkpoints/0102_xiaoma_pe/config.yaml
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accumulate_grad_batches: 1
|
2 |
+
audio_num_mel_bins: 80
|
3 |
+
audio_sample_rate: 24000
|
4 |
+
base_config:
|
5 |
+
- configs/tts/lj/fs2.yaml
|
6 |
+
binarization_args:
|
7 |
+
shuffle: false
|
8 |
+
with_align: true
|
9 |
+
with_f0: true
|
10 |
+
with_f0cwt: true
|
11 |
+
with_spk_embed: true
|
12 |
+
with_txt: true
|
13 |
+
with_wav: false
|
14 |
+
binarizer_cls: data_gen.tts.base_binarizer.BaseBinarizer
|
15 |
+
binary_data_dir: data/binary/xiaoma1022_24k_128hop
|
16 |
+
check_val_every_n_epoch: 10
|
17 |
+
clip_grad_norm: 1
|
18 |
+
cwt_add_f0_loss: false
|
19 |
+
cwt_hidden_size: 128
|
20 |
+
cwt_layers: 2
|
21 |
+
cwt_loss: l1
|
22 |
+
cwt_std_scale: 0.8
|
23 |
+
debug: false
|
24 |
+
dec_ffn_kernel_size: 9
|
25 |
+
dec_layers: 4
|
26 |
+
decoder_type: fft
|
27 |
+
dict_dir: ''
|
28 |
+
dropout: 0.1
|
29 |
+
ds_workers: 4
|
30 |
+
dur_enc_hidden_stride_kernel:
|
31 |
+
- 0,2,3
|
32 |
+
- 0,2,3
|
33 |
+
- 0,1,3
|
34 |
+
dur_loss: mse
|
35 |
+
dur_predictor_kernel: 3
|
36 |
+
dur_predictor_layers: 2
|
37 |
+
enc_ffn_kernel_size: 9
|
38 |
+
enc_layers: 4
|
39 |
+
encoder_K: 8
|
40 |
+
encoder_type: fft
|
41 |
+
endless_ds: true
|
42 |
+
ffn_act: gelu
|
43 |
+
ffn_padding: SAME
|
44 |
+
fft_size: 512
|
45 |
+
fmax: 12000
|
46 |
+
fmin: 30
|
47 |
+
gen_dir_name: ''
|
48 |
+
hidden_size: 256
|
49 |
+
hop_size: 128
|
50 |
+
infer: false
|
51 |
+
lambda_commit: 0.25
|
52 |
+
lambda_energy: 0.1
|
53 |
+
lambda_f0: 1.0
|
54 |
+
lambda_ph_dur: 1.0
|
55 |
+
lambda_sent_dur: 1.0
|
56 |
+
lambda_uv: 1.0
|
57 |
+
lambda_word_dur: 1.0
|
58 |
+
load_ckpt: ''
|
59 |
+
log_interval: 100
|
60 |
+
loud_norm: false
|
61 |
+
lr: 2.0
|
62 |
+
max_epochs: 1000
|
63 |
+
max_eval_sentences: 1
|
64 |
+
max_eval_tokens: 60000
|
65 |
+
max_frames: 5000
|
66 |
+
max_input_tokens: 1550
|
67 |
+
max_sentences: 100000
|
68 |
+
max_tokens: 20000
|
69 |
+
max_updates: 60000
|
70 |
+
mel_loss: l1
|
71 |
+
mel_vmax: 1.5
|
72 |
+
mel_vmin: -6
|
73 |
+
min_level_db: -120
|
74 |
+
norm_type: gn
|
75 |
+
num_ckpt_keep: 3
|
76 |
+
num_heads: 2
|
77 |
+
num_sanity_val_steps: 5
|
78 |
+
num_spk: 1
|
79 |
+
num_test_samples: 20
|
80 |
+
num_valid_plots: 10
|
81 |
+
optimizer_adam_beta1: 0.9
|
82 |
+
optimizer_adam_beta2: 0.98
|
83 |
+
out_wav_norm: false
|
84 |
+
pitch_ar: false
|
85 |
+
pitch_enc_hidden_stride_kernel:
|
86 |
+
- 0,2,5
|
87 |
+
- 0,2,5
|
88 |
+
- 0,2,5
|
89 |
+
pitch_extractor_conv_layers: 2
|
90 |
+
pitch_loss: l1
|
91 |
+
pitch_norm: log
|
92 |
+
pitch_type: frame
|
93 |
+
pre_align_args:
|
94 |
+
allow_no_txt: false
|
95 |
+
denoise: false
|
96 |
+
forced_align: mfa
|
97 |
+
txt_processor: en
|
98 |
+
use_sox: false
|
99 |
+
use_tone: true
|
100 |
+
pre_align_cls: data_gen.tts.lj.pre_align.LJPreAlign
|
101 |
+
predictor_dropout: 0.5
|
102 |
+
predictor_grad: 0.1
|
103 |
+
predictor_hidden: -1
|
104 |
+
predictor_kernel: 5
|
105 |
+
predictor_layers: 2
|
106 |
+
prenet_dropout: 0.5
|
107 |
+
prenet_hidden_size: 256
|
108 |
+
pretrain_fs_ckpt: ''
|
109 |
+
processed_data_dir: data/processed/ljspeech
|
110 |
+
profile_infer: false
|
111 |
+
raw_data_dir: data/raw/LJSpeech-1.1
|
112 |
+
ref_norm_layer: bn
|
113 |
+
reset_phone_dict: true
|
114 |
+
save_best: false
|
115 |
+
save_ckpt: true
|
116 |
+
save_codes:
|
117 |
+
- configs
|
118 |
+
- modules
|
119 |
+
- tasks
|
120 |
+
- utils
|
121 |
+
- usr
|
122 |
+
save_f0: false
|
123 |
+
save_gt: false
|
124 |
+
seed: 1234
|
125 |
+
sort_by_len: true
|
126 |
+
stop_token_weight: 5.0
|
127 |
+
task_cls: tasks.tts.pe.PitchExtractionTask
|
128 |
+
test_ids:
|
129 |
+
- 68
|
130 |
+
- 70
|
131 |
+
- 74
|
132 |
+
- 87
|
133 |
+
- 110
|
134 |
+
- 172
|
135 |
+
- 190
|
136 |
+
- 215
|
137 |
+
- 231
|
138 |
+
- 294
|
139 |
+
- 316
|
140 |
+
- 324
|
141 |
+
- 402
|
142 |
+
- 422
|
143 |
+
- 485
|
144 |
+
- 500
|
145 |
+
- 505
|
146 |
+
- 508
|
147 |
+
- 509
|
148 |
+
- 519
|
149 |
+
test_input_dir: ''
|
150 |
+
test_num: 523
|
151 |
+
test_set_name: test
|
152 |
+
train_set_name: train
|
153 |
+
use_denoise: false
|
154 |
+
use_energy_embed: false
|
155 |
+
use_gt_dur: false
|
156 |
+
use_gt_f0: false
|
157 |
+
use_pitch_embed: true
|
158 |
+
use_pos_embed: true
|
159 |
+
use_spk_embed: false
|
160 |
+
use_spk_id: false
|
161 |
+
use_split_spk_id: false
|
162 |
+
use_uv: true
|
163 |
+
use_var_enc: false
|
164 |
+
val_check_interval: 2000
|
165 |
+
valid_num: 348
|
166 |
+
valid_set_name: valid
|
167 |
+
vocoder: pwg
|
168 |
+
vocoder_ckpt: ''
|
169 |
+
warmup_updates: 2000
|
170 |
+
weight_decay: 0
|
171 |
+
win_size: 512
|
172 |
+
work_dir: checkpoints/0102_xiaoma_pe
|
checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1863f12324e43783089ab933edeeb969106b851e30d71019ebbaa9b82099d82a
|
3 |
+
size 39141959
|
checkpoints/0109_hifigan_bigpopcs_hop128/config.yaml
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accumulate_grad_batches: 1
|
2 |
+
adam_b1: 0.8
|
3 |
+
adam_b2: 0.99
|
4 |
+
amp: false
|
5 |
+
audio_num_mel_bins: 80
|
6 |
+
audio_sample_rate: 24000
|
7 |
+
aux_context_window: 0
|
8 |
+
#base_config:
|
9 |
+
#- egs/egs_bases/singing/pwg.yaml
|
10 |
+
#- egs/egs_bases/tts/vocoder/hifigan.yaml
|
11 |
+
binarization_args:
|
12 |
+
reset_phone_dict: true
|
13 |
+
reset_word_dict: true
|
14 |
+
shuffle: false
|
15 |
+
trim_eos_bos: false
|
16 |
+
trim_sil: false
|
17 |
+
with_align: false
|
18 |
+
with_f0: true
|
19 |
+
with_f0cwt: false
|
20 |
+
with_linear: false
|
21 |
+
with_spk_embed: false
|
22 |
+
with_spk_id: true
|
23 |
+
with_txt: false
|
24 |
+
with_wav: true
|
25 |
+
with_word: false
|
26 |
+
binarizer_cls: data_gen.tts.singing.binarize.SingingBinarizer
|
27 |
+
binary_data_dir: data/binary/big_popcs_24k_hop128
|
28 |
+
check_val_every_n_epoch: 10
|
29 |
+
clip_grad_norm: 1
|
30 |
+
clip_grad_value: 0
|
31 |
+
datasets: []
|
32 |
+
debug: false
|
33 |
+
dec_ffn_kernel_size: 9
|
34 |
+
dec_layers: 4
|
35 |
+
dict_dir: ''
|
36 |
+
disc_start_steps: 40000
|
37 |
+
discriminator_grad_norm: 1
|
38 |
+
discriminator_optimizer_params:
|
39 |
+
eps: 1.0e-06
|
40 |
+
lr: 0.0002
|
41 |
+
weight_decay: 0.0
|
42 |
+
discriminator_params:
|
43 |
+
bias: true
|
44 |
+
conv_channels: 64
|
45 |
+
in_channels: 1
|
46 |
+
kernel_size: 3
|
47 |
+
layers: 10
|
48 |
+
nonlinear_activation: LeakyReLU
|
49 |
+
nonlinear_activation_params:
|
50 |
+
negative_slope: 0.2
|
51 |
+
out_channels: 1
|
52 |
+
use_weight_norm: true
|
53 |
+
discriminator_scheduler_params:
|
54 |
+
gamma: 0.999
|
55 |
+
step_size: 600
|
56 |
+
dropout: 0.1
|
57 |
+
ds_workers: 1
|
58 |
+
enc_ffn_kernel_size: 9
|
59 |
+
enc_layers: 4
|
60 |
+
endless_ds: true
|
61 |
+
ffn_act: gelu
|
62 |
+
ffn_padding: SAME
|
63 |
+
fft_size: 512
|
64 |
+
fmax: 12000
|
65 |
+
fmin: 30
|
66 |
+
frames_multiple: 1
|
67 |
+
gen_dir_name: ''
|
68 |
+
generator_grad_norm: 10
|
69 |
+
generator_optimizer_params:
|
70 |
+
eps: 1.0e-06
|
71 |
+
lr: 0.0002
|
72 |
+
weight_decay: 0.0
|
73 |
+
generator_params:
|
74 |
+
aux_channels: 80
|
75 |
+
dropout: 0.0
|
76 |
+
gate_channels: 128
|
77 |
+
in_channels: 1
|
78 |
+
kernel_size: 3
|
79 |
+
layers: 30
|
80 |
+
out_channels: 1
|
81 |
+
residual_channels: 64
|
82 |
+
skip_channels: 64
|
83 |
+
stacks: 3
|
84 |
+
upsample_net: ConvInUpsampleNetwork
|
85 |
+
upsample_params:
|
86 |
+
upsample_scales:
|
87 |
+
- 2
|
88 |
+
- 4
|
89 |
+
- 4
|
90 |
+
- 4
|
91 |
+
use_nsf: false
|
92 |
+
use_pitch_embed: true
|
93 |
+
use_weight_norm: true
|
94 |
+
generator_scheduler_params:
|
95 |
+
gamma: 0.999
|
96 |
+
step_size: 600
|
97 |
+
griffin_lim_iters: 60
|
98 |
+
hidden_size: 256
|
99 |
+
hop_size: 128
|
100 |
+
infer: false
|
101 |
+
lambda_adv: 1.0
|
102 |
+
lambda_cdisc: 4.0
|
103 |
+
lambda_energy: 0.0
|
104 |
+
lambda_f0: 0.0
|
105 |
+
lambda_mel: 5.0
|
106 |
+
lambda_mel_adv: 1.0
|
107 |
+
lambda_ph_dur: 0.0
|
108 |
+
lambda_sent_dur: 0.0
|
109 |
+
lambda_uv: 0.0
|
110 |
+
lambda_word_dur: 0.0
|
111 |
+
load_ckpt: ''
|
112 |
+
loud_norm: false
|
113 |
+
lr: 2.0
|
114 |
+
max_epochs: 1000
|
115 |
+
max_frames: 2400
|
116 |
+
max_input_tokens: 1550
|
117 |
+
max_samples: 8192
|
118 |
+
max_sentences: 20
|
119 |
+
max_tokens: 24000
|
120 |
+
max_updates: 3000000
|
121 |
+
max_valid_sentences: 1
|
122 |
+
max_valid_tokens: 60000
|
123 |
+
mel_loss: ssim:0.5|l1:0.5
|
124 |
+
mel_vmax: 1.5
|
125 |
+
mel_vmin: -6
|
126 |
+
min_frames: 0
|
127 |
+
min_level_db: -120
|
128 |
+
num_ckpt_keep: 3
|
129 |
+
num_heads: 2
|
130 |
+
num_mels: 80
|
131 |
+
num_sanity_val_steps: 5
|
132 |
+
num_spk: 100
|
133 |
+
num_test_samples: 0
|
134 |
+
num_valid_plots: 10
|
135 |
+
optimizer_adam_beta1: 0.9
|
136 |
+
optimizer_adam_beta2: 0.98
|
137 |
+
out_wav_norm: false
|
138 |
+
pitch_extractor: parselmouth
|
139 |
+
pitch_type: frame
|
140 |
+
pre_align_args:
|
141 |
+
allow_no_txt: false
|
142 |
+
denoise: false
|
143 |
+
sox_resample: true
|
144 |
+
sox_to_wav: false
|
145 |
+
trim_sil: false
|
146 |
+
txt_processor: zh
|
147 |
+
use_tone: false
|
148 |
+
pre_align_cls: data_gen.tts.singing.pre_align.SingingPreAlign
|
149 |
+
predictor_grad: 0.0
|
150 |
+
print_nan_grads: false
|
151 |
+
processed_data_dir: ''
|
152 |
+
profile_infer: false
|
153 |
+
raw_data_dir: ''
|
154 |
+
ref_level_db: 20
|
155 |
+
rename_tmux: true
|
156 |
+
rerun_gen: true
|
157 |
+
resblock: '1'
|
158 |
+
resblock_dilation_sizes:
|
159 |
+
- - 1
|
160 |
+
- 3
|
161 |
+
- 5
|
162 |
+
- - 1
|
163 |
+
- 3
|
164 |
+
- 5
|
165 |
+
- - 1
|
166 |
+
- 3
|
167 |
+
- 5
|
168 |
+
resblock_kernel_sizes:
|
169 |
+
- 3
|
170 |
+
- 7
|
171 |
+
- 11
|
172 |
+
resume_from_checkpoint: 0
|
173 |
+
save_best: true
|
174 |
+
save_codes: []
|
175 |
+
save_f0: true
|
176 |
+
save_gt: true
|
177 |
+
scheduler: rsqrt
|
178 |
+
seed: 1234
|
179 |
+
sort_by_len: true
|
180 |
+
stft_loss_params:
|
181 |
+
fft_sizes:
|
182 |
+
- 1024
|
183 |
+
- 2048
|
184 |
+
- 512
|
185 |
+
hop_sizes:
|
186 |
+
- 120
|
187 |
+
- 240
|
188 |
+
- 50
|
189 |
+
win_lengths:
|
190 |
+
- 600
|
191 |
+
- 1200
|
192 |
+
- 240
|
193 |
+
window: hann_window
|
194 |
+
task_cls: tasks.vocoder.hifigan.HifiGanTask
|
195 |
+
tb_log_interval: 100
|
196 |
+
test_ids: []
|
197 |
+
test_input_dir: ''
|
198 |
+
test_num: 50
|
199 |
+
test_prefixes: []
|
200 |
+
test_set_name: test
|
201 |
+
train_set_name: train
|
202 |
+
train_sets: ''
|
203 |
+
upsample_initial_channel: 512
|
204 |
+
upsample_kernel_sizes:
|
205 |
+
- 16
|
206 |
+
- 16
|
207 |
+
- 4
|
208 |
+
- 4
|
209 |
+
upsample_rates:
|
210 |
+
- 8
|
211 |
+
- 4
|
212 |
+
- 2
|
213 |
+
- 2
|
214 |
+
use_cdisc: false
|
215 |
+
use_cond_disc: false
|
216 |
+
use_fm_loss: false
|
217 |
+
use_gt_dur: true
|
218 |
+
use_gt_f0: true
|
219 |
+
use_mel_loss: true
|
220 |
+
use_ms_stft: false
|
221 |
+
use_pitch_embed: true
|
222 |
+
use_ref_enc: true
|
223 |
+
use_spec_disc: false
|
224 |
+
use_spk_embed: false
|
225 |
+
use_spk_id: false
|
226 |
+
use_split_spk_id: false
|
227 |
+
val_check_interval: 2000
|
228 |
+
valid_infer_interval: 10000
|
229 |
+
valid_monitor_key: val_loss
|
230 |
+
valid_monitor_mode: min
|
231 |
+
valid_set_name: valid
|
232 |
+
vocoder: pwg
|
233 |
+
vocoder_ckpt: ''
|
234 |
+
vocoder_denoise_c: 0.0
|
235 |
+
warmup_updates: 8000
|
236 |
+
weight_decay: 0
|
237 |
+
win_length: null
|
238 |
+
win_size: 512
|
239 |
+
window: hann
|
240 |
+
word_size: 3000
|
241 |
+
work_dir: checkpoints/0109_hifigan_bigpopcs_hop128
|
checkpoints/0109_hifigan_bigpopcs_hop128/model_ckpt_steps_1512000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cb68f3ce0c46ba0a8b6d49718f1fffdf5bd7bcab769a986fd2fd129835cc1d1
|
3 |
+
size 55827436
|
checkpoints/Unnamed/config.yaml
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
K_step: 1000
|
2 |
+
accumulate_grad_batches: 1
|
3 |
+
audio_num_mel_bins: 128
|
4 |
+
audio_sample_rate: 44100
|
5 |
+
binarization_args:
|
6 |
+
shuffle: false
|
7 |
+
with_align: true
|
8 |
+
with_f0: true
|
9 |
+
with_hubert: true
|
10 |
+
with_spk_embed: false
|
11 |
+
with_wav: false
|
12 |
+
binarizer_cls: preprocessing.SVCpre.SVCBinarizer
|
13 |
+
binary_data_dir: data/binary/Unnamed
|
14 |
+
check_val_every_n_epoch: 10
|
15 |
+
choose_test_manually: false
|
16 |
+
clip_grad_norm: 1
|
17 |
+
config_path: training/config_nsf.yaml
|
18 |
+
content_cond_steps: []
|
19 |
+
cwt_add_f0_loss: false
|
20 |
+
cwt_hidden_size: 128
|
21 |
+
cwt_layers: 2
|
22 |
+
cwt_loss: l1
|
23 |
+
cwt_std_scale: 0.8
|
24 |
+
datasets:
|
25 |
+
- opencpop
|
26 |
+
debug: false
|
27 |
+
dec_ffn_kernel_size: 9
|
28 |
+
dec_layers: 4
|
29 |
+
decay_steps: 60000
|
30 |
+
decoder_type: fft
|
31 |
+
dict_dir: ''
|
32 |
+
diff_decoder_type: wavenet
|
33 |
+
diff_loss_type: l2
|
34 |
+
dilation_cycle_length: 4
|
35 |
+
dropout: 0.1
|
36 |
+
ds_workers: 4
|
37 |
+
dur_enc_hidden_stride_kernel:
|
38 |
+
- 0,2,3
|
39 |
+
- 0,2,3
|
40 |
+
- 0,1,3
|
41 |
+
dur_loss: mse
|
42 |
+
dur_predictor_kernel: 3
|
43 |
+
dur_predictor_layers: 5
|
44 |
+
enc_ffn_kernel_size: 9
|
45 |
+
enc_layers: 4
|
46 |
+
encoder_K: 8
|
47 |
+
encoder_type: fft
|
48 |
+
endless_ds: false
|
49 |
+
f0_bin: 256
|
50 |
+
f0_max: 1100.0
|
51 |
+
f0_min: 40.0
|
52 |
+
ffn_act: gelu
|
53 |
+
ffn_padding: SAME
|
54 |
+
fft_size: 2048
|
55 |
+
fmax: 16000
|
56 |
+
fmin: 40
|
57 |
+
fs2_ckpt: ''
|
58 |
+
gaussian_start: true
|
59 |
+
gen_dir_name: ''
|
60 |
+
gen_tgt_spk_id: -1
|
61 |
+
hidden_size: 256
|
62 |
+
hop_size: 512
|
63 |
+
hubert_gpu: true
|
64 |
+
hubert_path: checkpoints/hubert/hubert_soft.pt
|
65 |
+
infer: false
|
66 |
+
keep_bins: 128
|
67 |
+
lambda_commit: 0.25
|
68 |
+
lambda_energy: 0.0
|
69 |
+
lambda_f0: 1.0
|
70 |
+
lambda_ph_dur: 0.3
|
71 |
+
lambda_sent_dur: 1.0
|
72 |
+
lambda_uv: 1.0
|
73 |
+
lambda_word_dur: 1.0
|
74 |
+
load_ckpt: ''
|
75 |
+
log_interval: 100
|
76 |
+
loud_norm: false
|
77 |
+
lr: 0.0008
|
78 |
+
max_beta: 0.02
|
79 |
+
max_epochs: 3000
|
80 |
+
max_eval_sentences: 1
|
81 |
+
max_eval_tokens: 60000
|
82 |
+
max_frames: 42000
|
83 |
+
max_input_tokens: 60000
|
84 |
+
max_sentences: 14
|
85 |
+
max_tokens: 128000
|
86 |
+
max_updates: 1000000
|
87 |
+
mel_loss: ssim:0.5|l1:0.5
|
88 |
+
mel_vmax: 1.5
|
89 |
+
mel_vmin: -6.0
|
90 |
+
min_level_db: -120
|
91 |
+
no_fs2: true
|
92 |
+
norm_type: gn
|
93 |
+
num_ckpt_keep: 10
|
94 |
+
num_heads: 2
|
95 |
+
num_sanity_val_steps: 1
|
96 |
+
num_spk: 1
|
97 |
+
num_test_samples: 0
|
98 |
+
num_valid_plots: 10
|
99 |
+
optimizer_adam_beta1: 0.9
|
100 |
+
optimizer_adam_beta2: 0.98
|
101 |
+
out_wav_norm: false
|
102 |
+
pe_ckpt: checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
|
103 |
+
pe_enable: false
|
104 |
+
perform_enhance: true
|
105 |
+
pitch_ar: false
|
106 |
+
pitch_enc_hidden_stride_kernel:
|
107 |
+
- 0,2,5
|
108 |
+
- 0,2,5
|
109 |
+
- 0,2,5
|
110 |
+
pitch_extractor: parselmouth
|
111 |
+
pitch_loss: l2
|
112 |
+
pitch_norm: log
|
113 |
+
pitch_type: frame
|
114 |
+
pndm_speedup: 10
|
115 |
+
pre_align_args:
|
116 |
+
allow_no_txt: false
|
117 |
+
denoise: false
|
118 |
+
forced_align: mfa
|
119 |
+
txt_processor: zh_g2pM
|
120 |
+
use_sox: true
|
121 |
+
use_tone: false
|
122 |
+
pre_align_cls: data_gen.singing.pre_align.SingingPreAlign
|
123 |
+
predictor_dropout: 0.5
|
124 |
+
predictor_grad: 0.1
|
125 |
+
predictor_hidden: -1
|
126 |
+
predictor_kernel: 5
|
127 |
+
predictor_layers: 5
|
128 |
+
prenet_dropout: 0.5
|
129 |
+
prenet_hidden_size: 256
|
130 |
+
pretrain_fs_ckpt: ''
|
131 |
+
processed_data_dir: xxx
|
132 |
+
profile_infer: false
|
133 |
+
raw_data_dir: data/raw/Unnamed
|
134 |
+
ref_norm_layer: bn
|
135 |
+
rel_pos: true
|
136 |
+
reset_phone_dict: true
|
137 |
+
residual_channels: 384
|
138 |
+
residual_layers: 20
|
139 |
+
save_best: true
|
140 |
+
save_ckpt: true
|
141 |
+
save_codes:
|
142 |
+
- configs
|
143 |
+
- modules
|
144 |
+
- src
|
145 |
+
- utils
|
146 |
+
save_f0: true
|
147 |
+
save_gt: false
|
148 |
+
schedule_type: linear
|
149 |
+
seed: 1234
|
150 |
+
sort_by_len: true
|
151 |
+
speaker_id: Unnamed
|
152 |
+
spec_max:
|
153 |
+
- 0.47615352272987366
|
154 |
+
- 0.6125704050064087
|
155 |
+
- 0.7518845796585083
|
156 |
+
- 0.900716245174408
|
157 |
+
- 0.8935521841049194
|
158 |
+
- 0.9057011604309082
|
159 |
+
- 0.9648348689079285
|
160 |
+
- 0.9044283032417297
|
161 |
+
- 0.9109272360801697
|
162 |
+
- 0.9744535088539124
|
163 |
+
- 0.9476388692855835
|
164 |
+
- 0.9883336424827576
|
165 |
+
- 1.0821290016174316
|
166 |
+
- 1.046391248703003
|
167 |
+
- 0.9829667806625366
|
168 |
+
- 1.0163493156433105
|
169 |
+
- 0.9825412631034851
|
170 |
+
- 1.0021960735321045
|
171 |
+
- 1.052114725112915
|
172 |
+
- 1.128888726234436
|
173 |
+
- 1.186057209968567
|
174 |
+
- 1.112004280090332
|
175 |
+
- 1.1282787322998047
|
176 |
+
- 1.051572322845459
|
177 |
+
- 1.1104764938354492
|
178 |
+
- 1.176831603050232
|
179 |
+
- 1.13348388671875
|
180 |
+
- 1.1075258255004883
|
181 |
+
- 1.1696264743804932
|
182 |
+
- 1.0231049060821533
|
183 |
+
- 0.9303848743438721
|
184 |
+
- 1.1257890462875366
|
185 |
+
- 1.1610286235809326
|
186 |
+
- 1.0335885286331177
|
187 |
+
- 1.0645352602005005
|
188 |
+
- 1.0619306564331055
|
189 |
+
- 1.1310148239135742
|
190 |
+
- 1.1191954612731934
|
191 |
+
- 1.1307402849197388
|
192 |
+
- 1.2094721794128418
|
193 |
+
- 1.2683185338974
|
194 |
+
- 1.1212272644042969
|
195 |
+
- 1.1781182289123535
|
196 |
+
- 1.1501952409744263
|
197 |
+
- 0.9884514808654785
|
198 |
+
- 0.9226155281066895
|
199 |
+
- 0.9469702839851379
|
200 |
+
- 1.023751139640808
|
201 |
+
- 1.1348609924316406
|
202 |
+
- 1.087107539176941
|
203 |
+
- 0.9899962544441223
|
204 |
+
- 1.061837077140808
|
205 |
+
- 1.0341650247573853
|
206 |
+
- 0.9019684195518494
|
207 |
+
- 0.7986546158790588
|
208 |
+
- 0.7983465194702148
|
209 |
+
- 0.7755436301231384
|
210 |
+
- 0.701917290687561
|
211 |
+
- 0.7639197707176208
|
212 |
+
- 0.7503461837768555
|
213 |
+
- 0.6701087951660156
|
214 |
+
- 0.5326520800590515
|
215 |
+
- 0.6320568323135376
|
216 |
+
- 0.4748716950416565
|
217 |
+
- 0.41016310453414917
|
218 |
+
- 0.4754445552825928
|
219 |
+
- 0.4267503023147583
|
220 |
+
- 0.391481876373291
|
221 |
+
- 0.3118276298046112
|
222 |
+
- 0.3193877339363098
|
223 |
+
- 0.3111794888973236
|
224 |
+
- 0.3342774212360382
|
225 |
+
- 0.1353837102651596
|
226 |
+
- 0.16596835851669312
|
227 |
+
- 0.1730986088514328
|
228 |
+
- 0.2325316220521927
|
229 |
+
- 0.17107760906219482
|
230 |
+
- 0.10877621918916702
|
231 |
+
- 0.2612082064151764
|
232 |
+
- 0.11200784891843796
|
233 |
+
- 0.14075303077697754
|
234 |
+
- 0.07312829792499542
|
235 |
+
- -0.011712555773556232
|
236 |
+
- 0.1741427332162857
|
237 |
+
- 0.19782507419586182
|
238 |
+
- 0.03305494412779808
|
239 |
+
- 0.004054426681250334
|
240 |
+
- 0.1011907309293747
|
241 |
+
- 0.1317272037267685
|
242 |
+
- 0.014256341382861137
|
243 |
+
- 0.019952761009335518
|
244 |
+
- -0.1253873109817505
|
245 |
+
- -0.14854255318641663
|
246 |
+
- -0.14063480496406555
|
247 |
+
- -0.1331133395433426
|
248 |
+
- -0.28339776396751404
|
249 |
+
- -0.38559386134147644
|
250 |
+
- -0.2798943519592285
|
251 |
+
- -0.19351321458816528
|
252 |
+
- -0.23238061368465424
|
253 |
+
- -0.2850213944911957
|
254 |
+
- -0.20320385694503784
|
255 |
+
- -0.24087588489055634
|
256 |
+
- -0.15823237597942352
|
257 |
+
- -0.13949760794639587
|
258 |
+
- -0.19627133011817932
|
259 |
+
- -0.1920071393251419
|
260 |
+
- -0.19384469091892242
|
261 |
+
- -0.22403620183467865
|
262 |
+
- -0.18197931349277496
|
263 |
+
- -0.28423866629600525
|
264 |
+
- -0.26859334111213684
|
265 |
+
- -0.3213472068309784
|
266 |
+
- -0.3303631842136383
|
267 |
+
- -0.3835512697696686
|
268 |
+
- -0.3256210386753082
|
269 |
+
- -0.3938714265823364
|
270 |
+
- -0.4373253881931305
|
271 |
+
- -0.4146285951137543
|
272 |
+
- -0.4861420691013336
|
273 |
+
- -0.4018196761608124
|
274 |
+
- -0.46770456433296204
|
275 |
+
- -0.4100344479084015
|
276 |
+
- -0.5364681482315063
|
277 |
+
- -0.5802102088928223
|
278 |
+
- -0.5856970548629761
|
279 |
+
- -0.47378262877464294
|
280 |
+
- -0.36258620023727417
|
281 |
+
spec_min:
|
282 |
+
- -4.999994277954102
|
283 |
+
- -4.999994277954102
|
284 |
+
- -4.999994277954102
|
285 |
+
- -4.999994277954102
|
286 |
+
- -4.999994277954102
|
287 |
+
- -4.999994277954102
|
288 |
+
- -4.999994277954102
|
289 |
+
- -4.999994277954102
|
290 |
+
- -4.999994277954102
|
291 |
+
- -4.999994277954102
|
292 |
+
- -4.999994277954102
|
293 |
+
- -4.999994277954102
|
294 |
+
- -4.999994277954102
|
295 |
+
- -4.999994277954102
|
296 |
+
- -4.999994277954102
|
297 |
+
- -4.999994277954102
|
298 |
+
- -4.999994277954102
|
299 |
+
- -4.999994277954102
|
300 |
+
- -4.999994277954102
|
301 |
+
- -4.999994277954102
|
302 |
+
- -4.999994277954102
|
303 |
+
- -4.999994277954102
|
304 |
+
- -4.999994277954102
|
305 |
+
- -4.999994277954102
|
306 |
+
- -4.999994277954102
|
307 |
+
- -4.999994277954102
|
308 |
+
- -4.999994277954102
|
309 |
+
- -4.999994277954102
|
310 |
+
- -4.999994277954102
|
311 |
+
- -4.999994277954102
|
312 |
+
- -4.999994277954102
|
313 |
+
- -4.999994277954102
|
314 |
+
- -4.999994277954102
|
315 |
+
- -4.999994277954102
|
316 |
+
- -4.999994277954102
|
317 |
+
- -4.999994277954102
|
318 |
+
- -4.999994277954102
|
319 |
+
- -4.999994277954102
|
320 |
+
- -4.999994277954102
|
321 |
+
- -4.999994277954102
|
322 |
+
- -4.999994277954102
|
323 |
+
- -4.999994277954102
|
324 |
+
- -4.999994277954102
|
325 |
+
- -4.999994277954102
|
326 |
+
- -4.999994277954102
|
327 |
+
- -4.999994277954102
|
328 |
+
- -4.999994277954102
|
329 |
+
- -4.999994277954102
|
330 |
+
- -4.999994277954102
|
331 |
+
- -4.999994277954102
|
332 |
+
- -4.999994277954102
|
333 |
+
- -4.999994277954102
|
334 |
+
- -4.999994277954102
|
335 |
+
- -4.999994277954102
|
336 |
+
- -4.999994277954102
|
337 |
+
- -4.999994277954102
|
338 |
+
- -4.999994277954102
|
339 |
+
- -4.999994277954102
|
340 |
+
- -4.999994277954102
|
341 |
+
- -4.999994277954102
|
342 |
+
- -4.999994277954102
|
343 |
+
- -4.999994277954102
|
344 |
+
- -4.999994277954102
|
345 |
+
- -4.999994277954102
|
346 |
+
- -4.999994277954102
|
347 |
+
- -4.999994277954102
|
348 |
+
- -4.999994277954102
|
349 |
+
- -4.999994277954102
|
350 |
+
- -4.999994277954102
|
351 |
+
- -4.999994277954102
|
352 |
+
- -4.999994277954102
|
353 |
+
- -4.999994277954102
|
354 |
+
- -4.999994277954102
|
355 |
+
- -4.999994277954102
|
356 |
+
- -4.999994277954102
|
357 |
+
- -4.999994277954102
|
358 |
+
- -4.999994277954102
|
359 |
+
- -4.999994277954102
|
360 |
+
- -4.999994277954102
|
361 |
+
- -4.999994277954102
|
362 |
+
- -4.999994277954102
|
363 |
+
- -4.999994277954102
|
364 |
+
- -4.999994277954102
|
365 |
+
- -4.999994277954102
|
366 |
+
- -4.999994277954102
|
367 |
+
- -4.999994277954102
|
368 |
+
- -4.999994277954102
|
369 |
+
- -4.999994277954102
|
370 |
+
- -4.999994277954102
|
371 |
+
- -4.999994277954102
|
372 |
+
- -4.999994277954102
|
373 |
+
- -4.999994277954102
|
374 |
+
- -4.999994277954102
|
375 |
+
- -4.999994277954102
|
376 |
+
- -4.999994277954102
|
377 |
+
- -4.999994277954102
|
378 |
+
- -4.999994277954102
|
379 |
+
- -4.999994277954102
|
380 |
+
- -4.999994277954102
|
381 |
+
- -4.999994277954102
|
382 |
+
- -4.999994277954102
|
383 |
+
- -4.999994277954102
|
384 |
+
- -4.999994277954102
|
385 |
+
- -4.999994277954102
|
386 |
+
- -4.999994277954102
|
387 |
+
- -4.999994277954102
|
388 |
+
- -4.999994277954102
|
389 |
+
- -4.999994277954102
|
390 |
+
- -4.999994277954102
|
391 |
+
- -4.999994277954102
|
392 |
+
- -4.999994277954102
|
393 |
+
- -4.999994277954102
|
394 |
+
- -4.999994277954102
|
395 |
+
- -4.999994277954102
|
396 |
+
- -4.999994277954102
|
397 |
+
- -4.999994277954102
|
398 |
+
- -4.999994277954102
|
399 |
+
- -4.999994277954102
|
400 |
+
- -4.999994277954102
|
401 |
+
- -4.999994277954102
|
402 |
+
- -4.999994277954102
|
403 |
+
- -4.999994277954102
|
404 |
+
- -4.999994277954102
|
405 |
+
- -4.999994277954102
|
406 |
+
- -4.999994277954102
|
407 |
+
- -4.999994277954102
|
408 |
+
- -4.999994277954102
|
409 |
+
- -4.999994277954102
|
410 |
+
spk_cond_steps: []
|
411 |
+
stop_token_weight: 5.0
|
412 |
+
task_cls: training.task.SVC_task.SVCTask
|
413 |
+
test_ids: []
|
414 |
+
test_input_dir: ''
|
415 |
+
test_num: 0
|
416 |
+
test_prefixes:
|
417 |
+
- test
|
418 |
+
test_set_name: test
|
419 |
+
timesteps: 1000
|
420 |
+
train_set_name: train
|
421 |
+
use_crepe: false
|
422 |
+
use_denoise: false
|
423 |
+
use_energy_embed: false
|
424 |
+
use_gt_dur: false
|
425 |
+
use_gt_f0: false
|
426 |
+
use_midi: false
|
427 |
+
use_nsf: true
|
428 |
+
use_pitch_embed: true
|
429 |
+
use_pos_embed: true
|
430 |
+
use_spk_embed: false
|
431 |
+
use_spk_id: false
|
432 |
+
use_split_spk_id: false
|
433 |
+
use_uv: false
|
434 |
+
use_var_enc: false
|
435 |
+
use_vec: false
|
436 |
+
val_check_interval: 1000
|
437 |
+
valid_num: 0
|
438 |
+
valid_set_name: valid
|
439 |
+
vocoder: network.vocoders.nsf_hifigan.NsfHifiGAN
|
440 |
+
vocoder_ckpt: checkpoints/nsf_hifigan/model
|
441 |
+
warmup_updates: 2000
|
442 |
+
wav2spec_eps: 1e-6
|
443 |
+
weight_decay: 0
|
444 |
+
win_size: 2048
|
445 |
+
work_dir: checkpoints/Unnamed
|
checkpoints/Unnamed/config_nsf.yaml
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
K_step: 1000
|
2 |
+
accumulate_grad_batches: 1
|
3 |
+
audio_num_mel_bins: 128
|
4 |
+
audio_sample_rate: 44100
|
5 |
+
binarization_args:
|
6 |
+
shuffle: false
|
7 |
+
with_align: true
|
8 |
+
with_f0: true
|
9 |
+
with_hubert: true
|
10 |
+
with_spk_embed: false
|
11 |
+
with_wav: false
|
12 |
+
binarizer_cls: preprocessing.SVCpre.SVCBinarizer
|
13 |
+
binary_data_dir: data/binary/Unnamed
|
14 |
+
check_val_every_n_epoch: 10
|
15 |
+
choose_test_manually: false
|
16 |
+
clip_grad_norm: 1
|
17 |
+
config_path: training/config_nsf.yaml
|
18 |
+
content_cond_steps: []
|
19 |
+
cwt_add_f0_loss: false
|
20 |
+
cwt_hidden_size: 128
|
21 |
+
cwt_layers: 2
|
22 |
+
cwt_loss: l1
|
23 |
+
cwt_std_scale: 0.8
|
24 |
+
datasets:
|
25 |
+
- opencpop
|
26 |
+
debug: false
|
27 |
+
dec_ffn_kernel_size: 9
|
28 |
+
dec_layers: 4
|
29 |
+
decay_steps: 20000
|
30 |
+
decoder_type: fft
|
31 |
+
dict_dir: ''
|
32 |
+
diff_decoder_type: wavenet
|
33 |
+
diff_loss_type: l2
|
34 |
+
dilation_cycle_length: 4
|
35 |
+
dropout: 0.1
|
36 |
+
ds_workers: 4
|
37 |
+
dur_enc_hidden_stride_kernel:
|
38 |
+
- 0,2,3
|
39 |
+
- 0,2,3
|
40 |
+
- 0,1,3
|
41 |
+
dur_loss: mse
|
42 |
+
dur_predictor_kernel: 3
|
43 |
+
dur_predictor_layers: 5
|
44 |
+
enc_ffn_kernel_size: 9
|
45 |
+
enc_layers: 4
|
46 |
+
encoder_K: 8
|
47 |
+
encoder_type: fft
|
48 |
+
endless_ds: false
|
49 |
+
f0_bin: 256
|
50 |
+
f0_max: 1100.0
|
51 |
+
f0_min: 40.0
|
52 |
+
ffn_act: gelu
|
53 |
+
ffn_padding: SAME
|
54 |
+
fft_size: 2048
|
55 |
+
fmax: 16000
|
56 |
+
fmin: 40
|
57 |
+
fs2_ckpt: ''
|
58 |
+
gaussian_start: true
|
59 |
+
gen_dir_name: ''
|
60 |
+
gen_tgt_spk_id: -1
|
61 |
+
hidden_size: 256
|
62 |
+
hop_size: 512
|
63 |
+
hubert_gpu: true
|
64 |
+
hubert_path: checkpoints/hubert/hubert_soft.pt
|
65 |
+
infer: false
|
66 |
+
keep_bins: 128
|
67 |
+
lambda_commit: 0.25
|
68 |
+
lambda_energy: 0.0
|
69 |
+
lambda_f0: 1.0
|
70 |
+
lambda_ph_dur: 0.3
|
71 |
+
lambda_sent_dur: 1.0
|
72 |
+
lambda_uv: 1.0
|
73 |
+
lambda_word_dur: 1.0
|
74 |
+
load_ckpt: pretrain/nehito_ckpt_steps_1000000.ckpt
|
75 |
+
log_interval: 100
|
76 |
+
loud_norm: false
|
77 |
+
lr: 5.0e-05
|
78 |
+
max_beta: 0.02
|
79 |
+
max_epochs: 3000
|
80 |
+
max_eval_sentences: 1
|
81 |
+
max_eval_tokens: 60000
|
82 |
+
max_frames: 42000
|
83 |
+
max_input_tokens: 60000
|
84 |
+
max_sentences: 12
|
85 |
+
max_tokens: 128000
|
86 |
+
max_updates: 1000000
|
87 |
+
mel_loss: ssim:0.5|l1:0.5
|
88 |
+
mel_vmax: 1.5
|
89 |
+
mel_vmin: -6.0
|
90 |
+
min_level_db: -120
|
91 |
+
no_fs2: true
|
92 |
+
norm_type: gn
|
93 |
+
num_ckpt_keep: 10
|
94 |
+
num_heads: 2
|
95 |
+
num_sanity_val_steps: 1
|
96 |
+
num_spk: 1
|
97 |
+
num_test_samples: 0
|
98 |
+
num_valid_plots: 10
|
99 |
+
optimizer_adam_beta1: 0.9
|
100 |
+
optimizer_adam_beta2: 0.98
|
101 |
+
out_wav_norm: false
|
102 |
+
pe_ckpt: checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
|
103 |
+
pe_enable: false
|
104 |
+
perform_enhance: true
|
105 |
+
pitch_ar: false
|
106 |
+
pitch_enc_hidden_stride_kernel:
|
107 |
+
- 0,2,5
|
108 |
+
- 0,2,5
|
109 |
+
- 0,2,5
|
110 |
+
pitch_extractor: parselmouth
|
111 |
+
pitch_loss: l2
|
112 |
+
pitch_norm: log
|
113 |
+
pitch_type: frame
|
114 |
+
pndm_speedup: 10
|
115 |
+
pre_align_args:
|
116 |
+
allow_no_txt: false
|
117 |
+
denoise: false
|
118 |
+
forced_align: mfa
|
119 |
+
txt_processor: zh_g2pM
|
120 |
+
use_sox: true
|
121 |
+
use_tone: false
|
122 |
+
pre_align_cls: data_gen.singing.pre_align.SingingPreAlign
|
123 |
+
predictor_dropout: 0.5
|
124 |
+
predictor_grad: 0.1
|
125 |
+
predictor_hidden: -1
|
126 |
+
predictor_kernel: 5
|
127 |
+
predictor_layers: 5
|
128 |
+
prenet_dropout: 0.5
|
129 |
+
prenet_hidden_size: 256
|
130 |
+
pretrain_fs_ckpt: ''
|
131 |
+
processed_data_dir: xxx
|
132 |
+
profile_infer: false
|
133 |
+
raw_data_dir: data/raw/Unnamed
|
134 |
+
ref_norm_layer: bn
|
135 |
+
rel_pos: true
|
136 |
+
reset_phone_dict: true
|
137 |
+
residual_channels: 384
|
138 |
+
residual_layers: 20
|
139 |
+
save_best: false
|
140 |
+
save_ckpt: true
|
141 |
+
save_codes:
|
142 |
+
- configs
|
143 |
+
- modules
|
144 |
+
- src
|
145 |
+
- utils
|
146 |
+
save_f0: true
|
147 |
+
save_gt: false
|
148 |
+
schedule_type: linear
|
149 |
+
seed: 1234
|
150 |
+
sort_by_len: true
|
151 |
+
speaker_id: Unnamed
|
152 |
+
spec_max:
|
153 |
+
- -0.4884430170059204
|
154 |
+
- 0.004534448496997356
|
155 |
+
- 0.5684943795204163
|
156 |
+
- 0.6527385115623474
|
157 |
+
- 0.659079372882843
|
158 |
+
- 0.7416915893554688
|
159 |
+
- 0.844637930393219
|
160 |
+
- 0.806076169013977
|
161 |
+
- 0.7238750457763672
|
162 |
+
- 0.9744535088539124
|
163 |
+
- 0.9476388692855835
|
164 |
+
- 0.9883336424827576
|
165 |
+
- 1.0821290016174316
|
166 |
+
- 1.046391248703003
|
167 |
+
- 0.9829667806625366
|
168 |
+
- 1.0163493156433105
|
169 |
+
- 0.9825412631034851
|
170 |
+
- 0.9834834337234497
|
171 |
+
- 0.9811502695083618
|
172 |
+
- 1.128888726234436
|
173 |
+
- 1.186057209968567
|
174 |
+
- 1.112004280090332
|
175 |
+
- 1.1282787322998047
|
176 |
+
- 1.051572322845459
|
177 |
+
- 1.0510444641113281
|
178 |
+
- 1.0110565423965454
|
179 |
+
- 0.9236567616462708
|
180 |
+
- 0.8036720156669617
|
181 |
+
- 0.8383486270904541
|
182 |
+
- 0.7735869288444519
|
183 |
+
- 0.9303848743438721
|
184 |
+
- 1.1257890462875366
|
185 |
+
- 1.1610286235809326
|
186 |
+
- 1.0335885286331177
|
187 |
+
- 1.0645352602005005
|
188 |
+
- 1.0619306564331055
|
189 |
+
- 1.1310148239135742
|
190 |
+
- 1.1191954612731934
|
191 |
+
- 1.1307402849197388
|
192 |
+
- 0.8837698698043823
|
193 |
+
- 1.1153966188430786
|
194 |
+
- 1.1045044660568237
|
195 |
+
- 1.0479614734649658
|
196 |
+
- 0.9491603374481201
|
197 |
+
- 0.9858523011207581
|
198 |
+
- 0.9226155281066895
|
199 |
+
- 0.9469702839851379
|
200 |
+
- 0.8791896104812622
|
201 |
+
- 0.997624933719635
|
202 |
+
- 0.9068642854690552
|
203 |
+
- 0.9575618505477905
|
204 |
+
- 0.8551340699195862
|
205 |
+
- 0.8397778272628784
|
206 |
+
- 0.8908605575561523
|
207 |
+
- 0.7986546158790588
|
208 |
+
- 0.7983465194702148
|
209 |
+
- 0.6965265274047852
|
210 |
+
- 0.640673041343689
|
211 |
+
- 0.6690735220909119
|
212 |
+
- 0.5631484985351562
|
213 |
+
- 0.48587048053741455
|
214 |
+
- 0.5326520800590515
|
215 |
+
- 0.4286036193370819
|
216 |
+
- 0.35252484679222107
|
217 |
+
- 0.3290073573589325
|
218 |
+
- 0.4754445552825928
|
219 |
+
- 0.3632410168647766
|
220 |
+
- 0.391481876373291
|
221 |
+
- 0.20288512110710144
|
222 |
+
- 0.18305960297584534
|
223 |
+
- 0.1539602279663086
|
224 |
+
- 0.03451670706272125
|
225 |
+
- -0.16881510615348816
|
226 |
+
- -0.02030198462307453
|
227 |
+
- 0.10024689882993698
|
228 |
+
- -0.023952053859829903
|
229 |
+
- 0.05635542422533035
|
230 |
+
- 0.10877621918916702
|
231 |
+
- 0.006155031267553568
|
232 |
+
- 0.07318088412284851
|
233 |
+
- 0.14075303077697754
|
234 |
+
- 0.057870157063007355
|
235 |
+
- -0.0520513579249382
|
236 |
+
- 0.1741427332162857
|
237 |
+
- -0.11464552581310272
|
238 |
+
- 0.03305494412779808
|
239 |
+
- -0.06897418200969696
|
240 |
+
- -0.12598733603954315
|
241 |
+
- -0.09894973039627075
|
242 |
+
- -0.2817802429199219
|
243 |
+
- -0.0825519785284996
|
244 |
+
- -0.3040400445461273
|
245 |
+
- -0.4998124837875366
|
246 |
+
- -0.36957985162734985
|
247 |
+
- -0.5409602522850037
|
248 |
+
- -0.49879470467567444
|
249 |
+
- -0.713716983795166
|
250 |
+
- -0.6545754671096802
|
251 |
+
- -0.6425778865814209
|
252 |
+
- -0.6178902387619019
|
253 |
+
- -0.47356730699539185
|
254 |
+
- -0.6165243983268738
|
255 |
+
- -0.5841533541679382
|
256 |
+
- -0.5759448409080505
|
257 |
+
- -0.5498068332672119
|
258 |
+
- -0.4661938548088074
|
259 |
+
- -0.5811225771903992
|
260 |
+
- -0.614664614200592
|
261 |
+
- -0.3902229070663452
|
262 |
+
- -0.7037366032600403
|
263 |
+
- -0.7260795831680298
|
264 |
+
- -0.7540019750595093
|
265 |
+
- -0.8360528945922852
|
266 |
+
- -0.8374698758125305
|
267 |
+
- -0.8328713178634644
|
268 |
+
- -0.9081047177314758
|
269 |
+
- -0.9679695963859558
|
270 |
+
- -0.9587443470954895
|
271 |
+
- -1.0706337690353394
|
272 |
+
- -0.9818469285964966
|
273 |
+
- -0.8360191583633423
|
274 |
+
- -0.9938981533050537
|
275 |
+
- -1.0823708772659302
|
276 |
+
- -1.0617167949676514
|
277 |
+
- -1.1093820333480835
|
278 |
+
- -1.1300138235092163
|
279 |
+
- -1.2141350507736206
|
280 |
+
- -1.3147293329238892
|
281 |
+
spec_min:
|
282 |
+
- -4.473258972167969
|
283 |
+
- -4.244492530822754
|
284 |
+
- -4.390527725219727
|
285 |
+
- -4.209497928619385
|
286 |
+
- -4.446024417877197
|
287 |
+
- -4.3960185050964355
|
288 |
+
- -4.164802551269531
|
289 |
+
- -4.5063300132751465
|
290 |
+
- -4.608232021331787
|
291 |
+
- -4.251623630523682
|
292 |
+
- -4.4799604415893555
|
293 |
+
- -4.733210563659668
|
294 |
+
- -4.411860466003418
|
295 |
+
- -4.609100818634033
|
296 |
+
- -4.726972579956055
|
297 |
+
- -4.428761959075928
|
298 |
+
- -4.487612247467041
|
299 |
+
- -4.525552749633789
|
300 |
+
- -4.480506896972656
|
301 |
+
- -4.589383125305176
|
302 |
+
- -4.608384132385254
|
303 |
+
- -4.385376453399658
|
304 |
+
- -4.816161632537842
|
305 |
+
- -4.8706955909729
|
306 |
+
- -4.848956108093262
|
307 |
+
- -4.431278705596924
|
308 |
+
- -4.999994277954102
|
309 |
+
- -4.818373203277588
|
310 |
+
- -4.527368068695068
|
311 |
+
- -4.872085094451904
|
312 |
+
- -4.894851207733154
|
313 |
+
- -4.511948585510254
|
314 |
+
- -4.534575939178467
|
315 |
+
- -4.57792854309082
|
316 |
+
- -4.444681644439697
|
317 |
+
- -4.628803253173828
|
318 |
+
- -4.74341344833374
|
319 |
+
- -4.85427713394165
|
320 |
+
- -4.723776817321777
|
321 |
+
- -4.7166008949279785
|
322 |
+
- -4.749168395996094
|
323 |
+
- -4.67240047454834
|
324 |
+
- -4.590690612792969
|
325 |
+
- -4.576009750366211
|
326 |
+
- -4.542308330535889
|
327 |
+
- -4.890907287597656
|
328 |
+
- -4.613001823425293
|
329 |
+
- -4.494126796722412
|
330 |
+
- -4.474257946014404
|
331 |
+
- -4.574635028839111
|
332 |
+
- -4.4817585945129395
|
333 |
+
- -4.651009559631348
|
334 |
+
- -4.478254795074463
|
335 |
+
- -4.523812770843506
|
336 |
+
- -4.546536922454834
|
337 |
+
- -4.535660266876221
|
338 |
+
- -4.470296859741211
|
339 |
+
- -4.577486991882324
|
340 |
+
- -4.541748046875
|
341 |
+
- -4.428532123565674
|
342 |
+
- -4.461862564086914
|
343 |
+
- -4.489077091217041
|
344 |
+
- -4.515830039978027
|
345 |
+
- -4.395663738250732
|
346 |
+
- -4.439975738525391
|
347 |
+
- -4.4290876388549805
|
348 |
+
- -4.397741794586182
|
349 |
+
- -4.478252410888672
|
350 |
+
- -4.399686336517334
|
351 |
+
- -4.45617151260376
|
352 |
+
- -4.434477806091309
|
353 |
+
- -4.442898750305176
|
354 |
+
- -4.5840277671813965
|
355 |
+
- -4.537542819976807
|
356 |
+
- -4.492046356201172
|
357 |
+
- -4.534677505493164
|
358 |
+
- -4.477104187011719
|
359 |
+
- -4.511618614196777
|
360 |
+
- -4.387601375579834
|
361 |
+
- -4.499236106872559
|
362 |
+
- -4.3717169761657715
|
363 |
+
- -4.4242024421691895
|
364 |
+
- -4.4055657386779785
|
365 |
+
- -4.429355144500732
|
366 |
+
- -4.4636993408203125
|
367 |
+
- -4.508528232574463
|
368 |
+
- -4.515079498291016
|
369 |
+
- -4.426190376281738
|
370 |
+
- -4.433525085449219
|
371 |
+
- -4.4200215339660645
|
372 |
+
- -4.421280860900879
|
373 |
+
- -4.400143623352051
|
374 |
+
- -4.419166088104248
|
375 |
+
- -4.429825305938721
|
376 |
+
- -4.436781406402588
|
377 |
+
- -4.51550817489624
|
378 |
+
- -4.518474578857422
|
379 |
+
- -4.495880603790283
|
380 |
+
- -4.483924865722656
|
381 |
+
- -4.409562587738037
|
382 |
+
- -4.3811845779418945
|
383 |
+
- -4.411908149719238
|
384 |
+
- -4.427165985107422
|
385 |
+
- -4.396549701690674
|
386 |
+
- -4.340637683868408
|
387 |
+
- -4.405435085296631
|
388 |
+
- -4.367630481719971
|
389 |
+
- -4.419083595275879
|
390 |
+
- -4.389026165008545
|
391 |
+
- -4.371067047119141
|
392 |
+
- -4.370710372924805
|
393 |
+
- -4.3755269050598145
|
394 |
+
- -4.39500093460083
|
395 |
+
- -4.451773166656494
|
396 |
+
- -4.365351676940918
|
397 |
+
- -4.348028182983398
|
398 |
+
- -4.408270359039307
|
399 |
+
- -4.390385627746582
|
400 |
+
- -4.347931861877441
|
401 |
+
- -4.378237247467041
|
402 |
+
- -4.426717758178711
|
403 |
+
- -4.364233493804932
|
404 |
+
- -4.371546745300293
|
405 |
+
- -4.402477264404297
|
406 |
+
- -4.430750846862793
|
407 |
+
- -4.404538154602051
|
408 |
+
- -4.384459018707275
|
409 |
+
- -4.401677131652832
|
410 |
+
spk_cond_steps: []
|
411 |
+
stop_token_weight: 5.0
|
412 |
+
task_cls: training.task.SVC_task.SVCTask
|
413 |
+
test_ids: []
|
414 |
+
test_input_dir: ''
|
415 |
+
test_num: 0
|
416 |
+
test_prefixes:
|
417 |
+
- test
|
418 |
+
test_set_name: test
|
419 |
+
timesteps: 1000
|
420 |
+
train_set_name: train
|
421 |
+
use_crepe: false
|
422 |
+
use_denoise: false
|
423 |
+
use_energy_embed: false
|
424 |
+
use_gt_dur: false
|
425 |
+
use_gt_f0: false
|
426 |
+
use_midi: false
|
427 |
+
use_nsf: true
|
428 |
+
use_pitch_embed: true
|
429 |
+
use_pos_embed: true
|
430 |
+
use_spk_embed: false
|
431 |
+
use_spk_id: false
|
432 |
+
use_split_spk_id: false
|
433 |
+
use_uv: false
|
434 |
+
use_var_enc: false
|
435 |
+
use_vec: false
|
436 |
+
val_check_interval: 1000
|
437 |
+
valid_num: 0
|
438 |
+
valid_set_name: valid
|
439 |
+
vocoder: network.vocoders.nsf_hifigan.NsfHifiGAN
|
440 |
+
vocoder_ckpt: checkpoints/nsf_hifigan/model
|
441 |
+
warmup_updates: 2000
|
442 |
+
wav2spec_eps: 1e-6
|
443 |
+
weight_decay: 0
|
444 |
+
win_size: 2048
|
445 |
+
work_dir: checkpoints/HokoHifi
|
checkpoints/Unnamed/lightning_logs/lastest/hparams.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
checkpoints/Unnamed/model_ckpt_steps_192000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c441462923580893a6170dd00126084be0a20b387b1c4fb1860755acd36c881b
|
3 |
+
size 391390823
|
checkpoints/hubert/hubert_soft.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
|
3 |
+
size 378435957
|
checkpoints/nsf_hifigan/NOTICE.txt
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- DiffSinger Community Vocoder ---
|
2 |
+
|
3 |
+
ARCHITECTURE: NSF-HiFiGAN
|
4 |
+
RELEASE DATE: 2022-12-11
|
5 |
+
|
6 |
+
HYPER PARAMETERS:
|
7 |
+
- 44100 sample rate
|
8 |
+
- 128 mel bins
|
9 |
+
- 512 hop size
|
10 |
+
- 2048 window size
|
11 |
+
- fmin at 40Hz
|
12 |
+
- fmax at 16000Hz
|
13 |
+
|
14 |
+
|
15 |
+
NOTICE:
|
16 |
+
|
17 |
+
All model weights in the [DiffSinger Community Vocoder Project](https://openvpi.github.io/vocoders/), including
|
18 |
+
model weights in this directory, are provided by the [OpenVPI Team](https://github.com/openvpi/), under the
|
19 |
+
[Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/) license.
|
20 |
+
|
21 |
+
|
22 |
+
ACKNOWLEDGEMENTS:
|
23 |
+
|
24 |
+
Training data of this vocoder is provided and permitted by the following organizations, societies and individuals:
|
25 |
+
|
26 |
+
孙飒 https://www.qfssr.cn
|
27 |
+
赤松_Akamatsu https://www.zhibin.club
|
28 |
+
乐威 https://www.zhibin.club
|
29 |
+
伯添 https://space.bilibili.com/24087011
|
30 |
+
雲宇光 https://space.bilibili.com/660675050
|
31 |
+
橙子言 https://space.bilibili.com/318486464
|
32 |
+
人衣大人 https://space.bilibili.com/2270344
|
33 |
+
玖蝶 https://space.bilibili.com/676771003
|
34 |
+
Yuuko
|
35 |
+
白夜零BYL https://space.bilibili.com/1605040503
|
36 |
+
嗷天 https://space.bilibili.com/5675252
|
37 |
+
洛泠羽 https://space.bilibili.com/347373318
|
38 |
+
灰条纹的灰猫君 https://space.bilibili.com/2083633
|
39 |
+
幽寂 https://space.bilibili.com/478860
|
40 |
+
恶魔王女 https://space.bilibili.com/2475098
|
41 |
+
AlexYHX 芮晴
|
42 |
+
绮萱 https://y.qq.com/n/ryqq/singer/003HjD6H4aZn1K
|
43 |
+
诗芸 https://y.qq.com/n/ryqq/singer/0005NInj142zm0
|
44 |
+
汐蕾 https://y.qq.com/n/ryqq/singer/0023cWMH1Bq1PJ
|
45 |
+
1262917464
|
46 |
+
炜阳
|
47 |
+
叶卡yolka
|
48 |
+
幸の夏 https://space.bilibili.com/1017297686
|
49 |
+
暮色未量 https://space.bilibili.com/272904686
|
50 |
+
晓寞sama https://space.bilibili.com/3463394
|
51 |
+
没头绪的节操君
|
52 |
+
串串BunC https://space.bilibili.com/95817834
|
53 |
+
落雨 https://space.bilibili.com/1292427
|
54 |
+
长尾巴的翎艾 https://space.bilibili.com/1638666
|
55 |
+
声闻计划 https://space.bilibili.com/392812269
|
56 |
+
唐家大小姐 http://5sing.kugou.com/palmusic/default.html
|
57 |
+
不伊子
|
58 |
+
|
59 |
+
Training machines are provided by:
|
60 |
+
|
61 |
+
花儿不哭 https://space.bilibili.com/5760446
|
62 |
+
|
63 |
+
|
64 |
+
TERMS OF REDISTRIBUTIONS:
|
65 |
+
|
66 |
+
1. Do not sell this vocoder, or charge any fees from redistributing it, as prohibited by
|
67 |
+
the license.
|
68 |
+
2. Include a copy of the CC BY-NC-SA 4.0 license, or a link referring to it.
|
69 |
+
3. Include a copy of this notice, or any other notices informing that this vocoder is
|
70 |
+
provided by the OpenVPI Team, that this vocoder is licensed under CC BY-NC-SA 4.0, and
|
71 |
+
with a complete acknowledgement list as shown above.
|
72 |
+
4. If you fine-tuned or modified the weights, leave a notice about what has been changed.
|
73 |
+
5. (Optional) Leave a link to the official release page of the vocoder, and tell users
|
74 |
+
that other versions and future updates of this vocoder can be obtained from the website.
|
checkpoints/nsf_hifigan/NOTICE.zh-CN.txt
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- DiffSinger 社区声码器 ---
|
2 |
+
|
3 |
+
架构:NSF-HiFiGAN
|
4 |
+
发布日期:2022-12-11
|
5 |
+
|
6 |
+
超参数:
|
7 |
+
- 44100 sample rate
|
8 |
+
- 128 mel bins
|
9 |
+
- 512 hop size
|
10 |
+
- 2048 window size
|
11 |
+
- fmin at 40Hz
|
12 |
+
- fmax at 16000Hz
|
13 |
+
|
14 |
+
|
15 |
+
注意事项:
|
16 |
+
|
17 |
+
[DiffSinger 社区声码器企划](https://openvpi.github.io/vocoders/) 中的所有模型权重,
|
18 |
+
包括此目录下的模型权重,均由 [OpenVPI Team](https://github.com/openvpi/) 提供,并基于
|
19 |
+
[Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
20 |
+
进行许可。
|
21 |
+
|
22 |
+
|
23 |
+
致谢:
|
24 |
+
|
25 |
+
此声码器的训练数据由以下组织、社团和个人提供并许可:
|
26 |
+
|
27 |
+
孙飒 https://www.qfssr.cn
|
28 |
+
赤松_Akamatsu https://www.zhibin.club
|
29 |
+
乐威 https://www.zhibin.club
|
30 |
+
伯添 https://space.bilibili.com/24087011
|
31 |
+
雲宇光 https://space.bilibili.com/660675050
|
32 |
+
橙子言 https://space.bilibili.com/318486464
|
33 |
+
人衣大人 https://space.bilibili.com/2270344
|
34 |
+
玖蝶 https://space.bilibili.com/676771003
|
35 |
+
Yuuko
|
36 |
+
白夜零BYL https://space.bilibili.com/1605040503
|
37 |
+
嗷天 https://space.bilibili.com/5675252
|
38 |
+
洛泠羽 https://space.bilibili.com/347373318
|
39 |
+
灰条纹的灰猫君 https://space.bilibili.com/2083633
|
40 |
+
幽寂 https://space.bilibili.com/478860
|
41 |
+
恶魔王女 https://space.bilibili.com/2475098
|
42 |
+
AlexYHX 芮晴
|
43 |
+
绮萱 https://y.qq.com/n/ryqq/singer/003HjD6H4aZn1K
|
44 |
+
诗芸 https://y.qq.com/n/ryqq/singer/0005NInj142zm0
|
45 |
+
汐蕾 https://y.qq.com/n/ryqq/singer/0023cWMH1Bq1PJ
|
46 |
+
1262917464
|
47 |
+
炜阳
|
48 |
+
叶卡yolka
|
49 |
+
幸の夏 https://space.bilibili.com/1017297686
|
50 |
+
暮色未量 https://space.bilibili.com/272904686
|
51 |
+
晓寞sama https://space.bilibili.com/3463394
|
52 |
+
没头绪的节操君
|
53 |
+
串串BunC https://space.bilibili.com/95817834
|
54 |
+
落雨 https://space.bilibili.com/1292427
|
55 |
+
长尾巴的翎艾 https://space.bilibili.com/1638666
|
56 |
+
声闻计划 https://space.bilibili.com/392812269
|
57 |
+
唐家大小姐 http://5sing.kugou.com/palmusic/default.html
|
58 |
+
不伊子
|
59 |
+
|
60 |
+
训练算力的提供者如下:
|
61 |
+
|
62 |
+
花儿不哭 https://space.bilibili.com/5760446
|
63 |
+
|
64 |
+
|
65 |
+
二次分发条款:
|
66 |
+
|
67 |
+
1. 请勿售卖此声码器或从其二次分发过程中收取任何费用,因为此类行为受到许可证的禁止。
|
68 |
+
2. 请在二次分发文件中包含一份 CC BY-NC-SA 4.0 许可证的副本或指向该许可证的链接。
|
69 |
+
3. 请在二次分发文件中包含这份声明,或以其他形式声明此声码器由 OpenVPI Team 提供并基于 CC BY-NC-SA 4.0 许可,
|
70 |
+
并附带上述完整的致谢名单。
|
71 |
+
4. 如果您微调或修改了权重,请留下一份关于其受到了何种修改的说明。
|
72 |
+
5.(可选)留下一份指向此声码器的官方发布页面的链接,并告知使用者可从该网站获取此声码器的其他版本和未来的更新。
|
checkpoints/nsf_hifigan/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 4,
|
4 |
+
"batch_size": 10,
|
5 |
+
"learning_rate": 0.0002,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [ 8, 8, 2, 2, 2],
|
12 |
+
"upsample_kernel_sizes": [16,16, 4, 4, 4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
"discriminator_periods": [3, 5, 7, 11, 17, 23, 37],
|
17 |
+
|
18 |
+
"segment_size": 16384,
|
19 |
+
"num_mels": 128,
|
20 |
+
"num_freq": 1025,
|
21 |
+
"n_fft" : 2048,
|
22 |
+
"hop_size": 512,
|
23 |
+
"win_size": 2048,
|
24 |
+
|
25 |
+
"sampling_rate": 44100,
|
26 |
+
|
27 |
+
"fmin": 40,
|
28 |
+
"fmax": 16000,
|
29 |
+
"fmax_for_loss": null,
|
30 |
+
|
31 |
+
"num_workers": 16,
|
32 |
+
|
33 |
+
"dist_config": {
|
34 |
+
"dist_backend": "nccl",
|
35 |
+
"dist_url": "tcp://localhost:54321",
|
36 |
+
"world_size": 1
|
37 |
+
}
|
38 |
+
}
|
ckpt.jpg
ADDED
![]() |
config.yaml
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
K_step: 1000
|
2 |
+
accumulate_grad_batches: 1
|
3 |
+
audio_num_mel_bins: 80
|
4 |
+
audio_sample_rate: 24000
|
5 |
+
binarization_args:
|
6 |
+
shuffle: false
|
7 |
+
with_align: true
|
8 |
+
with_f0: true
|
9 |
+
with_hubert: true
|
10 |
+
with_spk_embed: false
|
11 |
+
with_wav: false
|
12 |
+
binarizer_cls: preprocessing.SVCpre.SVCBinarizer
|
13 |
+
binary_data_dir: data/binary/atri
|
14 |
+
check_val_every_n_epoch: 10
|
15 |
+
choose_test_manually: false
|
16 |
+
clip_grad_norm: 1
|
17 |
+
config_path: training/config.yaml
|
18 |
+
content_cond_steps: []
|
19 |
+
cwt_add_f0_loss: false
|
20 |
+
cwt_hidden_size: 128
|
21 |
+
cwt_layers: 2
|
22 |
+
cwt_loss: l1
|
23 |
+
cwt_std_scale: 0.8
|
24 |
+
datasets:
|
25 |
+
- opencpop
|
26 |
+
debug: false
|
27 |
+
dec_ffn_kernel_size: 9
|
28 |
+
dec_layers: 4
|
29 |
+
decay_steps: 30000
|
30 |
+
decoder_type: fft
|
31 |
+
dict_dir: ''
|
32 |
+
diff_decoder_type: wavenet
|
33 |
+
diff_loss_type: l2
|
34 |
+
dilation_cycle_length: 4
|
35 |
+
dropout: 0.1
|
36 |
+
ds_workers: 4
|
37 |
+
dur_enc_hidden_stride_kernel:
|
38 |
+
- 0,2,3
|
39 |
+
- 0,2,3
|
40 |
+
- 0,1,3
|
41 |
+
dur_loss: mse
|
42 |
+
dur_predictor_kernel: 3
|
43 |
+
dur_predictor_layers: 5
|
44 |
+
enc_ffn_kernel_size: 9
|
45 |
+
enc_layers: 4
|
46 |
+
encoder_K: 8
|
47 |
+
encoder_type: fft
|
48 |
+
endless_ds: False
|
49 |
+
f0_bin: 256
|
50 |
+
f0_max: 1100.0
|
51 |
+
f0_min: 50.0
|
52 |
+
ffn_act: gelu
|
53 |
+
ffn_padding: SAME
|
54 |
+
fft_size: 512
|
55 |
+
fmax: 12000
|
56 |
+
fmin: 30
|
57 |
+
fs2_ckpt: ''
|
58 |
+
gaussian_start: true
|
59 |
+
gen_dir_name: ''
|
60 |
+
gen_tgt_spk_id: -1
|
61 |
+
hidden_size: 256
|
62 |
+
hop_size: 128
|
63 |
+
hubert_gpu: true
|
64 |
+
hubert_path: checkpoints/hubert/hubert_soft.pt
|
65 |
+
infer: false
|
66 |
+
keep_bins: 80
|
67 |
+
lambda_commit: 0.25
|
68 |
+
lambda_energy: 0.0
|
69 |
+
lambda_f0: 1.0
|
70 |
+
lambda_ph_dur: 0.3
|
71 |
+
lambda_sent_dur: 1.0
|
72 |
+
lambda_uv: 1.0
|
73 |
+
lambda_word_dur: 1.0
|
74 |
+
load_ckpt: ''
|
75 |
+
log_interval: 100
|
76 |
+
loud_norm: false
|
77 |
+
lr: 5.0e-05
|
78 |
+
max_beta: 0.02
|
79 |
+
max_epochs: 3000
|
80 |
+
max_eval_sentences: 1
|
81 |
+
max_eval_tokens: 60000
|
82 |
+
max_frames: 42000
|
83 |
+
max_input_tokens: 60000
|
84 |
+
max_sentences: 24
|
85 |
+
max_tokens: 128000
|
86 |
+
max_updates: 1000000
|
87 |
+
mel_loss: ssim:0.5|l1:0.5
|
88 |
+
mel_vmax: 1.5
|
89 |
+
mel_vmin: -6.0
|
90 |
+
min_level_db: -120
|
91 |
+
norm_type: gn
|
92 |
+
num_ckpt_keep: 10
|
93 |
+
num_heads: 2
|
94 |
+
num_sanity_val_steps: 1
|
95 |
+
num_spk: 1
|
96 |
+
num_test_samples: 0
|
97 |
+
num_valid_plots: 10
|
98 |
+
optimizer_adam_beta1: 0.9
|
99 |
+
optimizer_adam_beta2: 0.98
|
100 |
+
out_wav_norm: false
|
101 |
+
pe_ckpt: checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
|
102 |
+
pe_enable: false
|
103 |
+
perform_enhance: true
|
104 |
+
pitch_ar: false
|
105 |
+
pitch_enc_hidden_stride_kernel:
|
106 |
+
- 0,2,5
|
107 |
+
- 0,2,5
|
108 |
+
- 0,2,5
|
109 |
+
pitch_extractor: parselmouth
|
110 |
+
pitch_loss: l2
|
111 |
+
pitch_norm: log
|
112 |
+
pitch_type: frame
|
113 |
+
pndm_speedup: 10
|
114 |
+
pre_align_args:
|
115 |
+
allow_no_txt: false
|
116 |
+
denoise: false
|
117 |
+
forced_align: mfa
|
118 |
+
txt_processor: zh_g2pM
|
119 |
+
use_sox: true
|
120 |
+
use_tone: false
|
121 |
+
pre_align_cls: data_gen.singing.pre_align.SingingPreAlign
|
122 |
+
predictor_dropout: 0.5
|
123 |
+
predictor_grad: 0.1
|
124 |
+
predictor_hidden: -1
|
125 |
+
predictor_kernel: 5
|
126 |
+
predictor_layers: 5
|
127 |
+
prenet_dropout: 0.5
|
128 |
+
prenet_hidden_size: 256
|
129 |
+
pretrain_fs_ckpt: pretrain/nyaru/model_ckpt_steps_60000.ckpt
|
130 |
+
processed_data_dir: xxx
|
131 |
+
profile_infer: false
|
132 |
+
raw_data_dir: data/raw/atri
|
133 |
+
ref_norm_layer: bn
|
134 |
+
rel_pos: true
|
135 |
+
reset_phone_dict: true
|
136 |
+
residual_channels: 256
|
137 |
+
residual_layers: 20
|
138 |
+
save_best: false
|
139 |
+
save_ckpt: true
|
140 |
+
save_codes:
|
141 |
+
- configs
|
142 |
+
- modules
|
143 |
+
- src
|
144 |
+
- utils
|
145 |
+
save_f0: true
|
146 |
+
save_gt: false
|
147 |
+
schedule_type: linear
|
148 |
+
seed: 1234
|
149 |
+
sort_by_len: true
|
150 |
+
speaker_id: atri
|
151 |
+
spec_max:
|
152 |
+
- 0.2987259328365326
|
153 |
+
- 0.29721200466156006
|
154 |
+
- 0.23978209495544434
|
155 |
+
- 0.208412766456604
|
156 |
+
- 0.25777050852775574
|
157 |
+
- 0.2514476478099823
|
158 |
+
- 0.1129382848739624
|
159 |
+
- 0.03415697440505028
|
160 |
+
- 0.09860049188137054
|
161 |
+
- 0.10637332499027252
|
162 |
+
- 0.13287633657455444
|
163 |
+
- 0.19744250178337097
|
164 |
+
- 0.10040587931871414
|
165 |
+
- 0.13735432922840118
|
166 |
+
- 0.15107455849647522
|
167 |
+
- 0.17196381092071533
|
168 |
+
- 0.08298977464437485
|
169 |
+
- 0.0632769986987114
|
170 |
+
- 0.02723858878016472
|
171 |
+
- -0.001819317927584052
|
172 |
+
- -0.029565516859292984
|
173 |
+
- -0.023574354127049446
|
174 |
+
- -0.01633293740451336
|
175 |
+
- 0.07143621146678925
|
176 |
+
- 0.021580500528216362
|
177 |
+
- 0.07257916033267975
|
178 |
+
- -0.024349519982933998
|
179 |
+
- -0.06165708228945732
|
180 |
+
- -0.10486568510532379
|
181 |
+
- -0.1363687664270401
|
182 |
+
- -0.13333871960639954
|
183 |
+
- -0.13955898582935333
|
184 |
+
- -0.16613495349884033
|
185 |
+
- -0.17636367678642273
|
186 |
+
- -0.2786925733089447
|
187 |
+
- -0.22967253625392914
|
188 |
+
- -0.31897130608558655
|
189 |
+
- -0.18007366359233856
|
190 |
+
- -0.29366692900657654
|
191 |
+
- -0.2871025800704956
|
192 |
+
- -0.36748355627059937
|
193 |
+
- -0.46071451902389526
|
194 |
+
- -0.5464922189712524
|
195 |
+
- -0.5719417333602905
|
196 |
+
- -0.6020897626876831
|
197 |
+
- -0.6239874958992004
|
198 |
+
- -0.5653440952301025
|
199 |
+
- -0.6508013606071472
|
200 |
+
- -0.628247857093811
|
201 |
+
- -0.6809687614440918
|
202 |
+
- -0.569259762763977
|
203 |
+
- -0.5423558354377747
|
204 |
+
- -0.5811785459518433
|
205 |
+
- -0.5359002351760864
|
206 |
+
- -0.6565515398979187
|
207 |
+
- -0.7143737077713013
|
208 |
+
- -0.8502675890922546
|
209 |
+
- -0.7979224920272827
|
210 |
+
- -0.7110578417778015
|
211 |
+
- -0.763409435749054
|
212 |
+
- -0.7984790802001953
|
213 |
+
- -0.6927220821380615
|
214 |
+
- -0.658117413520813
|
215 |
+
- -0.7486468553543091
|
216 |
+
- -0.5949879884719849
|
217 |
+
- -0.7494576573371887
|
218 |
+
- -0.7400822639465332
|
219 |
+
- -0.6822793483734131
|
220 |
+
- -0.7773582339286804
|
221 |
+
- -0.661201536655426
|
222 |
+
- -0.791329026222229
|
223 |
+
- -0.8982341885566711
|
224 |
+
- -0.8736728429794312
|
225 |
+
- -0.7701027393341064
|
226 |
+
- -0.8490535616874695
|
227 |
+
- -0.7479292154312134
|
228 |
+
- -0.9320166110992432
|
229 |
+
- -1.2862414121627808
|
230 |
+
- -2.8936190605163574
|
231 |
+
- -2.924229860305786
|
232 |
+
spec_min:
|
233 |
+
- -6.0
|
234 |
+
- -6.0
|
235 |
+
- -6.0
|
236 |
+
- -6.0
|
237 |
+
- -6.0
|
238 |
+
- -6.0
|
239 |
+
- -6.0
|
240 |
+
- -6.0
|
241 |
+
- -6.0
|
242 |
+
- -6.0
|
243 |
+
- -6.0
|
244 |
+
- -6.0
|
245 |
+
- -6.0
|
246 |
+
- -6.0
|
247 |
+
- -6.0
|
248 |
+
- -6.0
|
249 |
+
- -6.0
|
250 |
+
- -6.0
|
251 |
+
- -6.0
|
252 |
+
- -6.0
|
253 |
+
- -6.0
|
254 |
+
- -6.0
|
255 |
+
- -6.0
|
256 |
+
- -6.0
|
257 |
+
- -6.0
|
258 |
+
- -6.0
|
259 |
+
- -6.0
|
260 |
+
- -6.0
|
261 |
+
- -6.0
|
262 |
+
- -6.0
|
263 |
+
- -6.0
|
264 |
+
- -6.0
|
265 |
+
- -6.0
|
266 |
+
- -6.0
|
267 |
+
- -6.0
|
268 |
+
- -6.0
|
269 |
+
- -6.0
|
270 |
+
- -6.0
|
271 |
+
- -6.0
|
272 |
+
- -6.0
|
273 |
+
- -6.0
|
274 |
+
- -6.0
|
275 |
+
- -6.0
|
276 |
+
- -6.0
|
277 |
+
- -6.0
|
278 |
+
- -6.0
|
279 |
+
- -6.0
|
280 |
+
- -6.0
|
281 |
+
- -6.0
|
282 |
+
- -6.0
|
283 |
+
- -6.0
|
284 |
+
- -6.0
|
285 |
+
- -6.0
|
286 |
+
- -6.0
|
287 |
+
- -6.0
|
288 |
+
- -6.0
|
289 |
+
- -6.0
|
290 |
+
- -6.0
|
291 |
+
- -6.0
|
292 |
+
- -6.0
|
293 |
+
- -6.0
|
294 |
+
- -6.0
|
295 |
+
- -6.0
|
296 |
+
- -6.0
|
297 |
+
- -6.0
|
298 |
+
- -6.0
|
299 |
+
- -6.0
|
300 |
+
- -5.999454021453857
|
301 |
+
- -5.8822431564331055
|
302 |
+
- -5.892064571380615
|
303 |
+
- -5.882402420043945
|
304 |
+
- -5.786972522735596
|
305 |
+
- -5.746835231781006
|
306 |
+
- -5.8594512939453125
|
307 |
+
- -5.7389445304870605
|
308 |
+
- -5.718059539794922
|
309 |
+
- -5.779720306396484
|
310 |
+
- -5.801984786987305
|
311 |
+
- -6.0
|
312 |
+
- -6.0
|
313 |
+
spk_cond_steps: []
|
314 |
+
stop_token_weight: 5.0
|
315 |
+
task_cls: training.task.SVC_task.SVCTask
|
316 |
+
test_ids: []
|
317 |
+
test_input_dir: ''
|
318 |
+
test_num: 0
|
319 |
+
test_prefixes:
|
320 |
+
- test
|
321 |
+
test_set_name: test
|
322 |
+
timesteps: 1000
|
323 |
+
train_set_name: train
|
324 |
+
use_crepe: true
|
325 |
+
use_denoise: false
|
326 |
+
use_energy_embed: false
|
327 |
+
use_gt_dur: false
|
328 |
+
use_gt_f0: false
|
329 |
+
use_midi: false
|
330 |
+
use_nsf: true
|
331 |
+
use_pitch_embed: true
|
332 |
+
use_pos_embed: true
|
333 |
+
use_spk_embed: false
|
334 |
+
use_spk_id: false
|
335 |
+
use_split_spk_id: false
|
336 |
+
use_uv: false
|
337 |
+
use_var_enc: false
|
338 |
+
use_vec: false
|
339 |
+
val_check_interval: 2000
|
340 |
+
valid_num: 0
|
341 |
+
valid_set_name: valid
|
342 |
+
vocoder: network.vocoders.hifigan.HifiGAN
|
343 |
+
vocoder_ckpt: checkpoints/0109_hifigan_bigpopcs_hop128
|
344 |
+
warmup_updates: 2000
|
345 |
+
wav2spec_eps: 1e-6
|
346 |
+
weight_decay: 0
|
347 |
+
win_size: 512
|
348 |
+
work_dir: checkpoints/atri
|
349 |
+
no_fs2: false
|
doc/train_and_inference.markdown
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Diff-SVC(train/inference by yourself)
|
2 |
+
## 0.环境配置
|
3 |
+
>注意:requirements文件已更新,目前分为3个版本,可自行选择使用。\
|
4 |
+
1. requirements.txt 是此仓库测试的原始完整环境,Torch1.12.1+cu113,可选择直接pip 或删除其中与pytorch有关的项目(torch/torchvision)后再pip,并使用自己的torch环境
|
5 |
+
```
|
6 |
+
pip install -r requirements.txt
|
7 |
+
```
|
8 |
+
>2. (推荐)requirements_short.txt 是上述环境的手动整理版,不含torch本体,也可以直接
|
9 |
+
```
|
10 |
+
pip install -r requirements_short.txt
|
11 |
+
```
|
12 |
+
>3. 根目录下有一份@三千整理的依赖列表requirements.png,是在某品牌云服务器上跑通的,不过此torch版本已不兼容目前版本代码,但是其他部分版本可以参考,十分感谢
|
13 |
+
|
14 |
+
## 1.推理
|
15 |
+
>使用根目录下的inference.ipynb进行推理或使用经过作者适配的@小狼的infer.py\
|
16 |
+
在第一个block中修改如下参数:
|
17 |
+
```
|
18 |
+
config_path='checkpoints压缩包中config.yaml的位置'
|
19 |
+
如'./checkpoints/nyaru/config.yaml'
|
20 |
+
config和checkpoints是一一对应的,请不要使用其他config
|
21 |
+
|
22 |
+
project_name='这个项目的名称'
|
23 |
+
如'nyaru'
|
24 |
+
|
25 |
+
model_path='ckpt文件的全路径'
|
26 |
+
如'./checkpoints/nyaru/model_ckpt_steps_112000.ckpt'
|
27 |
+
|
28 |
+
hubert_gpu=True
|
29 |
+
推理时是否使用gpu推理hubert(模型中的一个模块),不影响模型的其他部分
|
30 |
+
目前版本已大幅减小hubert的gpu占用,在1060 6G显存下可完整推理,不需要关闭了。
|
31 |
+
另外现已支持长音频自动切片功能(ipynb和infer.py均可),超过30s的音频将自动在静音处切片处理,感谢@小狼的代码
|
32 |
+
|
33 |
+
```
|
34 |
+
### 可调节参数:
|
35 |
+
```
|
36 |
+
wav_fn='xxx.wav'#传入音频的路径,默认在项目根目录中
|
37 |
+
|
38 |
+
use_crepe=True
|
39 |
+
#crepe是一个F0算法,效果好但速度慢,改成False会使用效果稍逊于crepe但较快的parselmouth算法
|
40 |
+
|
41 |
+
thre=0.05
|
42 |
+
#crepe的噪声过滤阈值,源音频干净可适当调大,噪音多就保持这个数值或者调小,前面改成False后这个参数不起作用
|
43 |
+
|
44 |
+
pndm_speedup=20
|
45 |
+
#推理加速算法倍数,默认是1000步,这里填成10就是只使用100步合成,是一个中规中矩的数值,这个数值可以高到50倍(20步合成)没有明显质量损失,再大可能会有可观的质量损失,注意如果下方开启了use_gt_mel, 应保证这个数值小于add_noise_step,并尽量让其能够整除
|
46 |
+
|
47 |
+
key=0
|
48 |
+
#变调参数,默认为0(不是1!!),将源音频的音高升高key个半音后合成,如男声转女生,可填入8或者12等(12就是升高一整个8度)
|
49 |
+
|
50 |
+
use_pe=True
|
51 |
+
#梅尔谱合成音频时使用的F0提取算法,如果改成False将使用源音频的F0\
|
52 |
+
这里填True和False合成会略有差异,通常是True会好些,但也不尽然,对合成速度几乎无影响\
|
53 |
+
(无论key填什么 这里都是可以自由选择的,不影响)\
|
54 |
+
44.1kHz下不支持此功能,会自动关闭,开着也不报错就是了
|
55 |
+
|
56 |
+
use_gt_mel=False
|
57 |
+
#这个选项类似于AI画图的图生图功能,如果打开,产生的音频将是输入声音与目标说话人声音的混合,混合比例由下一个参数确定
|
58 |
+
注意!!!:这个参数如果改成True,请确保key填成0,不支持变调
|
59 |
+
|
60 |
+
add_noise_step=500
|
61 |
+
#与上个参数有关,控制两种声音的比例,填入1是完全的源声线,填入1000是完全的目标声线,能听出来是两者均等混合的数值大约在300附近(并不是线性的,另外这个参数如果调的很小,可以把pndm加速倍率调低,增加合成质量)
|
62 |
+
|
63 |
+
wav_gen='yyy.wav'#输出音频的路径,默认在项目根目录中,可通过改变扩展名更改保存文件类型
|
64 |
+
```
|
65 |
+
如果使用infer.py,修改方式类似,需要修改__name__=='__main__'中的部分,然后在根目录中执行\
|
66 |
+
python infer.py\
|
67 |
+
这种方式需要将原音频放入raw中并在results中查找结果
|
68 |
+
## 2.数据预处理与训练
|
69 |
+
### 2.1 准备数据
|
70 |
+
>目前支持wav格式和ogg格式的音频数据,采样率最好高于24kHz,程序会自动处理采样率和声道问题。采样率不可低于16kHz(一般不会的)\
|
71 |
+
音频需要切片为5-15s为宜的短音频,长度没有具体要求,但不宜过长过短。音频需要为纯目标人干声,不可以有背景音乐和其他人声音,最好也不要有过重的混响等。若经过去伴奏等处理,请尽量保证处理后的音频质量。\
|
72 |
+
目前仅支持单人训练,总时长尽量保证在3h或以上,不需要额外任何标注,将音频文件放在下述raw_data_dir下即可,这个目录下的结构可以自由定义,程序会自主找到所需文件。
|
73 |
+
|
74 |
+
### 2.2 修改超参数配置
|
75 |
+
>首先请备份一份config.yaml(此文件对应24kHz声码器, 44.1kHz声码器请使用config_nsf.yaml),然后修改它\
|
76 |
+
可能会用到的参数如下(以工程名为nyaru为例):
|
77 |
+
```
|
78 |
+
K_step: 1000
|
79 |
+
#diffusion过程总的step,建议不要修改
|
80 |
+
|
81 |
+
binary_data_dir: data/binary/nyaru
|
82 |
+
预处理后数据的存放地址:需要将后缀改成工程名字
|
83 |
+
|
84 |
+
config_path: training/config.yaml
|
85 |
+
你要使用的这份yaml自身的地址,由于预处理过程中会写入数据,所以这个地址务必修改成将要存放这份yaml文件的完整路径
|
86 |
+
|
87 |
+
choose_test_manually: false
|
88 |
+
手动选择测试集,默认关闭,自动随机抽取5条音频作为测试集。
|
89 |
+
如果改为ture,请在test_prefixes:中填入测试数据的文件名前缀,程序会将以对应前缀开头的文件作为测试集
|
90 |
+
这是个列表,可以填多个前缀,如:
|
91 |
+
test_prefixes:
|
92 |
+
- test
|
93 |
+
- aaaa
|
94 |
+
- 5012
|
95 |
+
- speaker1024
|
96 |
+
重要:测试集*不可以*为空,为了不产生意外影响,建议尽量不要手动选择测试集
|
97 |
+
|
98 |
+
endless_ds:False
|
99 |
+
如果你的数据集过小,每个epoch时间很短,请将此项打开,将把正常的1000epoch作为一个epoch计算
|
100 |
+
|
101 |
+
hubert_path: checkpoints/hubert/hubert.pt
|
102 |
+
hubert模型的存放地址,确保这个路径是对的,一般解压checkpoints包之后就是这个路径不需要改,现已使用torch版本推理
|
103 |
+
hubert_gpu:True
|
104 |
+
是否在预处理时使用gpu运行hubert(模型的一个模块),关闭后使用cpu,但耗时会显著增加。另外模型训练完推理时hubert是否用gpu是在inference中单独控制的,不受此处影响。目前hubert改为torch版后已经可以做到在1060 6G显存gpu上进行预处理,与直接推理1分钟内的音频不超出显存限制,一般不需要关了。
|
105 |
+
|
106 |
+
lr: 0.0008
|
107 |
+
#初始的学习率:这个数字对应于88的batchsize,如果batchsize更小,可以调低这个数值一些
|
108 |
+
|
109 |
+
decay_steps: 20000
|
110 |
+
每20000步学习率衰减为原来的一半,如果batchsize比较小,请调大这个数值
|
111 |
+
|
112 |
+
#对于30-40左右的batchsize,推荐lr=0.0004,decay_steps=40000
|
113 |
+
|
114 |
+
max_frames: 42000
|
115 |
+
max_input_tokens: 6000
|
116 |
+
max_sentences: 88
|
117 |
+
max_tokens: 128000
|
118 |
+
#batchsize是由这几个参数动态算出来的,如果不太清楚具体含义,可以只改动max_sentences这个参数,填入batchsize的最大限制值,以免炸显存
|
119 |
+
|
120 |
+
pe_ckpt: checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
|
121 |
+
#pe模型路径,确保这个文件存在,具体作用参考inference部分
|
122 |
+
|
123 |
+
raw_data_dir: data/raw/nyaru
|
124 |
+
#存放预处理前原始数据的位置,请将原始wav数据放在这个目录下,内部文件结构无所谓,会自动解构
|
125 |
+
|
126 |
+
residual_channels: 384
|
127 |
+
residual_layers: 20
|
128 |
+
#控制核心网络规模的一组参数,越大参数越多炼的越慢,但效果不一定会变好,大一点的数据集可以把第一个改成512。这个可以自行实验效果,不过不了解的话尽量不动。
|
129 |
+
|
130 |
+
speaker_id: nyaru
|
131 |
+
#训练的说话人名字,目前只支持单说话人,请在这里填写(只是观赏作用,没有实际意义的参数)
|
132 |
+
|
133 |
+
use_crepe: true
|
134 |
+
#在数据预处理中使用crepe提取F0,追求效果请打开,追求速度可以关闭
|
135 |
+
|
136 |
+
val_check_interval: 2000
|
137 |
+
#每2000steps推理测试集并保存ckpt
|
138 |
+
|
139 |
+
vocoder_ckpt:checkpoints/0109_hifigan_bigpopcs_hop128
|
140 |
+
#24kHz下为对应声码器的目录, 44.1kHz下为对应声码器的文件名, 注意不要填错
|
141 |
+
|
142 |
+
work_dir: checkpoints/nyaru
|
143 |
+
#修改后缀为工程名(也可以删掉或完全留空自动生成,但别乱填)
|
144 |
+
no_fs2: true
|
145 |
+
#对网络encoder的精简,能缩减模型体积,加快训练,且并未发现有对网络表现损害的直接证据。默认打开
|
146 |
+
|
147 |
+
```
|
148 |
+
>其他的参数如果你不知道它是做什么的,请不要修改,即使你看着名称可能以为你知道它是做什么的。
|
149 |
+
|
150 |
+
### 2.3 数据预处理
|
151 |
+
在diff-svc的目录下执行以下命令:\
|
152 |
+
#windows
|
153 |
+
```
|
154 |
+
set PYTHONPATH=.
|
155 |
+
set CUDA_VISIBLE_DEVICES=0
|
156 |
+
python preprocessing/binarize.py --config training/config.yaml
|
157 |
+
```
|
158 |
+
#linux
|
159 |
+
```
|
160 |
+
export PYTHONPATH=.
|
161 |
+
CUDA_VISIBLE_DEVICES=0 python preprocessing/binarize.py --config training/config.yaml
|
162 |
+
```
|
163 |
+
对于预处理,@小狼准备了一份可以分段处理hubert和其他特征的代码,如果正常处理显存不足,可以先python ./network/hubert/hubert_model.py
|
164 |
+
然后再运行正常的指令,能够识别提前处理好的hubert特征
|
165 |
+
### 2.4 训练
|
166 |
+
#windows
|
167 |
+
```
|
168 |
+
set CUDA_VISIBLE_DEVICES=0
|
169 |
+
python run.py --config training/config.yaml --exp_name nyaru --reset
|
170 |
+
```
|
171 |
+
#linux
|
172 |
+
```
|
173 |
+
CUDA_VISIBLE_DEVICES=0 python run.py --config training/config.yaml --exp_name nyaru --reset
|
174 |
+
```
|
175 |
+
>需要将exp_name改为你的工程名,并修改config路径,请确保和预处理使用的是同一个config文件\
|
176 |
+
*重要* :训练完成后,若之前不是在本地数据预处理,除了需要下载对应的ckpt文件,也需要将config文件下载下来,作为推理时使用的config,不可以使用本地之前上传上去那份。因为预处理时会向config文件中写入内容。推理时要保持使用的config和预处理使用的config是同一份。
|
177 |
+
|
178 |
+
|
179 |
+
### 2.5 可能出现的问题:
|
180 |
+
>2.5.1 'Upsample' object has no attribute 'recompute_scale_factor'\
|
181 |
+
此问题发现于cuda11.3对应的torch中,若出现此问题,请通过合适的方法(如ide自动跳转等)找到你的python依赖包中的torch.nn.modules.upsampling.py文件(如conda环境中为conda目录\envs\环境目录\Lib\site-packages\torch\nn\modules\upsampling.py),修改其153-154行
|
182 |
+
```
|
183 |
+
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,recompute_scale_factor=self.recompute_scale_factor)
|
184 |
+
```
|
185 |
+
>改为
|
186 |
+
```
|
187 |
+
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
|
188 |
+
# recompute_scale_factor=self.recompute_scale_factor)
|
189 |
+
```
|
190 |
+
>2.5.2 no module named 'utils'\
|
191 |
+
请在你的运行环境(如colab笔记本)中以如下方式设置:
|
192 |
+
```
|
193 |
+
import os
|
194 |
+
os.environ['PYTHONPATH']='.'
|
195 |
+
!CUDA_VISIBLE_DEVICES=0 python preprocessing/binarize.py --config training/config.yaml
|
196 |
+
```
|
197 |
+
注意一定要在项目文件夹的根目录中执行
|
198 |
+
>2.5.3 cannot load library 'libsndfile.so'\
|
199 |
+
可能会在linux环境中遇到的错误,请执行以下指令
|
200 |
+
```
|
201 |
+
apt-get install libsndfile1 -y
|
202 |
+
```
|
203 |
+
>2.5.4 cannot load import 'consume_prefix_in_state_dict_if_present'\
|
204 |
+
torch版本过低,请更换高版本torch
|
205 |
+
|
206 |
+
>2.5.5 预处理数据过慢\
|
207 |
+
检查是否在配置中开启了use_crepe,将其关闭可显著提升速度。\
|
208 |
+
检查配置中hubert_gpu是否开启。
|
209 |
+
|
210 |
+
如有其他问题,请加入QQ频道或discord频道询问。
|
flask_api.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import soundfile
|
6 |
+
from flask import Flask, request, send_file
|
7 |
+
from flask_cors import CORS
|
8 |
+
|
9 |
+
from infer_tools.infer_tool import Svc
|
10 |
+
from utils.hparams import hparams
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
|
14 |
+
CORS(app)
|
15 |
+
|
16 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
|
19 |
+
@app.route("/voiceChangeModel", methods=["POST"])
|
20 |
+
def voice_change_model():
|
21 |
+
request_form = request.form
|
22 |
+
wave_file = request.files.get("sample", None)
|
23 |
+
# 变调信息
|
24 |
+
f_pitch_change = float(request_form.get("fPitchChange", 0))
|
25 |
+
# DAW所需的采样率
|
26 |
+
daw_sample = int(float(request_form.get("sampleRate", 0)))
|
27 |
+
speaker_id = int(float(request_form.get("sSpeakId", 0)))
|
28 |
+
# http获得wav文件并转换
|
29 |
+
input_wav_path = io.BytesIO(wave_file.read())
|
30 |
+
# 模型推理
|
31 |
+
_f0_tst, _f0_pred, _audio = model.infer(input_wav_path, key=f_pitch_change, acc=accelerate, use_pe=False,
|
32 |
+
use_crepe=False)
|
33 |
+
tar_audio = librosa.resample(_audio, hparams["audio_sample_rate"], daw_sample)
|
34 |
+
# 返回音频
|
35 |
+
out_wav_path = io.BytesIO()
|
36 |
+
soundfile.write(out_wav_path, tar_audio, daw_sample, format="wav")
|
37 |
+
out_wav_path.seek(0)
|
38 |
+
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
# 工程文件夹名,训练时用的那个
|
43 |
+
project_name = "firefox"
|
44 |
+
model_path = f'./checkpoints/{project_name}/model_ckpt_steps_188000.ckpt'
|
45 |
+
config_path = f'./checkpoints/{project_name}/config.yaml'
|
46 |
+
|
47 |
+
# 加速倍数
|
48 |
+
accelerate = 50
|
49 |
+
hubert_gpu = True
|
50 |
+
|
51 |
+
model = Svc(project_name, config_path, hubert_gpu, model_path)
|
52 |
+
|
53 |
+
# 此处与vst插件对应,不建议更改
|
54 |
+
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
|
infer.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile
|
8 |
+
|
9 |
+
from infer_tools import infer_tool
|
10 |
+
from infer_tools import slicer
|
11 |
+
from infer_tools.infer_tool import Svc
|
12 |
+
from utils.hparams import hparams
|
13 |
+
|
14 |
+
chunks_dict = infer_tool.read_temp("./infer_tools/new_chunks_temp.json")
|
15 |
+
|
16 |
+
|
17 |
+
def run_clip(svc_model, key, acc, use_pe, use_crepe, thre, use_gt_mel, add_noise_step, project_name='', f_name=None,
|
18 |
+
file_path=None, out_path=None, slice_db=-40,**kwargs):
|
19 |
+
print(f'code version:2022-12-04')
|
20 |
+
use_pe = use_pe if hparams['audio_sample_rate'] == 24000 else False
|
21 |
+
if file_path is None:
|
22 |
+
raw_audio_path = f"./raw/{f_name}"
|
23 |
+
clean_name = f_name[:-4]
|
24 |
+
else:
|
25 |
+
raw_audio_path = file_path
|
26 |
+
clean_name = str(Path(file_path).name)[:-4]
|
27 |
+
infer_tool.format_wav(raw_audio_path)
|
28 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
29 |
+
global chunks_dict
|
30 |
+
audio, sr = librosa.load(wav_path, mono=True,sr=None)
|
31 |
+
wav_hash = infer_tool.get_md5(audio)
|
32 |
+
if wav_hash in chunks_dict.keys():
|
33 |
+
print("load chunks from temp")
|
34 |
+
chunks = chunks_dict[wav_hash]["chunks"]
|
35 |
+
else:
|
36 |
+
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
37 |
+
chunks_dict[wav_hash] = {"chunks": chunks, "time": int(time.time())}
|
38 |
+
infer_tool.write_temp("./infer_tools/new_chunks_temp.json", chunks_dict)
|
39 |
+
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
40 |
+
|
41 |
+
count = 0
|
42 |
+
f0_tst = []
|
43 |
+
f0_pred = []
|
44 |
+
audio = []
|
45 |
+
for (slice_tag, data) in audio_data:
|
46 |
+
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
47 |
+
length = int(np.ceil(len(data) / audio_sr * hparams['audio_sample_rate']))
|
48 |
+
raw_path = io.BytesIO()
|
49 |
+
soundfile.write(raw_path, data, audio_sr, format="wav")
|
50 |
+
if hparams['debug']:
|
51 |
+
print(np.mean(data), np.var(data))
|
52 |
+
raw_path.seek(0)
|
53 |
+
if slice_tag:
|
54 |
+
print('jump empty segment')
|
55 |
+
_f0_tst, _f0_pred, _audio = (
|
56 |
+
np.zeros(int(np.ceil(length / hparams['hop_size']))), np.zeros(int(np.ceil(length / hparams['hop_size']))),
|
57 |
+
np.zeros(length))
|
58 |
+
else:
|
59 |
+
_f0_tst, _f0_pred, _audio = svc_model.infer(raw_path, key=key, acc=acc, use_pe=use_pe, use_crepe=use_crepe,
|
60 |
+
thre=thre, use_gt_mel=use_gt_mel, add_noise_step=add_noise_step)
|
61 |
+
fix_audio = np.zeros(length)
|
62 |
+
fix_audio[:] = np.mean(_audio)
|
63 |
+
fix_audio[:len(_audio)] = _audio[0 if len(_audio)<len(fix_audio) else len(_audio)-len(fix_audio):]
|
64 |
+
f0_tst.extend(_f0_tst)
|
65 |
+
f0_pred.extend(_f0_pred)
|
66 |
+
audio.extend(list(fix_audio))
|
67 |
+
count += 1
|
68 |
+
if out_path is None:
|
69 |
+
out_path = f'./results/{clean_name}_{key}key_{project_name}_{hparams["residual_channels"]}_{hparams["residual_layers"]}_{int(step / 1000)}k_{accelerate}x.{kwargs["format"]}'
|
70 |
+
soundfile.write(out_path, audio, hparams["audio_sample_rate"], 'PCM_16',format=out_path.split('.')[-1])
|
71 |
+
return np.array(f0_tst), np.array(f0_pred), audio
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == '__main__':
|
75 |
+
# 工程文件夹名,训练时用的那个
|
76 |
+
project_name = "yilanqiu"
|
77 |
+
model_path = f'./checkpoints/{project_name}/model_ckpt_steps_246000.ckpt'
|
78 |
+
config_path = f'./checkpoints/{project_name}/config.yaml'
|
79 |
+
|
80 |
+
# 支持多个wav/ogg文件,放在raw文件夹下,带扩展名
|
81 |
+
file_names = ["青花瓷.wav"]
|
82 |
+
trans = [0] # 音高调整,支持正负(半音),数量与上一行对应,不足的自动按第一个移调参数补齐
|
83 |
+
# 加速倍数
|
84 |
+
accelerate = 20
|
85 |
+
hubert_gpu = True
|
86 |
+
format='flac'
|
87 |
+
step = int(model_path.split("_")[-1].split(".")[0])
|
88 |
+
|
89 |
+
# 下面不动
|
90 |
+
infer_tool.mkdir(["./raw", "./results"])
|
91 |
+
infer_tool.fill_a_to_b(trans, file_names)
|
92 |
+
|
93 |
+
model = Svc(project_name, config_path, hubert_gpu, model_path)
|
94 |
+
for f_name, tran in zip(file_names, trans):
|
95 |
+
if "." not in f_name:
|
96 |
+
f_name += ".wav"
|
97 |
+
run_clip(model, key=tran, acc=accelerate, use_crepe=True, thre=0.05, use_pe=True, use_gt_mel=False,
|
98 |
+
add_noise_step=500, f_name=f_name, project_name=project_name, format=format)
|
infer_tools/__init__.py
ADDED
File without changes
|
infer_tools/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (163 Bytes). View file
|
|
infer_tools/__pycache__/infer_tool.cpython-38.pyc
ADDED
Binary file (12 kB). View file
|
|
infer_tools/__pycache__/slicer.cpython-38.pyc
ADDED
Binary file (4.72 kB). View file
|
|
infer_tools/f0_temp.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
infer_tools/infer_tool.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from io import BytesIO
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
import soundfile
|
11 |
+
import torch
|
12 |
+
|
13 |
+
import utils
|
14 |
+
from modules.fastspeech.pe import PitchExtractor
|
15 |
+
from network.diff.candidate_decoder import FFT
|
16 |
+
from network.diff.diffusion import GaussianDiffusion
|
17 |
+
from network.diff.net import DiffNet
|
18 |
+
from network.vocoders.base_vocoder import VOCODERS, get_vocoder_cls
|
19 |
+
from preprocessing.data_gen_utils import get_pitch_parselmouth, get_pitch_crepe, get_pitch_world
|
20 |
+
from preprocessing.hubertinfer import Hubertencoder
|
21 |
+
from utils.hparams import hparams, set_hparams
|
22 |
+
from utils.pitch_utils import denorm_f0, norm_interp_f0
|
23 |
+
|
24 |
+
if os.path.exists("chunks_temp.json"):
|
25 |
+
os.remove("chunks_temp.json")
|
26 |
+
|
27 |
+
def read_temp(file_name):
|
28 |
+
if not os.path.exists(file_name):
|
29 |
+
with open(file_name, "w") as f:
|
30 |
+
f.write(json.dumps({"info": "temp_dict"}))
|
31 |
+
return {}
|
32 |
+
else:
|
33 |
+
try:
|
34 |
+
with open(file_name, "r") as f:
|
35 |
+
data = f.read()
|
36 |
+
data_dict = json.loads(data)
|
37 |
+
if os.path.getsize(file_name) > 50 * 1024 * 1024:
|
38 |
+
f_name = file_name.split("/")[-1]
|
39 |
+
print(f"clean {f_name}")
|
40 |
+
for wav_hash in list(data_dict.keys()):
|
41 |
+
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
|
42 |
+
del data_dict[wav_hash]
|
43 |
+
except Exception as e:
|
44 |
+
print(e)
|
45 |
+
print(f"{file_name} error,auto rebuild file")
|
46 |
+
data_dict = {"info": "temp_dict"}
|
47 |
+
return data_dict
|
48 |
+
|
49 |
+
|
50 |
+
f0_dict = read_temp("./infer_tools/f0_temp.json")
|
51 |
+
|
52 |
+
|
53 |
+
def write_temp(file_name, data):
|
54 |
+
with open(file_name, "w") as f:
|
55 |
+
f.write(json.dumps(data))
|
56 |
+
|
57 |
+
|
58 |
+
def timeit(func):
|
59 |
+
def run(*args, **kwargs):
|
60 |
+
t = time.time()
|
61 |
+
res = func(*args, **kwargs)
|
62 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
63 |
+
return res
|
64 |
+
|
65 |
+
return run
|
66 |
+
|
67 |
+
|
68 |
+
def format_wav(audio_path):
|
69 |
+
if Path(audio_path).suffix=='.wav':
|
70 |
+
return
|
71 |
+
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True,sr=None)
|
72 |
+
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
|
73 |
+
|
74 |
+
|
75 |
+
def fill_a_to_b(a, b):
|
76 |
+
if len(a) < len(b):
|
77 |
+
for _ in range(0, len(b) - len(a)):
|
78 |
+
a.append(a[0])
|
79 |
+
|
80 |
+
|
81 |
+
def get_end_file(dir_path, end):
|
82 |
+
file_lists = []
|
83 |
+
for root, dirs, files in os.walk(dir_path):
|
84 |
+
files = [f for f in files if f[0] != '.']
|
85 |
+
dirs[:] = [d for d in dirs if d[0] != '.']
|
86 |
+
for f_file in files:
|
87 |
+
if f_file.endswith(end):
|
88 |
+
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
|
89 |
+
return file_lists
|
90 |
+
|
91 |
+
|
92 |
+
def mkdir(paths: list):
|
93 |
+
for path in paths:
|
94 |
+
if not os.path.exists(path):
|
95 |
+
os.mkdir(path)
|
96 |
+
|
97 |
+
|
98 |
+
def get_md5(content):
|
99 |
+
return hashlib.new("md5", content).hexdigest()
|
100 |
+
|
101 |
+
|
102 |
+
class Svc:
|
103 |
+
def __init__(self, project_name, config_name, hubert_gpu, model_path):
|
104 |
+
self.project_name = project_name
|
105 |
+
self.DIFF_DECODERS = {
|
106 |
+
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
|
107 |
+
'fft': lambda hp: FFT(
|
108 |
+
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
|
109 |
+
}
|
110 |
+
|
111 |
+
self.model_path = model_path
|
112 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
113 |
+
|
114 |
+
self._ = set_hparams(config=config_name, exp_name=self.project_name, infer=True,
|
115 |
+
reset=True,
|
116 |
+
hparams_str='',
|
117 |
+
print_hparams=False)
|
118 |
+
|
119 |
+
self.mel_bins = hparams['audio_num_mel_bins']
|
120 |
+
self.model = GaussianDiffusion(
|
121 |
+
phone_encoder=Hubertencoder(hparams['hubert_path']),
|
122 |
+
out_dims=self.mel_bins, denoise_fn=self.DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
|
123 |
+
timesteps=hparams['timesteps'],
|
124 |
+
K_step=hparams['K_step'],
|
125 |
+
loss_type=hparams['diff_loss_type'],
|
126 |
+
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
|
127 |
+
)
|
128 |
+
self.load_ckpt()
|
129 |
+
self.model.to(self.dev)
|
130 |
+
hparams['hubert_gpu'] = hubert_gpu
|
131 |
+
self.hubert = Hubertencoder(hparams['hubert_path'])
|
132 |
+
self.pe = PitchExtractor().to(self.dev)
|
133 |
+
utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True)
|
134 |
+
self.pe.eval()
|
135 |
+
self.vocoder = get_vocoder_cls(hparams)()
|
136 |
+
|
137 |
+
def load_ckpt(self, model_name='model', force=True, strict=True):
|
138 |
+
utils.load_ckpt(self.model, self.model_path, model_name, force, strict)
|
139 |
+
|
140 |
+
def infer(self, in_path, key, acc, use_pe=True, use_crepe=True, thre=0.05, singer=False, **kwargs):
|
141 |
+
batch = self.pre(in_path, acc, use_crepe, thre)
|
142 |
+
spk_embed = batch.get('spk_embed') if not hparams['use_spk_id'] else batch.get('spk_ids')
|
143 |
+
hubert = batch['hubert']
|
144 |
+
ref_mels = batch["mels"]
|
145 |
+
energy=batch['energy']
|
146 |
+
mel2ph = batch['mel2ph']
|
147 |
+
batch['f0'] = batch['f0'] + (key / 12)
|
148 |
+
batch['f0'][batch['f0']>np.log2(hparams['f0_max'])]=0
|
149 |
+
f0 = batch['f0']
|
150 |
+
uv = batch['uv']
|
151 |
+
@timeit
|
152 |
+
def diff_infer():
|
153 |
+
outputs = self.model(
|
154 |
+
hubert.to(self.dev), spk_embed=spk_embed, mel2ph=mel2ph.to(self.dev), f0=f0.to(self.dev), uv=uv.to(self.dev),energy=energy.to(self.dev),
|
155 |
+
ref_mels=ref_mels.to(self.dev),
|
156 |
+
infer=True, **kwargs)
|
157 |
+
return outputs
|
158 |
+
outputs=diff_infer()
|
159 |
+
batch['outputs'] = self.model.out2mel(outputs['mel_out'])
|
160 |
+
batch['mel2ph_pred'] = outputs['mel2ph']
|
161 |
+
batch['f0_gt'] = denorm_f0(batch['f0'], batch['uv'], hparams)
|
162 |
+
if use_pe:
|
163 |
+
batch['f0_pred'] = self.pe(outputs['mel_out'])['f0_denorm_pred'].detach()
|
164 |
+
else:
|
165 |
+
batch['f0_pred'] = outputs.get('f0_denorm')
|
166 |
+
return self.after_infer(batch, singer, in_path)
|
167 |
+
|
168 |
+
@timeit
|
169 |
+
def after_infer(self, prediction, singer, in_path):
|
170 |
+
for k, v in prediction.items():
|
171 |
+
if type(v) is torch.Tensor:
|
172 |
+
prediction[k] = v.cpu().numpy()
|
173 |
+
|
174 |
+
# remove paddings
|
175 |
+
mel_gt = prediction["mels"]
|
176 |
+
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
|
177 |
+
|
178 |
+
mel_pred = prediction["outputs"]
|
179 |
+
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
|
180 |
+
mel_pred = mel_pred[mel_pred_mask]
|
181 |
+
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
|
182 |
+
|
183 |
+
f0_gt = prediction.get("f0_gt")
|
184 |
+
f0_pred = prediction.get("f0_pred")
|
185 |
+
if f0_pred is not None:
|
186 |
+
f0_gt = f0_gt[mel_gt_mask]
|
187 |
+
if len(f0_pred) > len(mel_pred_mask):
|
188 |
+
f0_pred = f0_pred[:len(mel_pred_mask)]
|
189 |
+
f0_pred = f0_pred[mel_pred_mask]
|
190 |
+
torch.cuda.is_available() and torch.cuda.empty_cache()
|
191 |
+
|
192 |
+
if singer:
|
193 |
+
data_path = in_path.replace("batch", "singer_data")
|
194 |
+
mel_path = data_path[:-4] + "_mel.npy"
|
195 |
+
f0_path = data_path[:-4] + "_f0.npy"
|
196 |
+
np.save(mel_path, mel_pred)
|
197 |
+
np.save(f0_path, f0_pred)
|
198 |
+
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
|
199 |
+
return f0_gt, f0_pred, wav_pred
|
200 |
+
|
201 |
+
def temporary_dict2processed_input(self, item_name, temp_dict, use_crepe=True, thre=0.05):
|
202 |
+
'''
|
203 |
+
process data in temporary_dicts
|
204 |
+
'''
|
205 |
+
|
206 |
+
binarization_args = hparams['binarization_args']
|
207 |
+
|
208 |
+
@timeit
|
209 |
+
def get_pitch(wav, mel):
|
210 |
+
# get ground truth f0 by self.get_pitch_algorithm
|
211 |
+
global f0_dict
|
212 |
+
if use_crepe:
|
213 |
+
md5 = get_md5(wav)
|
214 |
+
if f"{md5}_gt" in f0_dict.keys():
|
215 |
+
print("load temp crepe f0")
|
216 |
+
gt_f0 = np.array(f0_dict[f"{md5}_gt"]["f0"])
|
217 |
+
coarse_f0 = np.array(f0_dict[f"{md5}_coarse"]["f0"])
|
218 |
+
else:
|
219 |
+
torch.cuda.is_available() and torch.cuda.empty_cache()
|
220 |
+
gt_f0, coarse_f0 = get_pitch_crepe(wav, mel, hparams, thre)
|
221 |
+
f0_dict[f"{md5}_gt"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
|
222 |
+
f0_dict[f"{md5}_coarse"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
|
223 |
+
write_temp("./infer_tools/f0_temp.json", f0_dict)
|
224 |
+
else:
|
225 |
+
md5 = get_md5(wav)
|
226 |
+
if f"{md5}_gt_harvest" in f0_dict.keys():
|
227 |
+
print("load temp harvest f0")
|
228 |
+
gt_f0 = np.array(f0_dict[f"{md5}_gt_harvest"]["f0"])
|
229 |
+
coarse_f0 = np.array(f0_dict[f"{md5}_coarse_harvest"]["f0"])
|
230 |
+
else:
|
231 |
+
gt_f0, coarse_f0 = get_pitch_world(wav, mel, hparams)
|
232 |
+
f0_dict[f"{md5}_gt_harvest"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
|
233 |
+
f0_dict[f"{md5}_coarse_harvest"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
|
234 |
+
write_temp("./infer_tools/f0_temp.json", f0_dict)
|
235 |
+
processed_input['f0'] = gt_f0
|
236 |
+
processed_input['pitch'] = coarse_f0
|
237 |
+
|
238 |
+
def get_align(mel, phone_encoded):
|
239 |
+
mel2ph = np.zeros([mel.shape[0]], int)
|
240 |
+
start_frame = 0
|
241 |
+
ph_durs = mel.shape[0] / phone_encoded.shape[0]
|
242 |
+
if hparams['debug']:
|
243 |
+
print(mel.shape, phone_encoded.shape, mel.shape[0] / phone_encoded.shape[0])
|
244 |
+
for i_ph in range(phone_encoded.shape[0]):
|
245 |
+
end_frame = int(i_ph * ph_durs + ph_durs + 0.5)
|
246 |
+
mel2ph[start_frame:end_frame + 1] = i_ph + 1
|
247 |
+
start_frame = end_frame + 1
|
248 |
+
|
249 |
+
processed_input['mel2ph'] = mel2ph
|
250 |
+
|
251 |
+
if hparams['vocoder'] in VOCODERS:
|
252 |
+
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
|
253 |
+
else:
|
254 |
+
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
|
255 |
+
processed_input = {
|
256 |
+
'item_name': item_name, 'mel': mel,
|
257 |
+
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
|
258 |
+
}
|
259 |
+
processed_input = {**temp_dict, **processed_input} # merge two dicts
|
260 |
+
|
261 |
+
if binarization_args['with_f0']:
|
262 |
+
get_pitch(wav, mel)
|
263 |
+
if binarization_args['with_hubert']:
|
264 |
+
st = time.time()
|
265 |
+
hubert_encoded = processed_input['hubert'] = self.hubert.encode(temp_dict['wav_fn'])
|
266 |
+
et = time.time()
|
267 |
+
dev = 'cuda' if hparams['hubert_gpu'] and torch.cuda.is_available() else 'cpu'
|
268 |
+
print(f'hubert (on {dev}) time used {et - st}')
|
269 |
+
|
270 |
+
if binarization_args['with_align']:
|
271 |
+
get_align(mel, hubert_encoded)
|
272 |
+
return processed_input
|
273 |
+
|
274 |
+
def pre(self, wav_fn, accelerate, use_crepe=True, thre=0.05):
|
275 |
+
if isinstance(wav_fn, BytesIO):
|
276 |
+
item_name = self.project_name
|
277 |
+
else:
|
278 |
+
song_info = wav_fn.split('/')
|
279 |
+
item_name = song_info[-1].split('.')[-2]
|
280 |
+
temp_dict = {'wav_fn': wav_fn, 'spk_id': self.project_name}
|
281 |
+
|
282 |
+
temp_dict = self.temporary_dict2processed_input(item_name, temp_dict, use_crepe, thre)
|
283 |
+
hparams['pndm_speedup'] = accelerate
|
284 |
+
batch = processed_input2batch([getitem(temp_dict)])
|
285 |
+
return batch
|
286 |
+
|
287 |
+
|
288 |
+
def getitem(item):
|
289 |
+
max_frames = hparams['max_frames']
|
290 |
+
spec = torch.Tensor(item['mel'])[:max_frames]
|
291 |
+
energy = (spec.exp() ** 2).sum(-1).sqrt()
|
292 |
+
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
|
293 |
+
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
|
294 |
+
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
|
295 |
+
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
|
296 |
+
sample = {
|
297 |
+
"item_name": item['item_name'],
|
298 |
+
"hubert": hubert,
|
299 |
+
"mel": spec,
|
300 |
+
"pitch": pitch,
|
301 |
+
"energy": energy,
|
302 |
+
"f0": f0,
|
303 |
+
"uv": uv,
|
304 |
+
"mel2ph": mel2ph,
|
305 |
+
"mel_nonpadding": spec.abs().sum(-1) > 0,
|
306 |
+
}
|
307 |
+
return sample
|
308 |
+
|
309 |
+
|
310 |
+
def processed_input2batch(samples):
|
311 |
+
'''
|
312 |
+
Args:
|
313 |
+
samples: one batch of processed_input
|
314 |
+
NOTE:
|
315 |
+
the batch size is controlled by hparams['max_sentences']
|
316 |
+
'''
|
317 |
+
if len(samples) == 0:
|
318 |
+
return {}
|
319 |
+
item_names = [s['item_name'] for s in samples]
|
320 |
+
hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
|
321 |
+
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
|
322 |
+
pitch = utils.collate_1d([s['pitch'] for s in samples])
|
323 |
+
uv = utils.collate_1d([s['uv'] for s in samples])
|
324 |
+
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
|
325 |
+
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
|
326 |
+
if samples[0]['mel2ph'] is not None else None
|
327 |
+
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
|
328 |
+
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
|
329 |
+
|
330 |
+
batch = {
|
331 |
+
'item_name': item_names,
|
332 |
+
'nsamples': len(samples),
|
333 |
+
'hubert': hubert,
|
334 |
+
'mels': mels,
|
335 |
+
'mel_lengths': mel_lengths,
|
336 |
+
'mel2ph': mel2ph,
|
337 |
+
'energy': energy,
|
338 |
+
'pitch': pitch,
|
339 |
+
'f0': f0,
|
340 |
+
'uv': uv,
|
341 |
+
}
|
342 |
+
return batch
|
infer_tools/new_chunks_temp.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"info": "temp_dict", "accd68639783a1819e41702c4c1bf2e7": {"chunks": {"0": {"slice": false, "split_time": "0,607727"}}, "time": 1672781849}, "28b718f4ef116ca8c4d2279dfc0bd161": {"chunks": {"0": {"slice": false, "split_time": "0,607727"}}, "time": 1672758446}, "3c68f6ef87cdbea1be9b66e78bcd1c62": {"chunks": {"0": {"slice": true, "split_time": "0,20115"}, "1": {"slice": false, "split_time": "20115,152363"}, "2": {"slice": true, "split_time": "152363,163441"}, "3": {"slice": false, "split_time": "163441,347184"}, "4": {"slice": true, "split_time": "347184,351976"}, "5": {"slice": false, "split_time": "351976,438356"}, "6": {"slice": true, "split_time": "438356,499095"}}, "time": 1673478071}, "dd17f428601bccf6dd3c82c6d6daaaba": {"chunks": {"0": {"slice": true, "split_time": "0,24155"}, "1": {"slice": false, "split_time": "24155,323983"}, "2": {"slice": true, "split_time": "323983,352800"}}, "time": 1672758814}, "7d915edda42b3c65471bb0f86ba2a57c": {"chunks": {"0": {"slice": false, "split_time": "0,1417197"}, "1": {"slice": true, "split_time": "1417197,1426665"}, "2": {"slice": false, "split_time": "1426665,1736746"}, "3": {"slice": true, "split_time": "1736746,1743374"}, "4": {"slice": false, "split_time": "1743374,2042438"}, "5": {"slice": true, "split_time": "2042438,2050710"}, "6": {"slice": false, "split_time": "2050710,2508864"}, "7": {"slice": true, "split_time": "2508864,2515696"}, "8": {"slice": false, "split_time": "2515696,2682383"}}, "time": 1672772091}, "3bad51a34c1a940a31de387147e10c0a": {"chunks": {"0": {"slice": false, "split_time": "0,318420"}, "1": {"slice": true, "split_time": "318420,325186"}, "2": {"slice": false, "split_time": "325186,1581611"}, "3": {"slice": true, "split_time": "1581611,1594730"}}, "time": 1672772297}, "3ffa2635bed65fb96d8476803560fd1a": {"chunks": {"0": {"slice": true, "split_time": "0,668952"}, "1": {"slice": false, "split_time": "668952,894598"}, "2": {"slice": true, "split_time": "894598,917516"}, "3": {"slice": false, "split_time": "917516,1140044"}, "4": {"slice": true, "split_time": "1140044,1159951"}, "5": {"slice": false, "split_time": "1159951,1725379"}, "6": {"slice": true, "split_time": "1725379,1756813"}, "7": {"slice": false, "split_time": "1756813,3302878"}, "8": {"slice": true, "split_time": "3302878,3361575"}, "9": {"slice": false, "split_time": "3361575,3582626"}, "10": {"slice": true, "split_time": "3582626,3609059"}, "11": {"slice": false, "split_time": "3609059,3844622"}, "12": {"slice": true, "split_time": "3844622,3861910"}, "13": {"slice": false, "split_time": "3861910,4440673"}, "14": {"slice": true, "split_time": "4440673,4468405"}, "15": {"slice": false, "split_time": "4468405,5108832"}, "16": {"slice": true, "split_time": "5108832,5129497"}, "17": {"slice": false, "split_time": "5129497,6675968"}, "18": {"slice": true, "split_time": "6675968,9217857"}}, "time": 1673261015}, "5fba9ddc6c7223c2907d9ff3169e23f1": {"chunks": {"0": {"slice": true, "split_time": "0,53579"}, "1": {"slice": false, "split_time": "53579,332754"}, "2": {"slice": true, "split_time": "332754,414277"}, "3": {"slice": false, "split_time": "414277,781044"}, "4": {"slice": true, "split_time": "781044,816837"}, "5": {"slice": false, "split_time": "816837,1549835"}, "6": {"slice": true, "split_time": "1549835,1557319"}, "7": {"slice": false, "split_time": "1557319,4476357"}, "8": {"slice": true, "split_time": "4476357,4503731"}, "9": {"slice": false, "split_time": "4503731,5209666"}, "10": {"slice": true, "split_time": "5209666,5213405"}, "11": {"slice": false, "split_time": "5213405,6021387"}, "12": {"slice": true, "split_time": "6021387,6063481"}, "13": {"slice": false, "split_time": "6063481,6491872"}, "14": {"slice": true, "split_time": "6491872,6602234"}, "15": {"slice": false, "split_time": "6602234,7311975"}, "16": {"slice": true, "split_time": "7311975,7328295"}, "17": {"slice": false, "split_time": "7328295,8137067"}, "18": {"slice": true, "split_time": "8137067,8142127"}, "19": {"slice": false, "split_time": "8142127,10821823"}, "20": {"slice": true, "split_time": "10821823,11066085"}, "21": {"slice": false, "split_time": "11066085,11148757"}, "22": {"slice": true, "split_time": "11148757,11459584"}}, "time": 1673446113}, "a8b37529b910527ef9b414d4fa485973": {"chunks": {"0": {"slice": true, "split_time": "0,74804"}, "1": {"slice": false, "split_time": "74804,545959"}, "2": {"slice": true, "split_time": "545959,550194"}, "3": {"slice": false, "split_time": "550194,1040392"}, "4": {"slice": true, "split_time": "1040392,1045223"}, "5": {"slice": false, "split_time": "1045223,2552370"}, "6": {"slice": true, "split_time": "2552370,2825551"}, "7": {"slice": false, "split_time": "2825551,3280352"}, "8": {"slice": true, "split_time": "3280352,3284153"}, "9": {"slice": false, "split_time": "3284153,4005079"}, "10": {"slice": true, "split_time": "4005079,4049271"}, "11": {"slice": false, "split_time": "4049271,4279046"}, "12": {"slice": true, "split_time": "4279046,4323261"}, "13": {"slice": false, "split_time": "4323261,5505905"}, "14": {"slice": true, "split_time": "5505905,5535670"}, "15": {"slice": false, "split_time": "5535670,5770626"}, "16": {"slice": true, "split_time": "5770626,5829727"}, "17": {"slice": false, "split_time": "5829727,7771861"}, "18": {"slice": true, "split_time": "7771861,8040098"}, "19": {"slice": false, "split_time": "8040098,8536352"}, "20": {"slice": true, "split_time": "8536352,9186304"}}, "time": 1673040810}, "7e44079101dd10bc262ee28c4b881f25": {"chunks": {"0": {"slice": true, "split_time": "0,135941"}, "1": {"slice": false, "split_time": "135941,787855"}, "2": {"slice": true, "split_time": "787855,999653"}, "3": {"slice": false, "split_time": "999653,2981684"}, "4": {"slice": true, "split_time": "2981684,3116588"}, "5": {"slice": false, "split_time": "3116588,3339320"}, "6": {"slice": true, "split_time": "3339320,3382142"}, "7": {"slice": false, "split_time": "3382142,5345853"}, "8": {"slice": true, "split_time": "5345853,5365617"}, "9": {"slice": false, "split_time": "5365617,6391431"}, "10": {"slice": true, "split_time": "6391431,6527569"}, "11": {"slice": false, "split_time": "6527569,7791684"}, "12": {"slice": true, "split_time": "7791684,7794073"}, "13": {"slice": false, "split_time": "7794073,8749857"}, "14": {"slice": true, "split_time": "8749857,9232506"}, "15": {"slice": false, "split_time": "9232506,11714376"}, "16": {"slice": true, "split_time": "11714376,11785553"}, "17": {"slice": false, "split_time": "11785553,12282894"}, "18": {"slice": true, "split_time": "12282894,12861440"}}, "time": 1673260417}, "89ccd0cc779c17deb9dfd54e700a0bcd": {"chunks": {"0": {"slice": true, "split_time": "0,15387"}, "1": {"slice": false, "split_time": "15387,348933"}, "2": {"slice": true, "split_time": "348933,352886"}, "3": {"slice": false, "split_time": "352886,675429"}, "4": {"slice": true, "split_time": "675429,678891"}, "5": {"slice": false, "split_time": "678891,1048502"}, "6": {"slice": true, "split_time": "1048502,1056469"}, "7": {"slice": false, "split_time": "1056469,1337989"}, "8": {"slice": true, "split_time": "1337989,1381376"}}, "time": 1673351834}, "46fa6dbb81bfe1252ebdefa0884d0e6d": {"chunks": {"0": {"slice": true, "split_time": "0,185799"}, "1": {"slice": false, "split_time": "185799,502227"}, "2": {"slice": true, "split_time": "502227,848473"}, "3": {"slice": false, "split_time": "848473,2347749"}, "4": {"slice": true, "split_time": "2347749,2348783"}, "5": {"slice": false, "split_time": "2348783,3429977"}, "6": {"slice": true, "split_time": "3429977,3890042"}, "7": {"slice": false, "split_time": "3890042,5375055"}, "8": {"slice": true, "split_time": "5375055,5402621"}, "9": {"slice": false, "split_time": "5402621,6462260"}, "10": {"slice": true, "split_time": "6462260,6923811"}, "11": {"slice": false, "split_time": "6923811,8507888"}, "12": {"slice": true, "split_time": "8507888,9252348"}, "13": {"slice": false, "split_time": "9252348,10599478"}, "14": {"slice": true, "split_time": "10599478,10628316"}, "15": {"slice": false, "split_time": "10628316,10692608"}}, "time": 1673446761}, "2b0ffc08fb6fb0f29df83ae8cc0c0eb8": {"chunks": {"0": {"slice": true, "split_time": "0,1208342"}, "1": {"slice": false, "split_time": "1208342,1917473"}, "2": {"slice": true, "split_time": "1917473,1984255"}, "3": {"slice": false, "split_time": "1984255,4413108"}, "4": {"slice": true, "split_time": "4413108,4882745"}, "5": {"slice": false, "split_time": "4882745,8072787"}, "6": {"slice": true, "split_time": "8072787,9419776"}}, "time": 1673388059}, "57440513a8cfffbc7c1ffb790b9723f2": {"chunks": {"0": {"slice": true, "split_time": "0,1199064"}, "1": {"slice": false, "split_time": "1199064,1431015"}, "2": {"slice": true, "split_time": "1431015,1452361"}, "3": {"slice": false, "split_time": "1452361,1898308"}, "4": {"slice": true, "split_time": "1898308,1904596"}, "5": {"slice": false, "split_time": "1904596,2468360"}, "6": {"slice": true, "split_time": "2468360,2479240"}, "7": {"slice": false, "split_time": "2479240,3593434"}, "8": {"slice": true, "split_time": "3593434,3629186"}, "9": {"slice": false, "split_time": "3629186,4074575"}, "10": {"slice": true, "split_time": "4074575,4078966"}, "11": {"slice": false, "split_time": "4078966,4307991"}, "12": {"slice": true, "split_time": "4307991,4316241"}, "13": {"slice": false, "split_time": "4316241,5986540"}, "14": {"slice": true, "split_time": "5986540,5990713"}, "15": {"slice": false, "split_time": "5990713,6243455"}, "16": {"slice": true, "split_time": "6243455,6491661"}, "17": {"slice": false, "split_time": "6491661,6719744"}, "18": {"slice": true, "split_time": "6719744,6739748"}, "19": {"slice": false, "split_time": "6739748,7021570"}, "20": {"slice": true, "split_time": "7021570,7069439"}, "21": {"slice": false, "split_time": "7069439,7363743"}, "22": {"slice": true, "split_time": "7363743,7376200"}, "23": {"slice": false, "split_time": "7376200,9402054"}, "24": {"slice": true, "split_time": "9402054,9403936"}, "25": {"slice": false, "split_time": "9403936,9697617"}, "26": {"slice": true, "split_time": "9697617,9878400"}}, "time": 1673468608}, "1d7d07c16652e4b7300bdaf5d38128b9": {"chunks": {"0": {"slice": true, "split_time": "0,261052"}, "1": {"slice": false, "split_time": "261052,993078"}, "2": {"slice": true, "split_time": "993078,1091294"}, "3": {"slice": false, "split_time": "1091294,2303042"}, "4": {"slice": true, "split_time": "2303042,2304533"}, "5": {"slice": false, "split_time": "2304533,3543442"}, "6": {"slice": true, "split_time": "3543442,3656782"}, "7": {"slice": false, "split_time": "3656782,4337660"}, "8": {"slice": true, "split_time": "4337660,4406921"}, "9": {"slice": false, "split_time": "4406921,6132779"}, "10": {"slice": true, "split_time": "6132779,6147466"}, "11": {"slice": false, "split_time": "6147466,6855506"}, "12": {"slice": true, "split_time": "6855506,7413094"}}, "time": 1673466029}, "dc6af7b6086c4a6f7f6ee206024988f3": {"chunks": {"0": {"slice": true, "split_time": "0,1492137"}, "1": {"slice": false, "split_time": "1492137,2132538"}, "2": {"slice": true, "split_time": "2132538,2140949"}, "3": {"slice": false, "split_time": "2140949,2362096"}, "4": {"slice": true, "split_time": "2362096,2377313"}, "5": {"slice": false, "split_time": "2377313,3190602"}, "6": {"slice": true, "split_time": "3190602,3236563"}, "7": {"slice": false, "split_time": "3236563,3795750"}, "8": {"slice": true, "split_time": "3795750,3798646"}, "9": {"slice": false, "split_time": "3798646,4037700"}, "10": {"slice": true, "split_time": "4037700,4057671"}, "11": {"slice": false, "split_time": "4057671,4828341"}, "12": {"slice": true, "split_time": "4828341,4839270"}, "13": {"slice": false, "split_time": "4839270,5069319"}, "14": {"slice": true, "split_time": "5069319,5070998"}, "15": {"slice": false, "split_time": "5070998,5722290"}, "16": {"slice": true, "split_time": "5722290,5778275"}, "17": {"slice": false, "split_time": "5778275,6346775"}, "18": {"slice": true, "split_time": "6346775,6354400"}, "19": {"slice": false, "split_time": "6354400,6965771"}, "20": {"slice": true, "split_time": "6965771,7361821"}, "21": {"slice": false, "split_time": "7361821,7649206"}, "22": {"slice": true, "split_time": "7649206,7681433"}, "23": {"slice": false, "split_time": "7681433,7921525"}, "24": {"slice": true, "split_time": "7921525,7934007"}, "25": {"slice": false, "split_time": "7934007,8183308"}, "26": {"slice": true, "split_time": "8183308,8238306"}, "27": {"slice": false, "split_time": "8238306,10906572"}, "28": {"slice": true, "split_time": "10906572,10942779"}}, "time": 1673469959}, "010900becfb5574ab3a333f941577c2c": {"chunks": {"0": {"slice": true, "split_time": "0,1083101"}, "1": {"slice": false, "split_time": "1083101,1421801"}, "2": {"slice": true, "split_time": "1421801,1453133"}, "3": {"slice": false, "split_time": "1453133,1794206"}, "4": {"slice": true, "split_time": "1794206,1800891"}, "5": {"slice": false, "split_time": "1800891,2115485"}, "6": {"slice": true, "split_time": "2115485,2152253"}, "7": {"slice": false, "split_time": "2152253,2957806"}, "8": {"slice": true, "split_time": "2957806,2967552"}, "9": {"slice": false, "split_time": "2967552,3967440"}, "10": {"slice": true, "split_time": "3967440,4012384"}, "11": {"slice": false, "split_time": "4012384,4335874"}, "12": {"slice": true, "split_time": "4335874,4363031"}, "13": {"slice": false, "split_time": "4363031,4694987"}, "14": {"slice": true, "split_time": "4694987,4715486"}, "15": {"slice": false, "split_time": "4715486,5030719"}, "16": {"slice": true, "split_time": "5030719,5065596"}, "17": {"slice": false, "split_time": "5065596,6874746"}, "18": {"slice": true, "split_time": "6874746,7885915"}, "19": {"slice": false, "split_time": "7885915,9628060"}, "20": {"slice": true, "split_time": "9628060,10032061"}}, "time": 1673470410}, "5bc32d122ced9dd6d8cf0186fff6466a": {"chunks": {"0": {"slice": true, "split_time": "0,814909"}, "1": {"slice": false, "split_time": "814909,3487605"}, "2": {"slice": true, "split_time": "3487605,3496613"}, "3": {"slice": false, "split_time": "3496613,6186104"}, "4": {"slice": true, "split_time": "6186104,6826505"}, "5": {"slice": false, "split_time": "6826505,9979380"}, "6": {"slice": true, "split_time": "9979380,13711090"}}, "time": 1673474828}}
|
infer_tools/slicer.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
from scipy.ndimage import maximum_filter1d, uniform_filter1d
|
7 |
+
|
8 |
+
|
9 |
+
def timeit(func):
|
10 |
+
def run(*args, **kwargs):
|
11 |
+
t = time.time()
|
12 |
+
res = func(*args, **kwargs)
|
13 |
+
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
|
14 |
+
return res
|
15 |
+
|
16 |
+
return run
|
17 |
+
|
18 |
+
|
19 |
+
# @timeit
|
20 |
+
def _window_maximum(arr, win_sz):
|
21 |
+
return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
22 |
+
|
23 |
+
|
24 |
+
# @timeit
|
25 |
+
def _window_rms(arr, win_sz):
|
26 |
+
filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
|
27 |
+
return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
|
28 |
+
|
29 |
+
|
30 |
+
def level2db(levels, eps=1e-12):
|
31 |
+
return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
|
32 |
+
|
33 |
+
|
34 |
+
def _apply_slice(audio, begin, end):
|
35 |
+
if len(audio.shape) > 1:
|
36 |
+
return audio[:, begin: end]
|
37 |
+
else:
|
38 |
+
return audio[begin: end]
|
39 |
+
|
40 |
+
|
41 |
+
class Slicer:
|
42 |
+
def __init__(self,
|
43 |
+
sr: int,
|
44 |
+
db_threshold: float = -40,
|
45 |
+
min_length: int = 5000,
|
46 |
+
win_l: int = 300,
|
47 |
+
win_s: int = 20,
|
48 |
+
max_silence_kept: int = 500):
|
49 |
+
self.db_threshold = db_threshold
|
50 |
+
self.min_samples = round(sr * min_length / 1000)
|
51 |
+
self.win_ln = round(sr * win_l / 1000)
|
52 |
+
self.win_sn = round(sr * win_s / 1000)
|
53 |
+
self.max_silence = round(sr * max_silence_kept / 1000)
|
54 |
+
if not self.min_samples >= self.win_ln >= self.win_sn:
|
55 |
+
raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
|
56 |
+
if not self.max_silence >= self.win_sn:
|
57 |
+
raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
|
58 |
+
|
59 |
+
@timeit
|
60 |
+
def slice(self, audio):
|
61 |
+
samples = audio
|
62 |
+
if samples.shape[0] <= self.min_samples:
|
63 |
+
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}}
|
64 |
+
# get absolute amplitudes
|
65 |
+
abs_amp = np.abs(samples - np.mean(samples))
|
66 |
+
# calculate local maximum with large window
|
67 |
+
win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
|
68 |
+
sil_tags = []
|
69 |
+
left = right = 0
|
70 |
+
while right < win_max_db.shape[0]:
|
71 |
+
if win_max_db[right] < self.db_threshold:
|
72 |
+
right += 1
|
73 |
+
elif left == right:
|
74 |
+
left += 1
|
75 |
+
right += 1
|
76 |
+
else:
|
77 |
+
if left == 0:
|
78 |
+
split_loc_l = left
|
79 |
+
else:
|
80 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
81 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
82 |
+
split_win_l = left + np.argmin(rms_db_left)
|
83 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
84 |
+
if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[
|
85 |
+
0] - 1:
|
86 |
+
right += 1
|
87 |
+
left = right
|
88 |
+
continue
|
89 |
+
if right == win_max_db.shape[0] - 1:
|
90 |
+
split_loc_r = right + self.win_ln
|
91 |
+
else:
|
92 |
+
sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
93 |
+
rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln],
|
94 |
+
win_sz=self.win_sn))
|
95 |
+
split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
|
96 |
+
split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
|
97 |
+
sil_tags.append((split_loc_l, split_loc_r))
|
98 |
+
right += 1
|
99 |
+
left = right
|
100 |
+
if left != right:
|
101 |
+
sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
|
102 |
+
rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
|
103 |
+
split_win_l = left + np.argmin(rms_db_left)
|
104 |
+
split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
|
105 |
+
sil_tags.append((split_loc_l, samples.shape[0]))
|
106 |
+
if len(sil_tags) == 0:
|
107 |
+
return {"0": {"slice": False, "split_time": f"0,{len(audio)}"}}
|
108 |
+
else:
|
109 |
+
chunks = []
|
110 |
+
# 第一段静音并非从头开始,补上有声片段
|
111 |
+
if sil_tags[0][0]:
|
112 |
+
chunks.append({"slice": False, "split_time": f"0,{sil_tags[0][0]}"})
|
113 |
+
for i in range(0, len(sil_tags)):
|
114 |
+
# 标识有声片段(跳过第一段)
|
115 |
+
if i:
|
116 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1]},{sil_tags[i][0]}"})
|
117 |
+
# 标识所有静音片段
|
118 |
+
chunks.append({"slice": True, "split_time": f"{sil_tags[i][0]},{sil_tags[i][1]}"})
|
119 |
+
# 最后一段静音并非结尾,补上结尾片段
|
120 |
+
if sil_tags[-1][1] != len(audio):
|
121 |
+
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1]},{len(audio)}"})
|
122 |
+
chunk_dict = {}
|
123 |
+
for i in range(len(chunks)):
|
124 |
+
chunk_dict[str(i)] = chunks[i]
|
125 |
+
return chunk_dict
|
126 |
+
|
127 |
+
|
128 |
+
def cut(audio_path, db_thresh=-30, min_len=5000, win_l=300, win_s=20, max_sil_kept=500):
|
129 |
+
audio, sr = torchaudio.load(audio_path)
|
130 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
131 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
132 |
+
audio = audio.cpu().numpy()[0]
|
133 |
+
|
134 |
+
slicer = Slicer(
|
135 |
+
sr=sr,
|
136 |
+
db_threshold=db_thresh,
|
137 |
+
min_length=min_len,
|
138 |
+
win_l=win_l,
|
139 |
+
win_s=win_s,
|
140 |
+
max_silence_kept=max_sil_kept
|
141 |
+
)
|
142 |
+
chunks = slicer.slice(audio)
|
143 |
+
return chunks
|
144 |
+
|
145 |
+
|
146 |
+
def chunks2audio(audio_path, chunks):
|
147 |
+
chunks = dict(chunks)
|
148 |
+
audio, sr = torchaudio.load(audio_path)
|
149 |
+
if len(audio.shape) == 2 and audio.shape[1] >= 2:
|
150 |
+
audio = torch.mean(audio, dim=0).unsqueeze(0)
|
151 |
+
audio = audio.cpu().numpy()[0]
|
152 |
+
result = []
|
153 |
+
for k, v in chunks.items():
|
154 |
+
tag = v["split_time"].split(",")
|
155 |
+
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
|
156 |
+
return result, sr
|
157 |
+
|
158 |
+
|
inference.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/genshin/__init__.py
ADDED
File without changes
|
models/genshin/config.yaml
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
K_step: 1000
|
2 |
+
accumulate_grad_batches: 1
|
3 |
+
audio_num_mel_bins: 128
|
4 |
+
audio_sample_rate: 44100
|
5 |
+
binarization_args:
|
6 |
+
shuffle: false
|
7 |
+
with_align: true
|
8 |
+
with_f0: true
|
9 |
+
with_hubert: true
|
10 |
+
with_spk_embed: false
|
11 |
+
with_wav: false
|
12 |
+
binarizer_cls: preprocessing.SVCpre.SVCBinarizer
|
13 |
+
binary_data_dir: data/binary/raiden
|
14 |
+
check_val_every_n_epoch: 10
|
15 |
+
choose_test_manually: false
|
16 |
+
clip_grad_norm: 1
|
17 |
+
config_path: training/config_nsf.yaml
|
18 |
+
content_cond_steps: []
|
19 |
+
cwt_add_f0_loss: false
|
20 |
+
cwt_hidden_size: 128
|
21 |
+
cwt_layers: 2
|
22 |
+
cwt_loss: l1
|
23 |
+
cwt_std_scale: 0.8
|
24 |
+
datasets:
|
25 |
+
- opencpop
|
26 |
+
debug: false
|
27 |
+
dec_ffn_kernel_size: 9
|
28 |
+
dec_layers: 4
|
29 |
+
decay_steps: 50000
|
30 |
+
decoder_type: fft
|
31 |
+
dict_dir: ''
|
32 |
+
diff_decoder_type: wavenet
|
33 |
+
diff_loss_type: l2
|
34 |
+
dilation_cycle_length: 4
|
35 |
+
dropout: 0.1
|
36 |
+
ds_workers: 4
|
37 |
+
dur_enc_hidden_stride_kernel:
|
38 |
+
- 0,2,3
|
39 |
+
- 0,2,3
|
40 |
+
- 0,1,3
|
41 |
+
dur_loss: mse
|
42 |
+
dur_predictor_kernel: 3
|
43 |
+
dur_predictor_layers: 5
|
44 |
+
enc_ffn_kernel_size: 9
|
45 |
+
enc_layers: 4
|
46 |
+
encoder_K: 8
|
47 |
+
encoder_type: fft
|
48 |
+
endless_ds: false
|
49 |
+
f0_bin: 256
|
50 |
+
f0_max: 1100.0
|
51 |
+
f0_min: 40.0
|
52 |
+
ffn_act: gelu
|
53 |
+
ffn_padding: SAME
|
54 |
+
fft_size: 2048
|
55 |
+
fmax: 16000
|
56 |
+
fmin: 40
|
57 |
+
fs2_ckpt: ''
|
58 |
+
gaussian_start: true
|
59 |
+
gen_dir_name: ''
|
60 |
+
gen_tgt_spk_id: -1
|
61 |
+
hidden_size: 256
|
62 |
+
hop_size: 512
|
63 |
+
hubert_gpu: true
|
64 |
+
hubert_path: checkpoints/hubert/hubert_soft.pt
|
65 |
+
infer: false
|
66 |
+
keep_bins: 128
|
67 |
+
lambda_commit: 0.25
|
68 |
+
lambda_energy: 0.0
|
69 |
+
lambda_f0: 1.0
|
70 |
+
lambda_ph_dur: 0.3
|
71 |
+
lambda_sent_dur: 1.0
|
72 |
+
lambda_uv: 1.0
|
73 |
+
lambda_word_dur: 1.0
|
74 |
+
load_ckpt: ''
|
75 |
+
log_interval: 100
|
76 |
+
loud_norm: false
|
77 |
+
lr: 0.0012
|
78 |
+
max_beta: 0.02
|
79 |
+
max_epochs: 3000
|
80 |
+
max_eval_sentences: 1
|
81 |
+
max_eval_tokens: 60000
|
82 |
+
max_frames: 42000
|
83 |
+
max_input_tokens: 60000
|
84 |
+
max_sentences: 48
|
85 |
+
max_tokens: 128000
|
86 |
+
max_updates: 260000
|
87 |
+
mel_loss: ssim:0.5|l1:0.5
|
88 |
+
mel_vmax: 1.5
|
89 |
+
mel_vmin: -6.0
|
90 |
+
min_level_db: -120
|
91 |
+
no_fs2: true
|
92 |
+
norm_type: gn
|
93 |
+
num_ckpt_keep: 10
|
94 |
+
num_heads: 2
|
95 |
+
num_sanity_val_steps: 1
|
96 |
+
num_spk: 1
|
97 |
+
num_test_samples: 0
|
98 |
+
num_valid_plots: 10
|
99 |
+
optimizer_adam_beta1: 0.9
|
100 |
+
optimizer_adam_beta2: 0.98
|
101 |
+
out_wav_norm: false
|
102 |
+
pe_ckpt: checkpoints/0102_xiaoma_pe/model_ckpt_steps_60000.ckpt
|
103 |
+
pe_enable: false
|
104 |
+
perform_enhance: true
|
105 |
+
pitch_ar: false
|
106 |
+
pitch_enc_hidden_stride_kernel:
|
107 |
+
- 0,2,5
|
108 |
+
- 0,2,5
|
109 |
+
- 0,2,5
|
110 |
+
pitch_extractor: parselmouth
|
111 |
+
pitch_loss: l2
|
112 |
+
pitch_norm: log
|
113 |
+
pitch_type: frame
|
114 |
+
pndm_speedup: 10
|
115 |
+
pre_align_args:
|
116 |
+
allow_no_txt: false
|
117 |
+
denoise: false
|
118 |
+
forced_align: mfa
|
119 |
+
txt_processor: zh_g2pM
|
120 |
+
use_sox: true
|
121 |
+
use_tone: false
|
122 |
+
pre_align_cls: data_gen.singing.pre_align.SingingPreAlign
|
123 |
+
predictor_dropout: 0.5
|
124 |
+
predictor_grad: 0.1
|
125 |
+
predictor_hidden: -1
|
126 |
+
predictor_kernel: 5
|
127 |
+
predictor_layers: 5
|
128 |
+
prenet_dropout: 0.5
|
129 |
+
prenet_hidden_size: 256
|
130 |
+
pretrain_fs_ckpt: ''
|
131 |
+
processed_data_dir: xxx
|
132 |
+
profile_infer: false
|
133 |
+
raw_data_dir: data/raw/raiden
|
134 |
+
ref_norm_layer: bn
|
135 |
+
rel_pos: true
|
136 |
+
reset_phone_dict: true
|
137 |
+
residual_channels: 384
|
138 |
+
residual_layers: 20
|
139 |
+
save_best: false
|
140 |
+
save_ckpt: true
|
141 |
+
save_codes:
|
142 |
+
- configs
|
143 |
+
- modules
|
144 |
+
- src
|
145 |
+
- utils
|
146 |
+
save_f0: true
|
147 |
+
save_gt: false
|
148 |
+
schedule_type: linear
|
149 |
+
seed: 1234
|
150 |
+
sort_by_len: true
|
151 |
+
speaker_id: raiden
|
152 |
+
spec_max:
|
153 |
+
- -0.4759584963321686
|
154 |
+
- -0.04242899641394615
|
155 |
+
- 0.2820039689540863
|
156 |
+
- 0.6635098457336426
|
157 |
+
- 0.7846556901931763
|
158 |
+
- 0.9242268800735474
|
159 |
+
- 1.0596446990966797
|
160 |
+
- 0.9890199303627014
|
161 |
+
- 0.8979427218437195
|
162 |
+
- 0.8635445237159729
|
163 |
+
- 0.8591453433036804
|
164 |
+
- 0.6987467408180237
|
165 |
+
- 0.717823326587677
|
166 |
+
- 0.7350517511367798
|
167 |
+
- 0.6464754939079285
|
168 |
+
- 0.6164345145225525
|
169 |
+
- 0.4986744523048401
|
170 |
+
- 0.3543139100074768
|
171 |
+
- 0.2876613438129425
|
172 |
+
- 0.3467520773410797
|
173 |
+
- 0.27083638310432434
|
174 |
+
- 0.4002445936203003
|
175 |
+
- 0.4222544729709625
|
176 |
+
- 0.4776916205883026
|
177 |
+
- 0.5299767255783081
|
178 |
+
- 0.6194124817848206
|
179 |
+
- 0.5802494287490845
|
180 |
+
- 0.6222044229507446
|
181 |
+
- 0.6124054193496704
|
182 |
+
- 0.6688933968544006
|
183 |
+
- 0.7368689179420471
|
184 |
+
- 0.7275264859199524
|
185 |
+
- 0.7448640465736389
|
186 |
+
- 0.5364857912063599
|
187 |
+
- 0.5867365002632141
|
188 |
+
- 0.48127084970474243
|
189 |
+
- 0.48270556330680847
|
190 |
+
- 0.45863038301467896
|
191 |
+
- 0.3647041916847229
|
192 |
+
- 0.3207940459251404
|
193 |
+
- 0.3352258801460266
|
194 |
+
- 0.2846287190914154
|
195 |
+
- 0.2674693465232849
|
196 |
+
- 0.3205840587615967
|
197 |
+
- 0.36074087023735046
|
198 |
+
- 0.40593528747558594
|
199 |
+
- 0.266417920589447
|
200 |
+
- 0.22159256041049957
|
201 |
+
- 0.19403372704982758
|
202 |
+
- 0.29326388239860535
|
203 |
+
- 0.29472747445106506
|
204 |
+
- 0.3801038861274719
|
205 |
+
- 0.3864395320415497
|
206 |
+
- 0.285959392786026
|
207 |
+
- 0.22213149070739746
|
208 |
+
- 0.19549456238746643
|
209 |
+
- 0.22238962352275848
|
210 |
+
- 0.15776650607585907
|
211 |
+
- 0.23960433900356293
|
212 |
+
- 0.3050341308116913
|
213 |
+
- 0.258531779050827
|
214 |
+
- 0.19573383033275604
|
215 |
+
- 0.2259710431098938
|
216 |
+
- 0.2110864669084549
|
217 |
+
- 0.24603094160556793
|
218 |
+
- 0.05981471762061119
|
219 |
+
- 0.17803697288036346
|
220 |
+
- 0.17807669937610626
|
221 |
+
- 0.18952223658561707
|
222 |
+
- 0.053435735404491425
|
223 |
+
- 0.1157914251089096
|
224 |
+
- 0.026514273136854172
|
225 |
+
- 0.16326436400413513
|
226 |
+
- 0.22839383780956268
|
227 |
+
- 0.08631942421197891
|
228 |
+
- 0.23315998911857605
|
229 |
+
- 0.162082701921463
|
230 |
+
- 0.1533375382423401
|
231 |
+
- 0.12668564915657043
|
232 |
+
- 0.08644244074821472
|
233 |
+
- 0.02113831788301468
|
234 |
+
- 0.3463006615638733
|
235 |
+
- 0.22695019841194153
|
236 |
+
- 0.14443305134773254
|
237 |
+
- 0.20211298763751984
|
238 |
+
- 0.07295431941747665
|
239 |
+
- -0.007622874341905117
|
240 |
+
- -0.02703588828444481
|
241 |
+
- -0.06394484639167786
|
242 |
+
- -0.09371187537908554
|
243 |
+
- -0.005024001933634281
|
244 |
+
- -0.013857427053153515
|
245 |
+
- -0.1372852921485901
|
246 |
+
- -0.10361140221357346
|
247 |
+
- -0.12665916979312897
|
248 |
+
- -0.20724378526210785
|
249 |
+
- -0.2142055779695511
|
250 |
+
- 0.19261693954467773
|
251 |
+
- 0.08877495676279068
|
252 |
+
- -0.21178629994392395
|
253 |
+
- -0.18947778642177582
|
254 |
+
- -0.2520659863948822
|
255 |
+
- -0.22880172729492188
|
256 |
+
- -0.14105628430843353
|
257 |
+
- -0.05572707951068878
|
258 |
+
- -0.26297450065612793
|
259 |
+
- -0.412873774766922
|
260 |
+
- -0.35086822509765625
|
261 |
+
- -0.36454305052757263
|
262 |
+
- -0.4511951208114624
|
263 |
+
- -0.3738810122013092
|
264 |
+
- -0.4491288959980011
|
265 |
+
- -0.5304299592971802
|
266 |
+
- -0.4495029151439667
|
267 |
+
- -0.4343602657318115
|
268 |
+
- -0.34189438819885254
|
269 |
+
- -0.5748119950294495
|
270 |
+
- -0.6650391817092896
|
271 |
+
- -0.6537092924118042
|
272 |
+
- -0.8302493691444397
|
273 |
+
- -0.7430973649024963
|
274 |
+
- -0.9170511364936829
|
275 |
+
- -1.0624077320098877
|
276 |
+
- -1.242630958557129
|
277 |
+
- -1.163043737411499
|
278 |
+
- -1.0178996324539185
|
279 |
+
- -1.4756207466125488
|
280 |
+
- -1.5275251865386963
|
281 |
+
spec_min:
|
282 |
+
- -4.999994277954102
|
283 |
+
- -4.999994277954102
|
284 |
+
- -4.999994277954102
|
285 |
+
- -4.999994277954102
|
286 |
+
- -4.999994277954102
|
287 |
+
- -4.999994277954102
|
288 |
+
- -4.999994277954102
|
289 |
+
- -4.999994277954102
|
290 |
+
- -4.999994277954102
|
291 |
+
- -4.999994277954102
|
292 |
+
- -4.999994277954102
|
293 |
+
- -4.999994277954102
|
294 |
+
- -4.999994277954102
|
295 |
+
- -4.999994277954102
|
296 |
+
- -4.999994277954102
|
297 |
+
- -4.999994277954102
|
298 |
+
- -4.999994277954102
|
299 |
+
- -4.999994277954102
|
300 |
+
- -4.999994277954102
|
301 |
+
- -4.999994277954102
|
302 |
+
- -4.999994277954102
|
303 |
+
- -4.999994277954102
|
304 |
+
- -4.999994277954102
|
305 |
+
- -4.999994277954102
|
306 |
+
- -4.999994277954102
|
307 |
+
- -4.999994277954102
|
308 |
+
- -4.999994277954102
|
309 |
+
- -4.999994277954102
|
310 |
+
- -4.999994277954102
|
311 |
+
- -4.999994277954102
|
312 |
+
- -4.999994277954102
|
313 |
+
- -4.999994277954102
|
314 |
+
- -4.999994277954102
|
315 |
+
- -4.999994277954102
|
316 |
+
- -4.999994277954102
|
317 |
+
- -4.999994277954102
|
318 |
+
- -4.999994277954102
|
319 |
+
- -4.999994277954102
|
320 |
+
- -4.999994277954102
|
321 |
+
- -4.999994277954102
|
322 |
+
- -4.999994277954102
|
323 |
+
- -4.999994277954102
|
324 |
+
- -4.999994277954102
|
325 |
+
- -4.999994277954102
|
326 |
+
- -4.999994277954102
|
327 |
+
- -4.999994277954102
|
328 |
+
- -4.999994277954102
|
329 |
+
- -4.999994277954102
|
330 |
+
- -4.999994277954102
|
331 |
+
- -4.999994277954102
|
332 |
+
- -4.999994277954102
|
333 |
+
- -4.999994277954102
|
334 |
+
- -4.999994277954102
|
335 |
+
- -4.999994277954102
|
336 |
+
- -4.999994277954102
|
337 |
+
- -4.999994277954102
|
338 |
+
- -4.999994277954102
|
339 |
+
- -4.999994277954102
|
340 |
+
- -4.999994277954102
|
341 |
+
- -4.999994277954102
|
342 |
+
- -4.999994277954102
|
343 |
+
- -4.999994277954102
|
344 |
+
- -4.999994277954102
|
345 |
+
- -4.999994277954102
|
346 |
+
- -4.999994277954102
|
347 |
+
- -4.999994277954102
|
348 |
+
- -4.999994277954102
|
349 |
+
- -4.999994277954102
|
350 |
+
- -4.999994277954102
|
351 |
+
- -4.999994277954102
|
352 |
+
- -4.999994277954102
|
353 |
+
- -4.999994277954102
|
354 |
+
- -4.999994277954102
|
355 |
+
- -4.999994277954102
|
356 |
+
- -4.999994277954102
|
357 |
+
- -4.999994277954102
|
358 |
+
- -4.999994277954102
|
359 |
+
- -4.999994277954102
|
360 |
+
- -4.999994277954102
|
361 |
+
- -4.999994277954102
|
362 |
+
- -4.999994277954102
|
363 |
+
- -4.999994277954102
|
364 |
+
- -4.999994277954102
|
365 |
+
- -4.999994277954102
|
366 |
+
- -4.999994277954102
|
367 |
+
- -4.999994277954102
|
368 |
+
- -4.999994277954102
|
369 |
+
- -4.999994277954102
|
370 |
+
- -4.999994277954102
|
371 |
+
- -4.999994277954102
|
372 |
+
- -4.999994277954102
|
373 |
+
- -4.999994277954102
|
374 |
+
- -4.999994277954102
|
375 |
+
- -4.999994277954102
|
376 |
+
- -4.999994277954102
|
377 |
+
- -4.999994277954102
|
378 |
+
- -4.999994277954102
|
379 |
+
- -4.999994277954102
|
380 |
+
- -4.999994277954102
|
381 |
+
- -4.999994277954102
|
382 |
+
- -4.999994277954102
|
383 |
+
- -4.999994277954102
|
384 |
+
- -4.999994277954102
|
385 |
+
- -4.999994277954102
|
386 |
+
- -4.999994277954102
|
387 |
+
- -4.999994277954102
|
388 |
+
- -4.999994277954102
|
389 |
+
- -4.999994277954102
|
390 |
+
- -4.999994277954102
|
391 |
+
- -4.999994277954102
|
392 |
+
- -4.999994277954102
|
393 |
+
- -4.999994277954102
|
394 |
+
- -4.999994277954102
|
395 |
+
- -4.999994277954102
|
396 |
+
- -4.999994277954102
|
397 |
+
- -4.999994277954102
|
398 |
+
- -4.999994277954102
|
399 |
+
- -4.999994277954102
|
400 |
+
- -4.999994277954102
|
401 |
+
- -4.999994277954102
|
402 |
+
- -4.999994277954102
|
403 |
+
- -4.999994277954102
|
404 |
+
- -4.999994277954102
|
405 |
+
- -4.999994277954102
|
406 |
+
- -4.999994277954102
|
407 |
+
- -4.9844536781311035
|
408 |
+
- -4.999994277954102
|
409 |
+
- -4.999994277954102
|
410 |
+
spk_cond_steps: []
|
411 |
+
stop_token_weight: 5.0
|
412 |
+
task_cls: training.task.SVC_task.SVCTask
|
413 |
+
test_ids: []
|
414 |
+
test_input_dir: ''
|
415 |
+
test_num: 0
|
416 |
+
test_prefixes:
|
417 |
+
- test
|
418 |
+
test_set_name: test
|
419 |
+
timesteps: 1000
|
420 |
+
train_set_name: train
|
421 |
+
use_crepe: true
|
422 |
+
use_denoise: false
|
423 |
+
use_energy_embed: false
|
424 |
+
use_gt_dur: false
|
425 |
+
use_gt_f0: false
|
426 |
+
use_midi: false
|
427 |
+
use_nsf: true
|
428 |
+
use_pitch_embed: true
|
429 |
+
use_pos_embed: true
|
430 |
+
use_spk_embed: false
|
431 |
+
use_spk_id: false
|
432 |
+
use_split_spk_id: false
|
433 |
+
use_uv: false
|
434 |
+
use_var_enc: false
|
435 |
+
use_vec: false
|
436 |
+
val_check_interval: 2000
|
437 |
+
valid_num: 0
|
438 |
+
valid_set_name: valid
|
439 |
+
vocoder: network.vocoders.nsf_hifigan.NsfHifiGAN
|
440 |
+
vocoder_ckpt: checkpoints/nsf_hifigan/model
|
441 |
+
warmup_updates: 2000
|
442 |
+
wav2spec_eps: 1e-6
|
443 |
+
weight_decay: 0
|
444 |
+
win_size: 2048
|
445 |
+
work_dir: checkpoints/raiden
|
models/genshin/raiden.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1da7f6c45f8651131386c946f1bd90010b1fd568792d8d70f7025ea3b9a9dda2
|
3 |
+
size 134965595
|
modules/commons/__pycache__/common_layers.cpython-38.pyc
ADDED
Binary file (18.8 kB). View file
|
|
modules/commons/__pycache__/espnet_positional_embedding.cpython-38.pyc
ADDED
Binary file (4.44 kB). View file
|
|
modules/commons/__pycache__/ssim.cpython-38.pyc
ADDED
Binary file (2.69 kB). View file
|
|
modules/commons/common_layers.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import Parameter
|
5 |
+
import torch.onnx.operators
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import utils
|
8 |
+
|
9 |
+
|
10 |
+
class Reshape(nn.Module):
|
11 |
+
def __init__(self, *args):
|
12 |
+
super(Reshape, self).__init__()
|
13 |
+
self.shape = args
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
return x.view(self.shape)
|
17 |
+
|
18 |
+
|
19 |
+
class Permute(nn.Module):
|
20 |
+
def __init__(self, *args):
|
21 |
+
super(Permute, self).__init__()
|
22 |
+
self.args = args
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return x.permute(self.args)
|
26 |
+
|
27 |
+
|
28 |
+
class LinearNorm(torch.nn.Module):
|
29 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
30 |
+
super(LinearNorm, self).__init__()
|
31 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
32 |
+
|
33 |
+
torch.nn.init.xavier_uniform_(
|
34 |
+
self.linear_layer.weight,
|
35 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.linear_layer(x)
|
39 |
+
|
40 |
+
|
41 |
+
class ConvNorm(torch.nn.Module):
|
42 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
43 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear'):
|
44 |
+
super(ConvNorm, self).__init__()
|
45 |
+
if padding is None:
|
46 |
+
assert (kernel_size % 2 == 1)
|
47 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
48 |
+
|
49 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
50 |
+
kernel_size=kernel_size, stride=stride,
|
51 |
+
padding=padding, dilation=dilation,
|
52 |
+
bias=bias)
|
53 |
+
|
54 |
+
torch.nn.init.xavier_uniform_(
|
55 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
|
56 |
+
|
57 |
+
def forward(self, signal):
|
58 |
+
conv_signal = self.conv(signal)
|
59 |
+
return conv_signal
|
60 |
+
|
61 |
+
|
62 |
+
def Embedding(num_embeddings, embedding_dim, padding_idx=None):
|
63 |
+
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
|
64 |
+
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
|
65 |
+
if padding_idx is not None:
|
66 |
+
nn.init.constant_(m.weight[padding_idx], 0)
|
67 |
+
return m
|
68 |
+
|
69 |
+
|
70 |
+
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
|
71 |
+
if not export and torch.cuda.is_available():
|
72 |
+
try:
|
73 |
+
from apex.normalization import FusedLayerNorm
|
74 |
+
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
|
75 |
+
except ImportError:
|
76 |
+
pass
|
77 |
+
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
|
78 |
+
|
79 |
+
|
80 |
+
def Linear(in_features, out_features, bias=True):
|
81 |
+
m = nn.Linear(in_features, out_features, bias)
|
82 |
+
nn.init.xavier_uniform_(m.weight)
|
83 |
+
if bias:
|
84 |
+
nn.init.constant_(m.bias, 0.)
|
85 |
+
return m
|
86 |
+
|
87 |
+
|
88 |
+
class SinusoidalPositionalEmbedding(nn.Module):
|
89 |
+
"""This module produces sinusoidal positional embeddings of any length.
|
90 |
+
|
91 |
+
Padding symbols are ignored.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, embedding_dim, padding_idx, init_size=1024):
|
95 |
+
super().__init__()
|
96 |
+
self.embedding_dim = embedding_dim
|
97 |
+
self.padding_idx = padding_idx
|
98 |
+
self.weights = SinusoidalPositionalEmbedding.get_embedding(
|
99 |
+
init_size,
|
100 |
+
embedding_dim,
|
101 |
+
padding_idx,
|
102 |
+
)
|
103 |
+
self.register_buffer('_float_tensor', torch.FloatTensor(1))
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
|
107 |
+
"""Build sinusoidal embeddings.
|
108 |
+
|
109 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
110 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
111 |
+
"""
|
112 |
+
half_dim = embedding_dim // 2
|
113 |
+
emb = math.log(10000) / (half_dim - 1)
|
114 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
115 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
|
116 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
117 |
+
if embedding_dim % 2 == 1:
|
118 |
+
# zero pad
|
119 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
120 |
+
if padding_idx is not None:
|
121 |
+
emb[padding_idx, :] = 0
|
122 |
+
return emb
|
123 |
+
|
124 |
+
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
|
125 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
126 |
+
bsz, seq_len = input.shape[:2]
|
127 |
+
max_pos = self.padding_idx + 1 + seq_len
|
128 |
+
if self.weights is None or max_pos > self.weights.size(0):
|
129 |
+
# recompute/expand embeddings if needed
|
130 |
+
self.weights = SinusoidalPositionalEmbedding.get_embedding(
|
131 |
+
max_pos,
|
132 |
+
self.embedding_dim,
|
133 |
+
self.padding_idx,
|
134 |
+
)
|
135 |
+
self.weights = self.weights.to(self._float_tensor)
|
136 |
+
|
137 |
+
if incremental_state is not None:
|
138 |
+
# positions is the same for every token when decoding a single step
|
139 |
+
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
|
140 |
+
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
|
141 |
+
|
142 |
+
positions = utils.make_positions(input, self.padding_idx) if positions is None else positions
|
143 |
+
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
|
144 |
+
|
145 |
+
def max_positions(self):
|
146 |
+
"""Maximum number of supported positions."""
|
147 |
+
return int(1e5) # an arbitrary large number
|
148 |
+
|
149 |
+
|
150 |
+
class ConvTBC(nn.Module):
|
151 |
+
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
|
152 |
+
super(ConvTBC, self).__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
self.out_channels = out_channels
|
155 |
+
self.kernel_size = kernel_size
|
156 |
+
self.padding = padding
|
157 |
+
|
158 |
+
self.weight = torch.nn.Parameter(torch.Tensor(
|
159 |
+
self.kernel_size, in_channels, out_channels))
|
160 |
+
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
|
161 |
+
|
162 |
+
def forward(self, input):
|
163 |
+
return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding)
|
164 |
+
|
165 |
+
|
166 |
+
class MultiheadAttention(nn.Module):
|
167 |
+
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
|
168 |
+
add_bias_kv=False, add_zero_attn=False, self_attention=False,
|
169 |
+
encoder_decoder_attention=False):
|
170 |
+
super().__init__()
|
171 |
+
self.embed_dim = embed_dim
|
172 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
173 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
174 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
175 |
+
|
176 |
+
self.num_heads = num_heads
|
177 |
+
self.dropout = dropout
|
178 |
+
self.head_dim = embed_dim // num_heads
|
179 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
180 |
+
self.scaling = self.head_dim ** -0.5
|
181 |
+
|
182 |
+
self.self_attention = self_attention
|
183 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
184 |
+
|
185 |
+
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \
|
186 |
+
'value to be of the same size'
|
187 |
+
|
188 |
+
if self.qkv_same_dim:
|
189 |
+
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
|
190 |
+
else:
|
191 |
+
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
|
192 |
+
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
|
193 |
+
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
|
194 |
+
|
195 |
+
if bias:
|
196 |
+
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
|
197 |
+
else:
|
198 |
+
self.register_parameter('in_proj_bias', None)
|
199 |
+
|
200 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
201 |
+
|
202 |
+
if add_bias_kv:
|
203 |
+
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
204 |
+
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
205 |
+
else:
|
206 |
+
self.bias_k = self.bias_v = None
|
207 |
+
|
208 |
+
self.add_zero_attn = add_zero_attn
|
209 |
+
|
210 |
+
self.reset_parameters()
|
211 |
+
|
212 |
+
self.enable_torch_version = False
|
213 |
+
if hasattr(F, "multi_head_attention_forward"):
|
214 |
+
self.enable_torch_version = True
|
215 |
+
else:
|
216 |
+
self.enable_torch_version = False
|
217 |
+
self.last_attn_probs = None
|
218 |
+
|
219 |
+
def reset_parameters(self):
|
220 |
+
if self.qkv_same_dim:
|
221 |
+
nn.init.xavier_uniform_(self.in_proj_weight)
|
222 |
+
else:
|
223 |
+
nn.init.xavier_uniform_(self.k_proj_weight)
|
224 |
+
nn.init.xavier_uniform_(self.v_proj_weight)
|
225 |
+
nn.init.xavier_uniform_(self.q_proj_weight)
|
226 |
+
|
227 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
228 |
+
if self.in_proj_bias is not None:
|
229 |
+
nn.init.constant_(self.in_proj_bias, 0.)
|
230 |
+
nn.init.constant_(self.out_proj.bias, 0.)
|
231 |
+
if self.bias_k is not None:
|
232 |
+
nn.init.xavier_normal_(self.bias_k)
|
233 |
+
if self.bias_v is not None:
|
234 |
+
nn.init.xavier_normal_(self.bias_v)
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
query, key, value,
|
239 |
+
key_padding_mask=None,
|
240 |
+
incremental_state=None,
|
241 |
+
need_weights=True,
|
242 |
+
static_kv=False,
|
243 |
+
attn_mask=None,
|
244 |
+
before_softmax=False,
|
245 |
+
need_head_weights=False,
|
246 |
+
enc_dec_attn_constraint_mask=None,
|
247 |
+
reset_attn_weight=None
|
248 |
+
):
|
249 |
+
"""Input shape: Time x Batch x Channel
|
250 |
+
|
251 |
+
Args:
|
252 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
253 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
254 |
+
padding elements are indicated by 1s.
|
255 |
+
need_weights (bool, optional): return the attention weights,
|
256 |
+
averaged over heads (default: False).
|
257 |
+
attn_mask (ByteTensor, optional): typically used to
|
258 |
+
implement causal attention, where the mask prevents the
|
259 |
+
attention from looking forward in time (default: None).
|
260 |
+
before_softmax (bool, optional): return the raw attention
|
261 |
+
weights and values before the attention softmax.
|
262 |
+
need_head_weights (bool, optional): return the attention
|
263 |
+
weights for each head. Implies *need_weights*. Default:
|
264 |
+
return the average attention weights over all heads.
|
265 |
+
"""
|
266 |
+
if need_head_weights:
|
267 |
+
need_weights = True
|
268 |
+
|
269 |
+
tgt_len, bsz, embed_dim = query.size()
|
270 |
+
assert embed_dim == self.embed_dim
|
271 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
272 |
+
|
273 |
+
if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None:
|
274 |
+
if self.qkv_same_dim:
|
275 |
+
return F.multi_head_attention_forward(query, key, value,
|
276 |
+
self.embed_dim, self.num_heads,
|
277 |
+
self.in_proj_weight,
|
278 |
+
self.in_proj_bias, self.bias_k, self.bias_v,
|
279 |
+
self.add_zero_attn, self.dropout,
|
280 |
+
self.out_proj.weight, self.out_proj.bias,
|
281 |
+
self.training, key_padding_mask, need_weights,
|
282 |
+
attn_mask)
|
283 |
+
else:
|
284 |
+
return F.multi_head_attention_forward(query, key, value,
|
285 |
+
self.embed_dim, self.num_heads,
|
286 |
+
torch.empty([0]),
|
287 |
+
self.in_proj_bias, self.bias_k, self.bias_v,
|
288 |
+
self.add_zero_attn, self.dropout,
|
289 |
+
self.out_proj.weight, self.out_proj.bias,
|
290 |
+
self.training, key_padding_mask, need_weights,
|
291 |
+
attn_mask, use_separate_proj_weight=True,
|
292 |
+
q_proj_weight=self.q_proj_weight,
|
293 |
+
k_proj_weight=self.k_proj_weight,
|
294 |
+
v_proj_weight=self.v_proj_weight)
|
295 |
+
|
296 |
+
if incremental_state is not None:
|
297 |
+
print('Not implemented error.')
|
298 |
+
exit()
|
299 |
+
else:
|
300 |
+
saved_state = None
|
301 |
+
|
302 |
+
if self.self_attention:
|
303 |
+
# self-attention
|
304 |
+
q, k, v = self.in_proj_qkv(query)
|
305 |
+
elif self.encoder_decoder_attention:
|
306 |
+
# encoder-decoder attention
|
307 |
+
q = self.in_proj_q(query)
|
308 |
+
if key is None:
|
309 |
+
assert value is None
|
310 |
+
k = v = None
|
311 |
+
else:
|
312 |
+
k = self.in_proj_k(key)
|
313 |
+
v = self.in_proj_v(key)
|
314 |
+
|
315 |
+
else:
|
316 |
+
q = self.in_proj_q(query)
|
317 |
+
k = self.in_proj_k(key)
|
318 |
+
v = self.in_proj_v(value)
|
319 |
+
q *= self.scaling
|
320 |
+
|
321 |
+
if self.bias_k is not None:
|
322 |
+
assert self.bias_v is not None
|
323 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
324 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
325 |
+
if attn_mask is not None:
|
326 |
+
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
327 |
+
if key_padding_mask is not None:
|
328 |
+
key_padding_mask = torch.cat(
|
329 |
+
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
|
330 |
+
|
331 |
+
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
332 |
+
if k is not None:
|
333 |
+
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
334 |
+
if v is not None:
|
335 |
+
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
336 |
+
|
337 |
+
if saved_state is not None:
|
338 |
+
print('Not implemented error.')
|
339 |
+
exit()
|
340 |
+
|
341 |
+
src_len = k.size(1)
|
342 |
+
|
343 |
+
# This is part of a workaround to get around fork/join parallelism
|
344 |
+
# not supporting Optional types.
|
345 |
+
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
|
346 |
+
key_padding_mask = None
|
347 |
+
|
348 |
+
if key_padding_mask is not None:
|
349 |
+
assert key_padding_mask.size(0) == bsz
|
350 |
+
assert key_padding_mask.size(1) == src_len
|
351 |
+
|
352 |
+
if self.add_zero_attn:
|
353 |
+
src_len += 1
|
354 |
+
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
355 |
+
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
356 |
+
if attn_mask is not None:
|
357 |
+
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
|
358 |
+
if key_padding_mask is not None:
|
359 |
+
key_padding_mask = torch.cat(
|
360 |
+
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
|
361 |
+
|
362 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
363 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
364 |
+
|
365 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
366 |
+
|
367 |
+
if attn_mask is not None:
|
368 |
+
if len(attn_mask.shape) == 2:
|
369 |
+
attn_mask = attn_mask.unsqueeze(0)
|
370 |
+
elif len(attn_mask.shape) == 3:
|
371 |
+
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
|
372 |
+
bsz * self.num_heads, tgt_len, src_len)
|
373 |
+
attn_weights = attn_weights + attn_mask
|
374 |
+
|
375 |
+
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv
|
376 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
377 |
+
attn_weights = attn_weights.masked_fill(
|
378 |
+
enc_dec_attn_constraint_mask.unsqueeze(2).bool(),
|
379 |
+
-1e9,
|
380 |
+
)
|
381 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
382 |
+
|
383 |
+
if key_padding_mask is not None:
|
384 |
+
# don't attend to padding symbols
|
385 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
386 |
+
attn_weights = attn_weights.masked_fill(
|
387 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
388 |
+
-1e9,
|
389 |
+
)
|
390 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
391 |
+
|
392 |
+
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
393 |
+
|
394 |
+
if before_softmax:
|
395 |
+
return attn_weights, v
|
396 |
+
|
397 |
+
attn_weights_float = utils.softmax(attn_weights, dim=-1)
|
398 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
399 |
+
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
|
400 |
+
|
401 |
+
if reset_attn_weight is not None:
|
402 |
+
if reset_attn_weight:
|
403 |
+
self.last_attn_probs = attn_probs.detach()
|
404 |
+
else:
|
405 |
+
assert self.last_attn_probs is not None
|
406 |
+
attn_probs = self.last_attn_probs
|
407 |
+
attn = torch.bmm(attn_probs, v)
|
408 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
409 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
410 |
+
attn = self.out_proj(attn)
|
411 |
+
|
412 |
+
if need_weights:
|
413 |
+
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
|
414 |
+
if not need_head_weights:
|
415 |
+
# average attention weights over heads
|
416 |
+
attn_weights = attn_weights.mean(dim=0)
|
417 |
+
else:
|
418 |
+
attn_weights = None
|
419 |
+
|
420 |
+
return attn, (attn_weights, attn_logits)
|
421 |
+
|
422 |
+
def in_proj_qkv(self, query):
|
423 |
+
return self._in_proj(query).chunk(3, dim=-1)
|
424 |
+
|
425 |
+
def in_proj_q(self, query):
|
426 |
+
if self.qkv_same_dim:
|
427 |
+
return self._in_proj(query, end=self.embed_dim)
|
428 |
+
else:
|
429 |
+
bias = self.in_proj_bias
|
430 |
+
if bias is not None:
|
431 |
+
bias = bias[:self.embed_dim]
|
432 |
+
return F.linear(query, self.q_proj_weight, bias)
|
433 |
+
|
434 |
+
def in_proj_k(self, key):
|
435 |
+
if self.qkv_same_dim:
|
436 |
+
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
|
437 |
+
else:
|
438 |
+
weight = self.k_proj_weight
|
439 |
+
bias = self.in_proj_bias
|
440 |
+
if bias is not None:
|
441 |
+
bias = bias[self.embed_dim:2 * self.embed_dim]
|
442 |
+
return F.linear(key, weight, bias)
|
443 |
+
|
444 |
+
def in_proj_v(self, value):
|
445 |
+
if self.qkv_same_dim:
|
446 |
+
return self._in_proj(value, start=2 * self.embed_dim)
|
447 |
+
else:
|
448 |
+
weight = self.v_proj_weight
|
449 |
+
bias = self.in_proj_bias
|
450 |
+
if bias is not None:
|
451 |
+
bias = bias[2 * self.embed_dim:]
|
452 |
+
return F.linear(value, weight, bias)
|
453 |
+
|
454 |
+
def _in_proj(self, input, start=0, end=None):
|
455 |
+
weight = self.in_proj_weight
|
456 |
+
bias = self.in_proj_bias
|
457 |
+
weight = weight[start:end, :]
|
458 |
+
if bias is not None:
|
459 |
+
bias = bias[start:end]
|
460 |
+
return F.linear(input, weight, bias)
|
461 |
+
|
462 |
+
|
463 |
+
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz):
|
464 |
+
return attn_weights
|
465 |
+
|
466 |
+
|
467 |
+
class Swish(torch.autograd.Function):
|
468 |
+
@staticmethod
|
469 |
+
def forward(ctx, i):
|
470 |
+
result = i * torch.sigmoid(i)
|
471 |
+
ctx.save_for_backward(i)
|
472 |
+
return result
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
def backward(ctx, grad_output):
|
476 |
+
i = ctx.saved_variables[0]
|
477 |
+
sigmoid_i = torch.sigmoid(i)
|
478 |
+
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
|
479 |
+
|
480 |
+
|
481 |
+
class CustomSwish(nn.Module):
|
482 |
+
def forward(self, input_tensor):
|
483 |
+
return Swish.apply(input_tensor)
|
484 |
+
|
485 |
+
class Mish(nn.Module):
|
486 |
+
def forward(self, x):
|
487 |
+
return x * torch.tanh(F.softplus(x))
|
488 |
+
|
489 |
+
class TransformerFFNLayer(nn.Module):
|
490 |
+
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'):
|
491 |
+
super().__init__()
|
492 |
+
self.kernel_size = kernel_size
|
493 |
+
self.dropout = dropout
|
494 |
+
self.act = act
|
495 |
+
if padding == 'SAME':
|
496 |
+
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2)
|
497 |
+
elif padding == 'LEFT':
|
498 |
+
self.ffn_1 = nn.Sequential(
|
499 |
+
nn.ConstantPad1d((kernel_size - 1, 0), 0.0),
|
500 |
+
nn.Conv1d(hidden_size, filter_size, kernel_size)
|
501 |
+
)
|
502 |
+
self.ffn_2 = Linear(filter_size, hidden_size)
|
503 |
+
if self.act == 'swish':
|
504 |
+
self.swish_fn = CustomSwish()
|
505 |
+
|
506 |
+
def forward(self, x, incremental_state=None):
|
507 |
+
# x: T x B x C
|
508 |
+
if incremental_state is not None:
|
509 |
+
assert incremental_state is None, 'Nar-generation does not allow this.'
|
510 |
+
exit(1)
|
511 |
+
|
512 |
+
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1)
|
513 |
+
x = x * self.kernel_size ** -0.5
|
514 |
+
|
515 |
+
if incremental_state is not None:
|
516 |
+
x = x[-1:]
|
517 |
+
if self.act == 'gelu':
|
518 |
+
x = F.gelu(x)
|
519 |
+
if self.act == 'relu':
|
520 |
+
x = F.relu(x)
|
521 |
+
if self.act == 'swish':
|
522 |
+
x = self.swish_fn(x)
|
523 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
524 |
+
x = self.ffn_2(x)
|
525 |
+
return x
|
526 |
+
|
527 |
+
|
528 |
+
class BatchNorm1dTBC(nn.Module):
|
529 |
+
def __init__(self, c):
|
530 |
+
super(BatchNorm1dTBC, self).__init__()
|
531 |
+
self.bn = nn.BatchNorm1d(c)
|
532 |
+
|
533 |
+
def forward(self, x):
|
534 |
+
"""
|
535 |
+
|
536 |
+
:param x: [T, B, C]
|
537 |
+
:return: [T, B, C]
|
538 |
+
"""
|
539 |
+
x = x.permute(1, 2, 0) # [B, C, T]
|
540 |
+
x = self.bn(x) # [B, C, T]
|
541 |
+
x = x.permute(2, 0, 1) # [T, B, C]
|
542 |
+
return x
|
543 |
+
|
544 |
+
|
545 |
+
class EncSALayer(nn.Module):
|
546 |
+
def __init__(self, c, num_heads, dropout, attention_dropout=0.1,
|
547 |
+
relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'):
|
548 |
+
super().__init__()
|
549 |
+
self.c = c
|
550 |
+
self.dropout = dropout
|
551 |
+
self.num_heads = num_heads
|
552 |
+
if num_heads > 0:
|
553 |
+
if norm == 'ln':
|
554 |
+
self.layer_norm1 = LayerNorm(c)
|
555 |
+
elif norm == 'bn':
|
556 |
+
self.layer_norm1 = BatchNorm1dTBC(c)
|
557 |
+
self.self_attn = MultiheadAttention(
|
558 |
+
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False,
|
559 |
+
)
|
560 |
+
if norm == 'ln':
|
561 |
+
self.layer_norm2 = LayerNorm(c)
|
562 |
+
elif norm == 'bn':
|
563 |
+
self.layer_norm2 = BatchNorm1dTBC(c)
|
564 |
+
self.ffn = TransformerFFNLayer(
|
565 |
+
c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act)
|
566 |
+
|
567 |
+
def forward(self, x, encoder_padding_mask=None, **kwargs):
|
568 |
+
layer_norm_training = kwargs.get('layer_norm_training', None)
|
569 |
+
if layer_norm_training is not None:
|
570 |
+
self.layer_norm1.training = layer_norm_training
|
571 |
+
self.layer_norm2.training = layer_norm_training
|
572 |
+
if self.num_heads > 0:
|
573 |
+
residual = x
|
574 |
+
x = self.layer_norm1(x)
|
575 |
+
x, _, = self.self_attn(
|
576 |
+
query=x,
|
577 |
+
key=x,
|
578 |
+
value=x,
|
579 |
+
key_padding_mask=encoder_padding_mask
|
580 |
+
)
|
581 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
582 |
+
x = residual + x
|
583 |
+
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
|
584 |
+
|
585 |
+
residual = x
|
586 |
+
x = self.layer_norm2(x)
|
587 |
+
x = self.ffn(x)
|
588 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
589 |
+
x = residual + x
|
590 |
+
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None]
|
591 |
+
return x
|
592 |
+
|
593 |
+
|
594 |
+
class DecSALayer(nn.Module):
|
595 |
+
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'):
|
596 |
+
super().__init__()
|
597 |
+
self.c = c
|
598 |
+
self.dropout = dropout
|
599 |
+
self.layer_norm1 = LayerNorm(c)
|
600 |
+
self.self_attn = MultiheadAttention(
|
601 |
+
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False
|
602 |
+
)
|
603 |
+
self.layer_norm2 = LayerNorm(c)
|
604 |
+
self.encoder_attn = MultiheadAttention(
|
605 |
+
c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False,
|
606 |
+
)
|
607 |
+
self.layer_norm3 = LayerNorm(c)
|
608 |
+
self.ffn = TransformerFFNLayer(
|
609 |
+
c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
x,
|
614 |
+
encoder_out=None,
|
615 |
+
encoder_padding_mask=None,
|
616 |
+
incremental_state=None,
|
617 |
+
self_attn_mask=None,
|
618 |
+
self_attn_padding_mask=None,
|
619 |
+
attn_out=None,
|
620 |
+
reset_attn_weight=None,
|
621 |
+
**kwargs,
|
622 |
+
):
|
623 |
+
layer_norm_training = kwargs.get('layer_norm_training', None)
|
624 |
+
if layer_norm_training is not None:
|
625 |
+
self.layer_norm1.training = layer_norm_training
|
626 |
+
self.layer_norm2.training = layer_norm_training
|
627 |
+
self.layer_norm3.training = layer_norm_training
|
628 |
+
residual = x
|
629 |
+
x = self.layer_norm1(x)
|
630 |
+
x, _ = self.self_attn(
|
631 |
+
query=x,
|
632 |
+
key=x,
|
633 |
+
value=x,
|
634 |
+
key_padding_mask=self_attn_padding_mask,
|
635 |
+
incremental_state=incremental_state,
|
636 |
+
attn_mask=self_attn_mask
|
637 |
+
)
|
638 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
639 |
+
x = residual + x
|
640 |
+
|
641 |
+
residual = x
|
642 |
+
x = self.layer_norm2(x)
|
643 |
+
if encoder_out is not None:
|
644 |
+
x, attn = self.encoder_attn(
|
645 |
+
query=x,
|
646 |
+
key=encoder_out,
|
647 |
+
value=encoder_out,
|
648 |
+
key_padding_mask=encoder_padding_mask,
|
649 |
+
incremental_state=incremental_state,
|
650 |
+
static_kv=True,
|
651 |
+
enc_dec_attn_constraint_mask=None, #utils.get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'),
|
652 |
+
reset_attn_weight=reset_attn_weight
|
653 |
+
)
|
654 |
+
attn_logits = attn[1]
|
655 |
+
else:
|
656 |
+
assert attn_out is not None
|
657 |
+
x = self.encoder_attn.in_proj_v(attn_out.transpose(0, 1))
|
658 |
+
attn_logits = None
|
659 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
660 |
+
x = residual + x
|
661 |
+
|
662 |
+
residual = x
|
663 |
+
x = self.layer_norm3(x)
|
664 |
+
x = self.ffn(x, incremental_state=incremental_state)
|
665 |
+
x = F.dropout(x, self.dropout, training=self.training)
|
666 |
+
x = residual + x
|
667 |
+
# if len(attn_logits.size()) > 3:
|
668 |
+
# indices = attn_logits.softmax(-1).max(-1).values.sum(-1).argmax(-1)
|
669 |
+
# attn_logits = attn_logits.gather(1,
|
670 |
+
# indices[:, None, None, None].repeat(1, 1, attn_logits.size(-2), attn_logits.size(-1))).squeeze(1)
|
671 |
+
return x, attn_logits
|
modules/commons/espnet_positional_embedding.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class PositionalEncoding(torch.nn.Module):
|
6 |
+
"""Positional encoding.
|
7 |
+
Args:
|
8 |
+
d_model (int): Embedding dimension.
|
9 |
+
dropout_rate (float): Dropout rate.
|
10 |
+
max_len (int): Maximum input length.
|
11 |
+
reverse (bool): Whether to reverse the input position.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
15 |
+
"""Construct an PositionalEncoding object."""
|
16 |
+
super(PositionalEncoding, self).__init__()
|
17 |
+
self.d_model = d_model
|
18 |
+
self.reverse = reverse
|
19 |
+
self.xscale = math.sqrt(self.d_model)
|
20 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
21 |
+
self.pe = None
|
22 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
23 |
+
|
24 |
+
def extend_pe(self, x):
|
25 |
+
"""Reset the positional encodings."""
|
26 |
+
if self.pe is not None:
|
27 |
+
if self.pe.size(1) >= x.size(1):
|
28 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
29 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
30 |
+
return
|
31 |
+
pe = torch.zeros(x.size(1), self.d_model)
|
32 |
+
if self.reverse:
|
33 |
+
position = torch.arange(
|
34 |
+
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
35 |
+
).unsqueeze(1)
|
36 |
+
else:
|
37 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
38 |
+
div_term = torch.exp(
|
39 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
40 |
+
* -(math.log(10000.0) / self.d_model)
|
41 |
+
)
|
42 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
43 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
44 |
+
pe = pe.unsqueeze(0)
|
45 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
46 |
+
|
47 |
+
def forward(self, x: torch.Tensor):
|
48 |
+
"""Add positional encoding.
|
49 |
+
Args:
|
50 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
51 |
+
Returns:
|
52 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
53 |
+
"""
|
54 |
+
self.extend_pe(x)
|
55 |
+
x = x * self.xscale + self.pe[:, : x.size(1)]
|
56 |
+
return self.dropout(x)
|
57 |
+
|
58 |
+
|
59 |
+
class ScaledPositionalEncoding(PositionalEncoding):
|
60 |
+
"""Scaled positional encoding module.
|
61 |
+
See Sec. 3.2 https://arxiv.org/abs/1809.08895
|
62 |
+
Args:
|
63 |
+
d_model (int): Embedding dimension.
|
64 |
+
dropout_rate (float): Dropout rate.
|
65 |
+
max_len (int): Maximum input length.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
69 |
+
"""Initialize class."""
|
70 |
+
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
|
71 |
+
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
|
72 |
+
|
73 |
+
def reset_parameters(self):
|
74 |
+
"""Reset parameters."""
|
75 |
+
self.alpha.data = torch.tensor(1.0)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
"""Add positional encoding.
|
79 |
+
Args:
|
80 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
81 |
+
Returns:
|
82 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
83 |
+
"""
|
84 |
+
self.extend_pe(x)
|
85 |
+
x = x + self.alpha * self.pe[:, : x.size(1)]
|
86 |
+
return self.dropout(x)
|
87 |
+
|
88 |
+
|
89 |
+
class RelPositionalEncoding(PositionalEncoding):
|
90 |
+
"""Relative positional encoding module.
|
91 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
92 |
+
Args:
|
93 |
+
d_model (int): Embedding dimension.
|
94 |
+
dropout_rate (float): Dropout rate.
|
95 |
+
max_len (int): Maximum input length.
|
96 |
+
"""
|
97 |
+
|
98 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
99 |
+
"""Initialize class."""
|
100 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
"""Compute positional encoding.
|
104 |
+
Args:
|
105 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
106 |
+
Returns:
|
107 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
108 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
109 |
+
"""
|
110 |
+
self.extend_pe(x)
|
111 |
+
x = x * self.xscale
|
112 |
+
pos_emb = self.pe[:, : x.size(1)]
|
113 |
+
return self.dropout(x) + self.dropout(pos_emb)
|
modules/commons/ssim.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# '''
|
2 |
+
# https://github.com/One-sixth/ms_ssim_pytorch/blob/master/ssim.py
|
3 |
+
# '''
|
4 |
+
#
|
5 |
+
# import torch
|
6 |
+
# import torch.jit
|
7 |
+
# import torch.nn.functional as F
|
8 |
+
#
|
9 |
+
#
|
10 |
+
# @torch.jit.script
|
11 |
+
# def create_window(window_size: int, sigma: float, channel: int):
|
12 |
+
# '''
|
13 |
+
# Create 1-D gauss kernel
|
14 |
+
# :param window_size: the size of gauss kernel
|
15 |
+
# :param sigma: sigma of normal distribution
|
16 |
+
# :param channel: input channel
|
17 |
+
# :return: 1D kernel
|
18 |
+
# '''
|
19 |
+
# coords = torch.arange(window_size, dtype=torch.float)
|
20 |
+
# coords -= window_size // 2
|
21 |
+
#
|
22 |
+
# g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
|
23 |
+
# g /= g.sum()
|
24 |
+
#
|
25 |
+
# g = g.reshape(1, 1, 1, -1).repeat(channel, 1, 1, 1)
|
26 |
+
# return g
|
27 |
+
#
|
28 |
+
#
|
29 |
+
# @torch.jit.script
|
30 |
+
# def _gaussian_filter(x, window_1d, use_padding: bool):
|
31 |
+
# '''
|
32 |
+
# Blur input with 1-D kernel
|
33 |
+
# :param x: batch of tensors to be blured
|
34 |
+
# :param window_1d: 1-D gauss kernel
|
35 |
+
# :param use_padding: padding image before conv
|
36 |
+
# :return: blured tensors
|
37 |
+
# '''
|
38 |
+
# C = x.shape[1]
|
39 |
+
# padding = 0
|
40 |
+
# if use_padding:
|
41 |
+
# window_size = window_1d.shape[3]
|
42 |
+
# padding = window_size // 2
|
43 |
+
# out = F.conv2d(x, window_1d, stride=1, padding=(0, padding), groups=C)
|
44 |
+
# out = F.conv2d(out, window_1d.transpose(2, 3), stride=1, padding=(padding, 0), groups=C)
|
45 |
+
# return out
|
46 |
+
#
|
47 |
+
#
|
48 |
+
# @torch.jit.script
|
49 |
+
# def ssim(X, Y, window, data_range: float, use_padding: bool = False):
|
50 |
+
# '''
|
51 |
+
# Calculate ssim index for X and Y
|
52 |
+
# :param X: images [B, C, H, N_bins]
|
53 |
+
# :param Y: images [B, C, H, N_bins]
|
54 |
+
# :param window: 1-D gauss kernel
|
55 |
+
# :param data_range: value range of input images. (usually 1.0 or 255)
|
56 |
+
# :param use_padding: padding image before conv
|
57 |
+
# :return:
|
58 |
+
# '''
|
59 |
+
#
|
60 |
+
# K1 = 0.01
|
61 |
+
# K2 = 0.03
|
62 |
+
# compensation = 1.0
|
63 |
+
#
|
64 |
+
# C1 = (K1 * data_range) ** 2
|
65 |
+
# C2 = (K2 * data_range) ** 2
|
66 |
+
#
|
67 |
+
# mu1 = _gaussian_filter(X, window, use_padding)
|
68 |
+
# mu2 = _gaussian_filter(Y, window, use_padding)
|
69 |
+
# sigma1_sq = _gaussian_filter(X * X, window, use_padding)
|
70 |
+
# sigma2_sq = _gaussian_filter(Y * Y, window, use_padding)
|
71 |
+
# sigma12 = _gaussian_filter(X * Y, window, use_padding)
|
72 |
+
#
|
73 |
+
# mu1_sq = mu1.pow(2)
|
74 |
+
# mu2_sq = mu2.pow(2)
|
75 |
+
# mu1_mu2 = mu1 * mu2
|
76 |
+
#
|
77 |
+
# sigma1_sq = compensation * (sigma1_sq - mu1_sq)
|
78 |
+
# sigma2_sq = compensation * (sigma2_sq - mu2_sq)
|
79 |
+
# sigma12 = compensation * (sigma12 - mu1_mu2)
|
80 |
+
#
|
81 |
+
# cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
|
82 |
+
# # Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan.
|
83 |
+
# cs_map = cs_map.clamp_min(0.)
|
84 |
+
# ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
|
85 |
+
#
|
86 |
+
# ssim_val = ssim_map.mean(dim=(1, 2, 3)) # reduce along CHW
|
87 |
+
# cs = cs_map.mean(dim=(1, 2, 3))
|
88 |
+
#
|
89 |
+
# return ssim_val, cs
|
90 |
+
#
|
91 |
+
#
|
92 |
+
# @torch.jit.script
|
93 |
+
# def ms_ssim(X, Y, window, data_range: float, weights, use_padding: bool = False, eps: float = 1e-8):
|
94 |
+
# '''
|
95 |
+
# interface of ms-ssim
|
96 |
+
# :param X: a batch of images, (N,C,H,W)
|
97 |
+
# :param Y: a batch of images, (N,C,H,W)
|
98 |
+
# :param window: 1-D gauss kernel
|
99 |
+
# :param data_range: value range of input images. (usually 1.0 or 255)
|
100 |
+
# :param weights: weights for different levels
|
101 |
+
# :param use_padding: padding image before conv
|
102 |
+
# :param eps: use for avoid grad nan.
|
103 |
+
# :return:
|
104 |
+
# '''
|
105 |
+
# levels = weights.shape[0]
|
106 |
+
# cs_vals = []
|
107 |
+
# ssim_vals = []
|
108 |
+
# for _ in range(levels):
|
109 |
+
# ssim_val, cs = ssim(X, Y, window=window, data_range=data_range, use_padding=use_padding)
|
110 |
+
# # Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
|
111 |
+
# ssim_val = ssim_val.clamp_min(eps)
|
112 |
+
# cs = cs.clamp_min(eps)
|
113 |
+
# cs_vals.append(cs)
|
114 |
+
#
|
115 |
+
# ssim_vals.append(ssim_val)
|
116 |
+
# padding = (X.shape[2] % 2, X.shape[3] % 2)
|
117 |
+
# X = F.avg_pool2d(X, kernel_size=2, stride=2, padding=padding)
|
118 |
+
# Y = F.avg_pool2d(Y, kernel_size=2, stride=2, padding=padding)
|
119 |
+
#
|
120 |
+
# cs_vals = torch.stack(cs_vals, dim=0)
|
121 |
+
# ms_ssim_val = torch.prod((cs_vals[:-1] ** weights[:-1].unsqueeze(1)) * (ssim_vals[-1] ** weights[-1]), dim=0)
|
122 |
+
# return ms_ssim_val
|
123 |
+
#
|
124 |
+
#
|
125 |
+
# class SSIM(torch.jit.ScriptModule):
|
126 |
+
# __constants__ = ['data_range', 'use_padding']
|
127 |
+
#
|
128 |
+
# def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False):
|
129 |
+
# '''
|
130 |
+
# :param window_size: the size of gauss kernel
|
131 |
+
# :param window_sigma: sigma of normal distribution
|
132 |
+
# :param data_range: value range of input images. (usually 1.0 or 255)
|
133 |
+
# :param channel: input channels (default: 3)
|
134 |
+
# :param use_padding: padding image before conv
|
135 |
+
# '''
|
136 |
+
# super().__init__()
|
137 |
+
# assert window_size % 2 == 1, 'Window size must be odd.'
|
138 |
+
# window = create_window(window_size, window_sigma, channel)
|
139 |
+
# self.register_buffer('window', window)
|
140 |
+
# self.data_range = data_range
|
141 |
+
# self.use_padding = use_padding
|
142 |
+
#
|
143 |
+
# @torch.jit.script_method
|
144 |
+
# def forward(self, X, Y):
|
145 |
+
# r = ssim(X, Y, window=self.window, data_range=self.data_range, use_padding=self.use_padding)
|
146 |
+
# return r[0]
|
147 |
+
#
|
148 |
+
#
|
149 |
+
# class MS_SSIM(torch.jit.ScriptModule):
|
150 |
+
# __constants__ = ['data_range', 'use_padding', 'eps']
|
151 |
+
#
|
152 |
+
# def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False, weights=None,
|
153 |
+
# levels=None, eps=1e-8):
|
154 |
+
# '''
|
155 |
+
# class for ms-ssim
|
156 |
+
# :param window_size: the size of gauss kernel
|
157 |
+
# :param window_sigma: sigma of normal distribution
|
158 |
+
# :param data_range: value range of input images. (usually 1.0 or 255)
|
159 |
+
# :param channel: input channels
|
160 |
+
# :param use_padding: padding image before conv
|
161 |
+
# :param weights: weights for different levels. (default [0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
|
162 |
+
# :param levels: number of downsampling
|
163 |
+
# :param eps: Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
|
164 |
+
# '''
|
165 |
+
# super().__init__()
|
166 |
+
# assert window_size % 2 == 1, 'Window size must be odd.'
|
167 |
+
# self.data_range = data_range
|
168 |
+
# self.use_padding = use_padding
|
169 |
+
# self.eps = eps
|
170 |
+
#
|
171 |
+
# window = create_window(window_size, window_sigma, channel)
|
172 |
+
# self.register_buffer('window', window)
|
173 |
+
#
|
174 |
+
# if weights is None:
|
175 |
+
# weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
|
176 |
+
# weights = torch.tensor(weights, dtype=torch.float)
|
177 |
+
#
|
178 |
+
# if levels is not None:
|
179 |
+
# weights = weights[:levels]
|
180 |
+
# weights = weights / weights.sum()
|
181 |
+
#
|
182 |
+
# self.register_buffer('weights', weights)
|
183 |
+
#
|
184 |
+
# @torch.jit.script_method
|
185 |
+
# def forward(self, X, Y):
|
186 |
+
# return ms_ssim(X, Y, window=self.window, data_range=self.data_range, weights=self.weights,
|
187 |
+
# use_padding=self.use_padding, eps=self.eps)
|
188 |
+
#
|
189 |
+
#
|
190 |
+
# if __name__ == '__main__':
|
191 |
+
# print('Simple Test')
|
192 |
+
# im = torch.randint(0, 255, (5, 3, 256, 256), dtype=torch.float, device='cuda')
|
193 |
+
# img1 = im / 255
|
194 |
+
# img2 = img1 * 0.5
|
195 |
+
#
|
196 |
+
# losser = SSIM(data_range=1.).cuda()
|
197 |
+
# loss = losser(img1, img2).mean()
|
198 |
+
#
|
199 |
+
# losser2 = MS_SSIM(data_range=1.).cuda()
|
200 |
+
# loss2 = losser2(img1, img2).mean()
|
201 |
+
#
|
202 |
+
# print(loss.item())
|
203 |
+
# print(loss2.item())
|
204 |
+
#
|
205 |
+
# if __name__ == '__main__':
|
206 |
+
# print('Training Test')
|
207 |
+
# import cv2
|
208 |
+
# import torch.optim
|
209 |
+
# import numpy as np
|
210 |
+
# import imageio
|
211 |
+
# import time
|
212 |
+
#
|
213 |
+
# out_test_video = False
|
214 |
+
# # 最好不要直接输出gif图,会非常大,最好先输出mkv文件后用ffmpeg转换到GIF
|
215 |
+
# video_use_gif = False
|
216 |
+
#
|
217 |
+
# im = cv2.imread('test_img1.jpg', 1)
|
218 |
+
# t_im = torch.from_numpy(im).cuda().permute(2, 0, 1).float()[None] / 255.
|
219 |
+
#
|
220 |
+
# if out_test_video:
|
221 |
+
# if video_use_gif:
|
222 |
+
# fps = 0.5
|
223 |
+
# out_wh = (im.shape[1] // 2, im.shape[0] // 2)
|
224 |
+
# suffix = '.gif'
|
225 |
+
# else:
|
226 |
+
# fps = 5
|
227 |
+
# out_wh = (im.shape[1], im.shape[0])
|
228 |
+
# suffix = '.mkv'
|
229 |
+
# video_last_time = time.perf_counter()
|
230 |
+
# video = imageio.get_writer('ssim_test' + suffix, fps=fps)
|
231 |
+
#
|
232 |
+
# # 测试ssim
|
233 |
+
# print('Training SSIM')
|
234 |
+
# rand_im = torch.randint_like(t_im, 0, 255, dtype=torch.float32) / 255.
|
235 |
+
# rand_im.requires_grad = True
|
236 |
+
# optim = torch.optim.Adam([rand_im], 0.003, eps=1e-8)
|
237 |
+
# losser = SSIM(data_range=1., channel=t_im.shape[1]).cuda()
|
238 |
+
# ssim_score = 0
|
239 |
+
# while ssim_score < 0.999:
|
240 |
+
# optim.zero_grad()
|
241 |
+
# loss = losser(rand_im, t_im)
|
242 |
+
# (-loss).sum().backward()
|
243 |
+
# ssim_score = loss.item()
|
244 |
+
# optim.step()
|
245 |
+
# r_im = np.transpose(rand_im.detach().cpu().numpy().clip(0, 1) * 255, [0, 2, 3, 1]).astype(np.uint8)[0]
|
246 |
+
# r_im = cv2.putText(r_im, 'ssim %f' % ssim_score, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)
|
247 |
+
#
|
248 |
+
# if out_test_video:
|
249 |
+
# if time.perf_counter() - video_last_time > 1. / fps:
|
250 |
+
# video_last_time = time.perf_counter()
|
251 |
+
# out_frame = cv2.cvtColor(r_im, cv2.COLOR_BGR2RGB)
|
252 |
+
# out_frame = cv2.resize(out_frame, out_wh, interpolation=cv2.INTER_AREA)
|
253 |
+
# if isinstance(out_frame, cv2.UMat):
|
254 |
+
# out_frame = out_frame.get()
|
255 |
+
# video.append_data(out_frame)
|
256 |
+
#
|
257 |
+
# cv2.imshow('ssim', r_im)
|
258 |
+
# cv2.setWindowTitle('ssim', 'ssim %f' % ssim_score)
|
259 |
+
# cv2.waitKey(1)
|
260 |
+
#
|
261 |
+
# if out_test_video:
|
262 |
+
# video.close()
|
263 |
+
#
|
264 |
+
# # 测试ms_ssim
|
265 |
+
# if out_test_video:
|
266 |
+
# if video_use_gif:
|
267 |
+
# fps = 0.5
|
268 |
+
# out_wh = (im.shape[1] // 2, im.shape[0] // 2)
|
269 |
+
# suffix = '.gif'
|
270 |
+
# else:
|
271 |
+
# fps = 5
|
272 |
+
# out_wh = (im.shape[1], im.shape[0])
|
273 |
+
# suffix = '.mkv'
|
274 |
+
# video_last_time = time.perf_counter()
|
275 |
+
# video = imageio.get_writer('ms_ssim_test' + suffix, fps=fps)
|
276 |
+
#
|
277 |
+
# print('Training MS_SSIM')
|
278 |
+
# rand_im = torch.randint_like(t_im, 0, 255, dtype=torch.float32) / 255.
|
279 |
+
# rand_im.requires_grad = True
|
280 |
+
# optim = torch.optim.Adam([rand_im], 0.003, eps=1e-8)
|
281 |
+
# losser = MS_SSIM(data_range=1., channel=t_im.shape[1]).cuda()
|
282 |
+
# ssim_score = 0
|
283 |
+
# while ssim_score < 0.999:
|
284 |
+
# optim.zero_grad()
|
285 |
+
# loss = losser(rand_im, t_im)
|
286 |
+
# (-loss).sum().backward()
|
287 |
+
# ssim_score = loss.item()
|
288 |
+
# optim.step()
|
289 |
+
# r_im = np.transpose(rand_im.detach().cpu().numpy().clip(0, 1) * 255, [0, 2, 3, 1]).astype(np.uint8)[0]
|
290 |
+
# r_im = cv2.putText(r_im, 'ms_ssim %f' % ssim_score, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)
|
291 |
+
#
|
292 |
+
# if out_test_video:
|
293 |
+
# if time.perf_counter() - video_last_time > 1. / fps:
|
294 |
+
# video_last_time = time.perf_counter()
|
295 |
+
# out_frame = cv2.cvtColor(r_im, cv2.COLOR_BGR2RGB)
|
296 |
+
# out_frame = cv2.resize(out_frame, out_wh, interpolation=cv2.INTER_AREA)
|
297 |
+
# if isinstance(out_frame, cv2.UMat):
|
298 |
+
# out_frame = out_frame.get()
|
299 |
+
# video.append_data(out_frame)
|
300 |
+
#
|
301 |
+
# cv2.imshow('ms_ssim', r_im)
|
302 |
+
# cv2.setWindowTitle('ms_ssim', 'ms_ssim %f' % ssim_score)
|
303 |
+
# cv2.waitKey(1)
|
304 |
+
#
|
305 |
+
# if out_test_video:
|
306 |
+
# video.close()
|
307 |
+
|
308 |
+
"""
|
309 |
+
Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim
|
310 |
+
"""
|
311 |
+
|
312 |
+
import torch
|
313 |
+
import torch.nn.functional as F
|
314 |
+
from torch.autograd import Variable
|
315 |
+
import numpy as np
|
316 |
+
from math import exp
|
317 |
+
|
318 |
+
|
319 |
+
def gaussian(window_size, sigma):
|
320 |
+
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
|
321 |
+
return gauss / gauss.sum()
|
322 |
+
|
323 |
+
|
324 |
+
def create_window(window_size, channel):
|
325 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
326 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
327 |
+
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
328 |
+
return window
|
329 |
+
|
330 |
+
|
331 |
+
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
332 |
+
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
333 |
+
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
334 |
+
|
335 |
+
mu1_sq = mu1.pow(2)
|
336 |
+
mu2_sq = mu2.pow(2)
|
337 |
+
mu1_mu2 = mu1 * mu2
|
338 |
+
|
339 |
+
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
|
340 |
+
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
|
341 |
+
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
|
342 |
+
|
343 |
+
C1 = 0.01 ** 2
|
344 |
+
C2 = 0.03 ** 2
|
345 |
+
|
346 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
347 |
+
|
348 |
+
if size_average:
|
349 |
+
return ssim_map.mean()
|
350 |
+
else:
|
351 |
+
return ssim_map.mean(1)
|
352 |
+
|
353 |
+
|
354 |
+
class SSIM(torch.nn.Module):
|
355 |
+
def __init__(self, window_size=11, size_average=True):
|
356 |
+
super(SSIM, self).__init__()
|
357 |
+
self.window_size = window_size
|
358 |
+
self.size_average = size_average
|
359 |
+
self.channel = 1
|
360 |
+
self.window = create_window(window_size, self.channel)
|
361 |
+
|
362 |
+
def forward(self, img1, img2):
|
363 |
+
(_, channel, _, _) = img1.size()
|
364 |
+
|
365 |
+
if channel == self.channel and self.window.data.type() == img1.data.type():
|
366 |
+
window = self.window
|
367 |
+
else:
|
368 |
+
window = create_window(self.window_size, channel)
|
369 |
+
|
370 |
+
if img1.is_cuda:
|
371 |
+
window = window.cuda(img1.get_device())
|
372 |
+
window = window.type_as(img1)
|
373 |
+
|
374 |
+
self.window = window
|
375 |
+
self.channel = channel
|
376 |
+
|
377 |
+
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
|
378 |
+
|
379 |
+
|
380 |
+
window = None
|
381 |
+
|
382 |
+
|
383 |
+
def ssim(img1, img2, window_size=11, size_average=True):
|
384 |
+
(_, channel, _, _) = img1.size()
|
385 |
+
global window
|
386 |
+
if window is None:
|
387 |
+
window = create_window(window_size, channel)
|
388 |
+
if img1.is_cuda:
|
389 |
+
window = window.cuda(img1.get_device())
|
390 |
+
window = window.type_as(img1)
|
391 |
+
return _ssim(img1, img2, window, window_size, channel, size_average)
|
modules/fastspeech/__pycache__/fs2.cpython-38.pyc
ADDED
Binary file (5.87 kB). View file
|
|
modules/fastspeech/__pycache__/pe.cpython-38.pyc
ADDED
Binary file (5.05 kB). View file
|
|
modules/fastspeech/__pycache__/tts_modules.cpython-38.pyc
ADDED
Binary file (13.6 kB). View file
|
|
modules/fastspeech/fs2.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.commons.common_layers import *
|
2 |
+
from modules.commons.common_layers import Embedding
|
3 |
+
from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \
|
4 |
+
EnergyPredictor, FastspeechEncoder
|
5 |
+
from utils.cwt import cwt2f0
|
6 |
+
from utils.hparams import hparams
|
7 |
+
from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0
|
8 |
+
|
9 |
+
FS_ENCODERS = {
|
10 |
+
'fft': lambda hp: FastspeechEncoder(
|
11 |
+
hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
|
12 |
+
num_heads=hp['num_heads']),
|
13 |
+
}
|
14 |
+
|
15 |
+
FS_DECODERS = {
|
16 |
+
'fft': lambda hp: FastspeechDecoder(
|
17 |
+
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
class FastSpeech2(nn.Module):
|
22 |
+
def __init__(self, dictionary, out_dims=None):
|
23 |
+
super().__init__()
|
24 |
+
# self.dictionary = dictionary
|
25 |
+
self.padding_idx = 0
|
26 |
+
if not hparams['no_fs2'] if 'no_fs2' in hparams.keys() else True:
|
27 |
+
self.enc_layers = hparams['enc_layers']
|
28 |
+
self.dec_layers = hparams['dec_layers']
|
29 |
+
self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams)
|
30 |
+
self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
|
31 |
+
self.hidden_size = hparams['hidden_size']
|
32 |
+
# self.encoder_embed_tokens = self.build_embedding(self.dictionary, self.hidden_size)
|
33 |
+
self.out_dims = out_dims
|
34 |
+
if out_dims is None:
|
35 |
+
self.out_dims = hparams['audio_num_mel_bins']
|
36 |
+
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
|
37 |
+
#=========not used===========
|
38 |
+
# if hparams['use_spk_id']:
|
39 |
+
# self.spk_embed_proj = Embedding(hparams['num_spk'] + 1, self.hidden_size)
|
40 |
+
# if hparams['use_split_spk_id']:
|
41 |
+
# self.spk_embed_f0 = Embedding(hparams['num_spk'] + 1, self.hidden_size)
|
42 |
+
# self.spk_embed_dur = Embedding(hparams['num_spk'] + 1, self.hidden_size)
|
43 |
+
# elif hparams['use_spk_embed']:
|
44 |
+
# self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)
|
45 |
+
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
|
46 |
+
# self.dur_predictor = DurationPredictor(
|
47 |
+
# self.hidden_size,
|
48 |
+
# n_chans=predictor_hidden,
|
49 |
+
# n_layers=hparams['dur_predictor_layers'],
|
50 |
+
# dropout_rate=hparams['predictor_dropout'], padding=hparams['ffn_padding'],
|
51 |
+
# kernel_size=hparams['dur_predictor_kernel'])
|
52 |
+
# self.length_regulator = LengthRegulator()
|
53 |
+
if hparams['use_pitch_embed']:
|
54 |
+
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
|
55 |
+
if hparams['pitch_type'] == 'cwt':
|
56 |
+
h = hparams['cwt_hidden_size']
|
57 |
+
cwt_out_dims = 10
|
58 |
+
if hparams['use_uv']:
|
59 |
+
cwt_out_dims = cwt_out_dims + 1
|
60 |
+
self.cwt_predictor = nn.Sequential(
|
61 |
+
nn.Linear(self.hidden_size, h),
|
62 |
+
PitchPredictor(
|
63 |
+
h,
|
64 |
+
n_chans=predictor_hidden,
|
65 |
+
n_layers=hparams['predictor_layers'],
|
66 |
+
dropout_rate=hparams['predictor_dropout'], odim=cwt_out_dims,
|
67 |
+
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel']))
|
68 |
+
self.cwt_stats_layers = nn.Sequential(
|
69 |
+
nn.Linear(self.hidden_size, h), nn.ReLU(),
|
70 |
+
nn.Linear(h, h), nn.ReLU(), nn.Linear(h, 2)
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
self.pitch_predictor = PitchPredictor(
|
74 |
+
self.hidden_size,
|
75 |
+
n_chans=predictor_hidden,
|
76 |
+
n_layers=hparams['predictor_layers'],
|
77 |
+
dropout_rate=hparams['predictor_dropout'],
|
78 |
+
odim=2 if hparams['pitch_type'] == 'frame' else 1,
|
79 |
+
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
|
80 |
+
if hparams['use_energy_embed']:
|
81 |
+
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
|
82 |
+
# self.energy_predictor = EnergyPredictor(
|
83 |
+
# self.hidden_size,
|
84 |
+
# n_chans=predictor_hidden,
|
85 |
+
# n_layers=hparams['predictor_layers'],
|
86 |
+
# dropout_rate=hparams['predictor_dropout'], odim=1,
|
87 |
+
# padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
|
88 |
+
|
89 |
+
# def build_embedding(self, dictionary, embed_dim):
|
90 |
+
# num_embeddings = len(dictionary)
|
91 |
+
# emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
|
92 |
+
# return emb
|
93 |
+
|
94 |
+
def forward(self, hubert, mel2ph=None, spk_embed=None,
|
95 |
+
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=True,
|
96 |
+
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
|
97 |
+
ret = {}
|
98 |
+
if not hparams['no_fs2'] if 'no_fs2' in hparams.keys() else True:
|
99 |
+
encoder_out =self.encoder(hubert) # [B, T, C]
|
100 |
+
else:
|
101 |
+
encoder_out =hubert
|
102 |
+
src_nonpadding = (hubert!=0).any(-1)[:,:,None]
|
103 |
+
|
104 |
+
# add ref style embed
|
105 |
+
# Not implemented
|
106 |
+
# variance encoder
|
107 |
+
var_embed = 0
|
108 |
+
|
109 |
+
# encoder_out_dur denotes encoder outputs for duration predictor
|
110 |
+
# in speech adaptation, duration predictor use old speaker embedding
|
111 |
+
if hparams['use_spk_embed']:
|
112 |
+
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
|
113 |
+
elif hparams['use_spk_id']:
|
114 |
+
spk_embed_id = spk_embed
|
115 |
+
if spk_embed_dur_id is None:
|
116 |
+
spk_embed_dur_id = spk_embed_id
|
117 |
+
if spk_embed_f0_id is None:
|
118 |
+
spk_embed_f0_id = spk_embed_id
|
119 |
+
spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :]
|
120 |
+
spk_embed_dur = spk_embed_f0 = spk_embed
|
121 |
+
if hparams['use_split_spk_id']:
|
122 |
+
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
|
123 |
+
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
|
124 |
+
else:
|
125 |
+
spk_embed_dur = spk_embed_f0 = spk_embed = 0
|
126 |
+
|
127 |
+
# add dur
|
128 |
+
# dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding
|
129 |
+
|
130 |
+
# mel2ph = self.add_dur(dur_inp, mel2ph, hubert, ret)
|
131 |
+
ret['mel2ph'] = mel2ph
|
132 |
+
|
133 |
+
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
|
134 |
+
|
135 |
+
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
|
136 |
+
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
|
137 |
+
|
138 |
+
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
|
139 |
+
|
140 |
+
# add pitch and energy embed
|
141 |
+
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
|
142 |
+
if hparams['use_pitch_embed']:
|
143 |
+
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
|
144 |
+
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
|
145 |
+
if hparams['use_energy_embed']:
|
146 |
+
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)
|
147 |
+
|
148 |
+
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
|
149 |
+
if not hparams['no_fs2'] if 'no_fs2' in hparams.keys() else True:
|
150 |
+
if skip_decoder:
|
151 |
+
return ret
|
152 |
+
ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
|
153 |
+
|
154 |
+
return ret
|
155 |
+
|
156 |
+
def add_dur(self, dur_input, mel2ph, hubert, ret):
|
157 |
+
src_padding = (hubert==0).all(-1)
|
158 |
+
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
|
159 |
+
if mel2ph is None:
|
160 |
+
dur, xs = self.dur_predictor.inference(dur_input, src_padding)
|
161 |
+
ret['dur'] = xs
|
162 |
+
ret['dur_choice'] = dur
|
163 |
+
mel2ph = self.length_regulator(dur, src_padding).detach()
|
164 |
+
else:
|
165 |
+
ret['dur'] = self.dur_predictor(dur_input, src_padding)
|
166 |
+
ret['mel2ph'] = mel2ph
|
167 |
+
return mel2ph
|
168 |
+
|
169 |
+
def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
|
170 |
+
x = decoder_inp # [B, T, H]
|
171 |
+
x = self.decoder(x)
|
172 |
+
x = self.mel_out(x)
|
173 |
+
return x * tgt_nonpadding
|
174 |
+
|
175 |
+
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
|
176 |
+
f0 = cwt2f0(cwt_spec, mean, std, hparams['cwt_scales'])
|
177 |
+
f0 = torch.cat(
|
178 |
+
[f0] + [f0[:, -1:]] * (mel2ph.shape[1] - f0.shape[1]), 1)
|
179 |
+
f0_norm = norm_f0(f0, None, hparams)
|
180 |
+
return f0_norm
|
181 |
+
|
182 |
+
def out2mel(self, out):
|
183 |
+
return out
|
184 |
+
|
185 |
+
def add_pitch(self,decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
|
186 |
+
# if hparams['pitch_type'] == 'ph':
|
187 |
+
# pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach())
|
188 |
+
# pitch_padding = (encoder_out.sum().abs() == 0)
|
189 |
+
# ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp)
|
190 |
+
# if f0 is None:
|
191 |
+
# f0 = pitch_pred[:, :, 0]
|
192 |
+
# ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding)
|
193 |
+
# pitch = f0_to_coarse(f0_denorm) # start from 0 [B, T_txt]
|
194 |
+
# pitch = F.pad(pitch, [1, 0])
|
195 |
+
# pitch = torch.gather(pitch, 1, mel2ph) # [B, T_mel]
|
196 |
+
# pitch_embedding = pitch_embed(pitch)
|
197 |
+
# return pitch_embedding
|
198 |
+
|
199 |
+
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
|
200 |
+
|
201 |
+
pitch_padding = (mel2ph == 0)
|
202 |
+
|
203 |
+
# if hparams['pitch_type'] == 'cwt':
|
204 |
+
# # NOTE: this part of script is *isolated* from other scripts, which means
|
205 |
+
# # it may not be compatible with the current version.
|
206 |
+
# pass
|
207 |
+
# # pitch_padding = None
|
208 |
+
# # ret['cwt'] = cwt_out = self.cwt_predictor(decoder_inp)
|
209 |
+
# # stats_out = self.cwt_stats_layers(encoder_out[:, 0, :]) # [B, 2]
|
210 |
+
# # mean = ret['f0_mean'] = stats_out[:, 0]
|
211 |
+
# # std = ret['f0_std'] = stats_out[:, 1]
|
212 |
+
# # cwt_spec = cwt_out[:, :, :10]
|
213 |
+
# # if f0 is None:
|
214 |
+
# # std = std * hparams['cwt_std_scale']
|
215 |
+
# # f0 = self.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
|
216 |
+
# # if hparams['use_uv']:
|
217 |
+
# # assert cwt_out.shape[-1] == 11
|
218 |
+
# # uv = cwt_out[:, :, -1] > 0
|
219 |
+
# elif hparams['pitch_ar']:
|
220 |
+
# ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if is_training else None)
|
221 |
+
# if f0 is None:
|
222 |
+
# f0 = pitch_pred[:, :, 0]
|
223 |
+
# else:
|
224 |
+
#ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp)
|
225 |
+
# if f0 is None:
|
226 |
+
# f0 = pitch_pred[:, :, 0]
|
227 |
+
# if hparams['use_uv'] and uv is None:
|
228 |
+
# uv = pitch_pred[:, :, 1] > 0
|
229 |
+
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
|
230 |
+
if pitch_padding is not None:
|
231 |
+
f0[pitch_padding] = 0
|
232 |
+
|
233 |
+
pitch = f0_to_coarse(f0_denorm,hparams) # start from 0
|
234 |
+
ret['pitch_pred']=pitch.unsqueeze(-1)
|
235 |
+
# print(ret['pitch_pred'].shape)
|
236 |
+
# print(pitch.shape)
|
237 |
+
pitch_embedding = self.pitch_embed(pitch)
|
238 |
+
return pitch_embedding
|
239 |
+
|
240 |
+
def add_energy(self,decoder_inp, energy, ret):
|
241 |
+
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
|
242 |
+
ret['energy_pred'] = energy#energy_pred = self.energy_predictor(decoder_inp)[:, :, 0]
|
243 |
+
# if energy is None:
|
244 |
+
# energy = energy_pred
|
245 |
+
energy = torch.clamp(energy * 256 // 4, max=255).long() # energy_to_coarse
|
246 |
+
energy_embedding = self.energy_embed(energy)
|
247 |
+
return energy_embedding
|
248 |
+
|
249 |
+
@staticmethod
|
250 |
+
def mel_norm(x):
|
251 |
+
return (x + 5.5) / (6.3 / 2) - 1
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def mel_denorm(x):
|
255 |
+
return (x + 1) * (6.3 / 2) - 5.5
|
modules/fastspeech/pe.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules.commons.common_layers import *
|
2 |
+
from utils.hparams import hparams
|
3 |
+
from modules.fastspeech.tts_modules import PitchPredictor
|
4 |
+
from utils.pitch_utils import denorm_f0
|
5 |
+
|
6 |
+
|
7 |
+
class Prenet(nn.Module):
|
8 |
+
def __init__(self, in_dim=80, out_dim=256, kernel=5, n_layers=3, strides=None):
|
9 |
+
super(Prenet, self).__init__()
|
10 |
+
padding = kernel // 2
|
11 |
+
self.layers = []
|
12 |
+
self.strides = strides if strides is not None else [1] * n_layers
|
13 |
+
for l in range(n_layers):
|
14 |
+
self.layers.append(nn.Sequential(
|
15 |
+
nn.Conv1d(in_dim, out_dim, kernel_size=kernel, padding=padding, stride=self.strides[l]),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.BatchNorm1d(out_dim)
|
18 |
+
))
|
19 |
+
in_dim = out_dim
|
20 |
+
self.layers = nn.ModuleList(self.layers)
|
21 |
+
self.out_proj = nn.Linear(out_dim, out_dim)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
"""
|
25 |
+
|
26 |
+
:param x: [B, T, 80]
|
27 |
+
:return: [L, B, T, H], [B, T, H]
|
28 |
+
"""
|
29 |
+
# padding_mask = x.abs().sum(-1).eq(0).data # [B, T]
|
30 |
+
padding_mask = x.abs().sum(-1).eq(0).detach()
|
31 |
+
nonpadding_mask_TB = 1 - padding_mask.float()[:, None, :] # [B, 1, T]
|
32 |
+
x = x.transpose(1, 2)
|
33 |
+
hiddens = []
|
34 |
+
for i, l in enumerate(self.layers):
|
35 |
+
nonpadding_mask_TB = nonpadding_mask_TB[:, :, ::self.strides[i]]
|
36 |
+
x = l(x) * nonpadding_mask_TB
|
37 |
+
hiddens.append(x)
|
38 |
+
hiddens = torch.stack(hiddens, 0) # [L, B, H, T]
|
39 |
+
hiddens = hiddens.transpose(2, 3) # [L, B, T, H]
|
40 |
+
x = self.out_proj(x.transpose(1, 2)) # [B, T, H]
|
41 |
+
x = x * nonpadding_mask_TB.transpose(1, 2)
|
42 |
+
return hiddens, x
|
43 |
+
|
44 |
+
|
45 |
+
class ConvBlock(nn.Module):
|
46 |
+
def __init__(self, idim=80, n_chans=256, kernel_size=3, stride=1, norm='gn', dropout=0):
|
47 |
+
super().__init__()
|
48 |
+
self.conv = ConvNorm(idim, n_chans, kernel_size, stride=stride)
|
49 |
+
self.norm = norm
|
50 |
+
if self.norm == 'bn':
|
51 |
+
self.norm = nn.BatchNorm1d(n_chans)
|
52 |
+
elif self.norm == 'in':
|
53 |
+
self.norm = nn.InstanceNorm1d(n_chans, affine=True)
|
54 |
+
elif self.norm == 'gn':
|
55 |
+
self.norm = nn.GroupNorm(n_chans // 16, n_chans)
|
56 |
+
elif self.norm == 'ln':
|
57 |
+
self.norm = LayerNorm(n_chans // 16, n_chans)
|
58 |
+
elif self.norm == 'wn':
|
59 |
+
self.conv = torch.nn.utils.weight_norm(self.conv.conv)
|
60 |
+
self.dropout = nn.Dropout(dropout)
|
61 |
+
self.relu = nn.ReLU()
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
"""
|
65 |
+
|
66 |
+
:param x: [B, C, T]
|
67 |
+
:return: [B, C, T]
|
68 |
+
"""
|
69 |
+
x = self.conv(x)
|
70 |
+
if not isinstance(self.norm, str):
|
71 |
+
if self.norm == 'none':
|
72 |
+
pass
|
73 |
+
elif self.norm == 'ln':
|
74 |
+
x = self.norm(x.transpose(1, 2)).transpose(1, 2)
|
75 |
+
else:
|
76 |
+
x = self.norm(x)
|
77 |
+
x = self.relu(x)
|
78 |
+
x = self.dropout(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ConvStacks(nn.Module):
|
83 |
+
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn',
|
84 |
+
dropout=0, strides=None, res=True):
|
85 |
+
super().__init__()
|
86 |
+
self.conv = torch.nn.ModuleList()
|
87 |
+
self.kernel_size = kernel_size
|
88 |
+
self.res = res
|
89 |
+
self.in_proj = Linear(idim, n_chans)
|
90 |
+
if strides is None:
|
91 |
+
strides = [1] * n_layers
|
92 |
+
else:
|
93 |
+
assert len(strides) == n_layers
|
94 |
+
for idx in range(n_layers):
|
95 |
+
self.conv.append(ConvBlock(
|
96 |
+
n_chans, n_chans, kernel_size, stride=strides[idx], norm=norm, dropout=dropout))
|
97 |
+
self.out_proj = Linear(n_chans, odim)
|
98 |
+
|
99 |
+
def forward(self, x, return_hiddens=False):
|
100 |
+
"""
|
101 |
+
|
102 |
+
:param x: [B, T, H]
|
103 |
+
:return: [B, T, H]
|
104 |
+
"""
|
105 |
+
x = self.in_proj(x)
|
106 |
+
x = x.transpose(1, -1) # (B, idim, Tmax)
|
107 |
+
hiddens = []
|
108 |
+
for f in self.conv:
|
109 |
+
x_ = f(x)
|
110 |
+
x = x + x_ if self.res else x_ # (B, C, Tmax)
|
111 |
+
hiddens.append(x)
|
112 |
+
x = x.transpose(1, -1)
|
113 |
+
x = self.out_proj(x) # (B, Tmax, H)
|
114 |
+
if return_hiddens:
|
115 |
+
hiddens = torch.stack(hiddens, 1) # [B, L, C, T]
|
116 |
+
return x, hiddens
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class PitchExtractor(nn.Module):
|
121 |
+
def __init__(self, n_mel_bins=80, conv_layers=2):
|
122 |
+
super().__init__()
|
123 |
+
self.hidden_size = hparams['hidden_size']
|
124 |
+
self.predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
|
125 |
+
self.conv_layers = conv_layers
|
126 |
+
|
127 |
+
self.mel_prenet = Prenet(n_mel_bins, self.hidden_size, strides=[1, 1, 1])
|
128 |
+
if self.conv_layers > 0:
|
129 |
+
self.mel_encoder = ConvStacks(
|
130 |
+
idim=self.hidden_size, n_chans=self.hidden_size, odim=self.hidden_size, n_layers=self.conv_layers)
|
131 |
+
self.pitch_predictor = PitchPredictor(
|
132 |
+
self.hidden_size, n_chans=self.predictor_hidden,
|
133 |
+
n_layers=5, dropout_rate=0.1, odim=2,
|
134 |
+
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
|
135 |
+
|
136 |
+
def forward(self, mel_input=None):
|
137 |
+
ret = {}
|
138 |
+
mel_hidden = self.mel_prenet(mel_input)[1]
|
139 |
+
if self.conv_layers > 0:
|
140 |
+
mel_hidden = self.mel_encoder(mel_hidden)
|
141 |
+
|
142 |
+
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(mel_hidden)
|
143 |
+
|
144 |
+
pitch_padding = mel_input.abs().sum(-1) == 0
|
145 |
+
use_uv = hparams['pitch_type'] == 'frame' #and hparams['use_uv']
|
146 |
+
ret['f0_denorm_pred'] = denorm_f0(
|
147 |
+
pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None,
|
148 |
+
hparams, pitch_padding=pitch_padding)
|
149 |
+
return ret
|
modules/fastspeech/tts_modules.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from modules.commons.espnet_positional_embedding import RelPositionalEncoding
|
9 |
+
from modules.commons.common_layers import SinusoidalPositionalEmbedding, Linear, EncSALayer, DecSALayer, BatchNorm1dTBC
|
10 |
+
from utils.hparams import hparams
|
11 |
+
|
12 |
+
DEFAULT_MAX_SOURCE_POSITIONS = 2000
|
13 |
+
DEFAULT_MAX_TARGET_POSITIONS = 2000
|
14 |
+
|
15 |
+
|
16 |
+
class TransformerEncoderLayer(nn.Module):
|
17 |
+
def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'):
|
18 |
+
super().__init__()
|
19 |
+
self.hidden_size = hidden_size
|
20 |
+
self.dropout = dropout
|
21 |
+
self.num_heads = num_heads
|
22 |
+
self.op = EncSALayer(
|
23 |
+
hidden_size, num_heads, dropout=dropout,
|
24 |
+
attention_dropout=0.0, relu_dropout=dropout,
|
25 |
+
kernel_size=kernel_size
|
26 |
+
if kernel_size is not None else hparams['enc_ffn_kernel_size'],
|
27 |
+
padding=hparams['ffn_padding'],
|
28 |
+
norm=norm, act=hparams['ffn_act'])
|
29 |
+
|
30 |
+
def forward(self, x, **kwargs):
|
31 |
+
return self.op(x, **kwargs)
|
32 |
+
|
33 |
+
|
34 |
+
######################
|
35 |
+
# fastspeech modules
|
36 |
+
######################
|
37 |
+
class LayerNorm(torch.nn.LayerNorm):
|
38 |
+
"""Layer normalization module.
|
39 |
+
:param int nout: output dim size
|
40 |
+
:param int dim: dimension to be normalized
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, nout, dim=-1):
|
44 |
+
"""Construct an LayerNorm object."""
|
45 |
+
super(LayerNorm, self).__init__(nout, eps=1e-12)
|
46 |
+
self.dim = dim
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
"""Apply layer normalization.
|
50 |
+
:param torch.Tensor x: input tensor
|
51 |
+
:return: layer normalized tensor
|
52 |
+
:rtype torch.Tensor
|
53 |
+
"""
|
54 |
+
if self.dim == -1:
|
55 |
+
return super(LayerNorm, self).forward(x)
|
56 |
+
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
|
57 |
+
|
58 |
+
|
59 |
+
class DurationPredictor(torch.nn.Module):
|
60 |
+
"""Duration predictor module.
|
61 |
+
This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
62 |
+
The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder.
|
63 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
64 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
65 |
+
Note:
|
66 |
+
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`,
|
67 |
+
the outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, padding='SAME'):
|
71 |
+
"""Initilize duration predictor module.
|
72 |
+
Args:
|
73 |
+
idim (int): Input dimension.
|
74 |
+
n_layers (int, optional): Number of convolutional layers.
|
75 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
76 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
77 |
+
dropout_rate (float, optional): Dropout rate.
|
78 |
+
offset (float, optional): Offset value to avoid nan in log domain.
|
79 |
+
"""
|
80 |
+
super(DurationPredictor, self).__init__()
|
81 |
+
self.offset = offset
|
82 |
+
self.conv = torch.nn.ModuleList()
|
83 |
+
self.kernel_size = kernel_size
|
84 |
+
self.padding = padding
|
85 |
+
for idx in range(n_layers):
|
86 |
+
in_chans = idim if idx == 0 else n_chans
|
87 |
+
self.conv += [torch.nn.Sequential(
|
88 |
+
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
|
89 |
+
if padding == 'SAME'
|
90 |
+
else (kernel_size - 1, 0), 0),
|
91 |
+
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
|
92 |
+
torch.nn.ReLU(),
|
93 |
+
LayerNorm(n_chans, dim=1),
|
94 |
+
torch.nn.Dropout(dropout_rate)
|
95 |
+
)]
|
96 |
+
if hparams['dur_loss'] in ['mse', 'huber']:
|
97 |
+
odims = 1
|
98 |
+
elif hparams['dur_loss'] == 'mog':
|
99 |
+
odims = 15
|
100 |
+
elif hparams['dur_loss'] == 'crf':
|
101 |
+
odims = 32
|
102 |
+
from torchcrf import CRF
|
103 |
+
self.crf = CRF(odims, batch_first=True)
|
104 |
+
self.linear = torch.nn.Linear(n_chans, odims)
|
105 |
+
|
106 |
+
def _forward(self, xs, x_masks=None, is_inference=False):
|
107 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
108 |
+
for f in self.conv:
|
109 |
+
xs = f(xs) # (B, C, Tmax)
|
110 |
+
if x_masks is not None:
|
111 |
+
xs = xs * (1 - x_masks.float())[:, None, :]
|
112 |
+
|
113 |
+
xs = self.linear(xs.transpose(1, -1)) # [B, T, C]
|
114 |
+
xs = xs * (1 - x_masks.float())[:, :, None] # (B, T, C)
|
115 |
+
if is_inference:
|
116 |
+
return self.out2dur(xs), xs
|
117 |
+
else:
|
118 |
+
if hparams['dur_loss'] in ['mse']:
|
119 |
+
xs = xs.squeeze(-1) # (B, Tmax)
|
120 |
+
return xs
|
121 |
+
|
122 |
+
def out2dur(self, xs):
|
123 |
+
if hparams['dur_loss'] in ['mse']:
|
124 |
+
# NOTE: calculate in log domain
|
125 |
+
xs = xs.squeeze(-1) # (B, Tmax)
|
126 |
+
dur = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value
|
127 |
+
elif hparams['dur_loss'] == 'mog':
|
128 |
+
return NotImplementedError
|
129 |
+
elif hparams['dur_loss'] == 'crf':
|
130 |
+
dur = torch.LongTensor(self.crf.decode(xs)).cuda()
|
131 |
+
return dur
|
132 |
+
|
133 |
+
def forward(self, xs, x_masks=None):
|
134 |
+
"""Calculate forward propagation.
|
135 |
+
Args:
|
136 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
137 |
+
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
|
138 |
+
Returns:
|
139 |
+
Tensor: Batch of predicted durations in log domain (B, Tmax).
|
140 |
+
"""
|
141 |
+
return self._forward(xs, x_masks, False)
|
142 |
+
|
143 |
+
def inference(self, xs, x_masks=None):
|
144 |
+
"""Inference duration.
|
145 |
+
Args:
|
146 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
147 |
+
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax).
|
148 |
+
Returns:
|
149 |
+
LongTensor: Batch of predicted durations in linear domain (B, Tmax).
|
150 |
+
"""
|
151 |
+
return self._forward(xs, x_masks, True)
|
152 |
+
|
153 |
+
|
154 |
+
class LengthRegulator(torch.nn.Module):
|
155 |
+
def __init__(self, pad_value=0.0):
|
156 |
+
super(LengthRegulator, self).__init__()
|
157 |
+
self.pad_value = pad_value
|
158 |
+
|
159 |
+
def forward(self, dur, dur_padding=None, alpha=1.0):
|
160 |
+
"""
|
161 |
+
Example (no batch dim version):
|
162 |
+
1. dur = [2,2,3]
|
163 |
+
2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4]
|
164 |
+
3. token_mask = [[1,1,0,0,0,0,0],
|
165 |
+
[0,0,1,1,0,0,0],
|
166 |
+
[0,0,0,0,1,1,1]]
|
167 |
+
4. token_idx * token_mask = [[1,1,0,0,0,0,0],
|
168 |
+
[0,0,2,2,0,0,0],
|
169 |
+
[0,0,0,0,3,3,3]]
|
170 |
+
5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3]
|
171 |
+
|
172 |
+
:param dur: Batch of durations of each frame (B, T_txt)
|
173 |
+
:param dur_padding: Batch of padding of each frame (B, T_txt)
|
174 |
+
:param alpha: duration rescale coefficient
|
175 |
+
:return:
|
176 |
+
mel2ph (B, T_speech)
|
177 |
+
"""
|
178 |
+
assert alpha > 0
|
179 |
+
dur = torch.round(dur.float() * alpha).long()
|
180 |
+
if dur_padding is not None:
|
181 |
+
dur = dur * (1 - dur_padding.long())
|
182 |
+
token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device)
|
183 |
+
dur_cumsum = torch.cumsum(dur, 1)
|
184 |
+
dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0)
|
185 |
+
|
186 |
+
pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device)
|
187 |
+
token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None])
|
188 |
+
mel2ph = (token_idx * token_mask.long()).sum(1)
|
189 |
+
return mel2ph
|
190 |
+
|
191 |
+
|
192 |
+
class PitchPredictor(torch.nn.Module):
|
193 |
+
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
|
194 |
+
dropout_rate=0.1, padding='SAME'):
|
195 |
+
"""Initilize pitch predictor module.
|
196 |
+
Args:
|
197 |
+
idim (int): Input dimension.
|
198 |
+
n_layers (int, optional): Number of convolutional layers.
|
199 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
200 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
201 |
+
dropout_rate (float, optional): Dropout rate.
|
202 |
+
"""
|
203 |
+
super(PitchPredictor, self).__init__()
|
204 |
+
self.conv = torch.nn.ModuleList()
|
205 |
+
self.kernel_size = kernel_size
|
206 |
+
self.padding = padding
|
207 |
+
for idx in range(n_layers):
|
208 |
+
in_chans = idim if idx == 0 else n_chans
|
209 |
+
self.conv += [torch.nn.Sequential(
|
210 |
+
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
|
211 |
+
if padding == 'SAME'
|
212 |
+
else (kernel_size - 1, 0), 0),
|
213 |
+
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
|
214 |
+
torch.nn.ReLU(),
|
215 |
+
LayerNorm(n_chans, dim=1),
|
216 |
+
torch.nn.Dropout(dropout_rate)
|
217 |
+
)]
|
218 |
+
self.linear = torch.nn.Linear(n_chans, odim)
|
219 |
+
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
|
220 |
+
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))
|
221 |
+
|
222 |
+
def forward(self, xs):
|
223 |
+
"""
|
224 |
+
|
225 |
+
:param xs: [B, T, H]
|
226 |
+
:return: [B, T, H]
|
227 |
+
"""
|
228 |
+
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
|
229 |
+
xs = xs + positions
|
230 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
231 |
+
for f in self.conv:
|
232 |
+
xs = f(xs) # (B, C, Tmax)
|
233 |
+
# NOTE: calculate in log domain
|
234 |
+
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H)
|
235 |
+
return xs
|
236 |
+
|
237 |
+
|
238 |
+
class EnergyPredictor(PitchPredictor):
|
239 |
+
pass
|
240 |
+
|
241 |
+
|
242 |
+
def mel2ph_to_dur(mel2ph, T_txt, max_dur=None):
|
243 |
+
B, _ = mel2ph.shape
|
244 |
+
dur = mel2ph.new_zeros(B, T_txt + 1).scatter_add(1, mel2ph, torch.ones_like(mel2ph))
|
245 |
+
dur = dur[:, 1:]
|
246 |
+
if max_dur is not None:
|
247 |
+
dur = dur.clamp(max=max_dur)
|
248 |
+
return dur
|
249 |
+
|
250 |
+
|
251 |
+
class FFTBlocks(nn.Module):
|
252 |
+
def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, num_heads=2,
|
253 |
+
use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True):
|
254 |
+
super().__init__()
|
255 |
+
self.num_layers = num_layers
|
256 |
+
embed_dim = self.hidden_size = hidden_size
|
257 |
+
self.dropout = dropout if dropout is not None else hparams['dropout']
|
258 |
+
self.use_pos_embed = use_pos_embed
|
259 |
+
self.use_last_norm = use_last_norm
|
260 |
+
if use_pos_embed:
|
261 |
+
self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS
|
262 |
+
self.padding_idx = 0
|
263 |
+
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1
|
264 |
+
self.embed_positions = SinusoidalPositionalEmbedding(
|
265 |
+
embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
|
266 |
+
)
|
267 |
+
|
268 |
+
self.layers = nn.ModuleList([])
|
269 |
+
self.layers.extend([
|
270 |
+
TransformerEncoderLayer(self.hidden_size, self.dropout,
|
271 |
+
kernel_size=ffn_kernel_size, num_heads=num_heads)
|
272 |
+
for _ in range(self.num_layers)
|
273 |
+
])
|
274 |
+
if self.use_last_norm:
|
275 |
+
if norm == 'ln':
|
276 |
+
self.layer_norm = nn.LayerNorm(embed_dim)
|
277 |
+
elif norm == 'bn':
|
278 |
+
self.layer_norm = BatchNorm1dTBC(embed_dim)
|
279 |
+
else:
|
280 |
+
self.layer_norm = None
|
281 |
+
|
282 |
+
def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False):
|
283 |
+
"""
|
284 |
+
:param x: [B, T, C]
|
285 |
+
:param padding_mask: [B, T]
|
286 |
+
:return: [B, T, C] or [L, B, T, C]
|
287 |
+
"""
|
288 |
+
# padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask
|
289 |
+
padding_mask = x.abs().sum(-1).eq(0).detach() if padding_mask is None else padding_mask
|
290 |
+
nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1]
|
291 |
+
if self.use_pos_embed:
|
292 |
+
positions = self.pos_embed_alpha * self.embed_positions(x[..., 0])
|
293 |
+
x = x + positions
|
294 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
295 |
+
# B x T x C -> T x B x C
|
296 |
+
x = x.transpose(0, 1) * nonpadding_mask_TB
|
297 |
+
hiddens = []
|
298 |
+
for layer in self.layers:
|
299 |
+
x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB
|
300 |
+
hiddens.append(x)
|
301 |
+
if self.use_last_norm:
|
302 |
+
x = self.layer_norm(x) * nonpadding_mask_TB
|
303 |
+
if return_hiddens:
|
304 |
+
x = torch.stack(hiddens, 0) # [L, T, B, C]
|
305 |
+
x = x.transpose(1, 2) # [L, B, T, C]
|
306 |
+
else:
|
307 |
+
x = x.transpose(0, 1) # [B, T, C]
|
308 |
+
return x
|
309 |
+
|
310 |
+
|
311 |
+
class FastspeechEncoder(FFTBlocks):
|
312 |
+
'''
|
313 |
+
compared to FFTBlocks:
|
314 |
+
- input is [B, T, H], not [B, T, C]
|
315 |
+
- supports "relative" positional encoding
|
316 |
+
'''
|
317 |
+
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=2):
|
318 |
+
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
|
319 |
+
kernel_size = hparams['enc_ffn_kernel_size'] if kernel_size is None else kernel_size
|
320 |
+
num_layers = hparams['dec_layers'] if num_layers is None else num_layers
|
321 |
+
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads,
|
322 |
+
use_pos_embed=False) # use_pos_embed_alpha for compatibility
|
323 |
+
#self.embed_tokens = embed_tokens
|
324 |
+
self.embed_scale = math.sqrt(hidden_size)
|
325 |
+
self.padding_idx = 0
|
326 |
+
if hparams.get('rel_pos') is not None and hparams['rel_pos']:
|
327 |
+
self.embed_positions = RelPositionalEncoding(hidden_size, dropout_rate=0.0)
|
328 |
+
else:
|
329 |
+
self.embed_positions = SinusoidalPositionalEmbedding(
|
330 |
+
hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
|
331 |
+
)
|
332 |
+
|
333 |
+
def forward(self, hubert):
|
334 |
+
"""
|
335 |
+
|
336 |
+
:param hubert: [B, T, H ]
|
337 |
+
:return: {
|
338 |
+
'encoder_out': [T x B x C]
|
339 |
+
}
|
340 |
+
"""
|
341 |
+
# encoder_padding_mask = txt_tokens.eq(self.padding_idx).data
|
342 |
+
encoder_padding_mask = (hubert==0).all(-1)
|
343 |
+
x = self.forward_embedding(hubert) # [B, T, H]
|
344 |
+
x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask)
|
345 |
+
return x
|
346 |
+
|
347 |
+
def forward_embedding(self, hubert):
|
348 |
+
# embed tokens and positions
|
349 |
+
x = self.embed_scale * hubert
|
350 |
+
if hparams['use_pos_embed']:
|
351 |
+
positions = self.embed_positions(hubert)
|
352 |
+
x = x + positions
|
353 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
354 |
+
return x
|
355 |
+
|
356 |
+
|
357 |
+
class FastspeechDecoder(FFTBlocks):
|
358 |
+
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None):
|
359 |
+
num_heads = hparams['num_heads'] if num_heads is None else num_heads
|
360 |
+
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size
|
361 |
+
kernel_size = hparams['dec_ffn_kernel_size'] if kernel_size is None else kernel_size
|
362 |
+
num_layers = hparams['dec_layers'] if num_layers is None else num_layers
|
363 |
+
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads)
|
364 |
+
|