|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModel |
|
|
|
|
|
model_name = "facebook/VFusion3D" |
|
|
|
|
|
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
def predict(input_text): |
|
|
|
inputs = processor(inputs=input_text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
return outputs.logits.tolist() |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs="text", |
|
outputs="text", |
|
title="VFusion3D Deployment", |
|
description="A demo for facebook/VFusion3D model." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|