Spaces:
Runtime error
Runtime error
File size: 11,611 Bytes
a5f8a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import argparse
import os
from loguru import logger
import torch
from torch import nn
from torch.cuda import amp
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from virtex.config import Config
from virtex.factories import (
DownstreamDatasetFactory,
PretrainingModelFactory,
OptimizerFactory,
LRSchedulerFactory,
)
from virtex.utils.checkpointing import CheckpointManager
from virtex.utils.common import common_parser, common_setup, cycle
import virtex.utils.distributed as dist
from virtex.utils.metrics import TopkAccuracy
from virtex.utils.timer import Timer
# fmt: off
parser = common_parser(
description="""Do image classification with linear models and frozen
feature extractor, or fine-tune the feature extractor end-to-end."""
)
group = parser.add_argument_group("Downstream config arguments.")
group.add_argument(
"--down-config", metavar="FILE", help="Path to a downstream config file."
)
group.add_argument(
"--down-config-override", nargs="*", default=[],
help="A list of key-value pairs to modify downstream config params.",
)
parser.add_argument_group("Checkpointing and Logging")
parser.add_argument(
"--weight-init", choices=["random", "imagenet", "torchvision", "virtex"],
default="virtex", help="""How to initialize weights:
1. 'random' initializes all weights randomly
2. 'imagenet' initializes backbone weights from torchvision model zoo
3. {'torchvision', 'virtex'} load state dict from --checkpoint-path
- with 'torchvision', state dict would be from PyTorch's training
script.
- with 'virtex' it should be for our full pretrained model."""
)
parser.add_argument(
"--log-every", type=int, default=50,
help="""Log training curves to tensorboard after every these many iterations
only master process logs averaged loss values across processes.""",
)
parser.add_argument(
"--checkpoint-path",
help="""Path to load checkpoint and run downstream task evaluation. The
name of checkpoint file is required to be `model_*.pth`, where * is
iteration number from which the checkpoint was serialized."""
)
parser.add_argument(
"--checkpoint-every", type=int, default=5000,
help="""Serialize model to a checkpoint after every these many iterations.
For ImageNet, (5005 iterations = 1 epoch); for iNaturalist (1710 iterations
= 1 epoch).""",
)
# fmt: on
def main(_A: argparse.Namespace):
if _A.num_gpus_per_machine == 0:
# Set device as CPU if num_gpus_per_machine = 0.
device = torch.device("cpu")
else:
# Get the current device as set for current distributed process.
# Check `launch` function in `virtex.utils.distributed` module.
device = torch.cuda.current_device()
# Create a downstream config object (this will be immutable) and perform
# common setup such as logging and setting up serialization directory.
_DOWNC = Config(_A.down_config, _A.down_config_override)
common_setup(_DOWNC, _A, job_type="downstream")
# Create a (pretraining) config object and backup in serializaion directory.
_C = Config(_A.config, _A.config_override)
_C.dump(os.path.join(_A.serialization_dir, "pretrain_config.yaml"))
# Get dataset name for tensorboard logging.
DATASET = _DOWNC.DATA.ROOT.split("/")[-1]
# Set number of output classes according to dataset:
NUM_CLASSES_MAPPING = {"imagenet": 1000, "inaturalist": 8142}
NUM_CLASSES = NUM_CLASSES_MAPPING[DATASET]
# -------------------------------------------------------------------------
# INSTANTIATE DATALOADER, MODEL, OPTIMIZER, SCHEDULER
# -------------------------------------------------------------------------
train_dataset = DownstreamDatasetFactory.from_config(_DOWNC, split="train")
train_dataloader = DataLoader(
train_dataset,
batch_size=_DOWNC.OPTIM.BATCH_SIZE // dist.get_world_size(),
num_workers=_A.cpu_workers,
sampler=DistributedSampler(
train_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=True,
),
drop_last=False,
pin_memory=True,
collate_fn=train_dataset.collate_fn,
)
val_dataset = DownstreamDatasetFactory.from_config(_DOWNC, split="val")
val_dataloader = DataLoader(
val_dataset,
batch_size=_DOWNC.OPTIM.BATCH_SIZE // dist.get_world_size(),
num_workers=_A.cpu_workers,
sampler=DistributedSampler(
val_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=False,
),
pin_memory=True,
drop_last=False,
collate_fn=val_dataset.collate_fn,
)
# Initialize model using pretraining config.
pretrained_model = PretrainingModelFactory.from_config(_C)
# Load weights according to the init method, do nothing for `random`, and
# `imagenet` is already taken care of.
if _A.weight_init == "virtex":
CheckpointManager(model=pretrained_model).load(_A.checkpoint_path)
elif _A.weight_init == "torchvision":
# Keep strict=False because this state dict may have weights for
# last fc layer.
pretrained_model.visual.cnn.load_state_dict(
torch.load(_A.checkpoint_path, map_location="cpu")["state_dict"],
strict=False,
)
# Pull out the CNN (torchvision-like) from our pretrained model and add
# back the FC layer - this is exists in torchvision models, and is set to
# `nn.Identity()` during pretraining.
model = pretrained_model.visual.cnn # type: ignore
model.fc = nn.Linear(_DOWNC.MODEL.VISUAL.FEATURE_SIZE, NUM_CLASSES).to(device)
model = model.to(device)
# Re-initialize the FC layer.
torch.nn.init.normal_(model.fc.weight.data, mean=0.0, std=0.01)
torch.nn.init.constant_(model.fc.bias.data, 0.0)
# Freeze all layers except FC as per config param.
if _DOWNC.MODEL.VISUAL.FROZEN:
# Set model to eval mode to prevent BatchNorm from updating running
# mean and std. With only a linear layer, being in eval mode when
# training will not matter anyway.
model.eval()
for name, param in model.named_parameters():
if "fc" not in name:
param.requires_grad = False
# Cross entropy loss and accuracy meter.
criterion = nn.CrossEntropyLoss()
top1 = TopkAccuracy(top_k=1)
optimizer = OptimizerFactory.from_config(_DOWNC, model.named_parameters())
scheduler = LRSchedulerFactory.from_config(_DOWNC, optimizer)
del pretrained_model
# -------------------------------------------------------------------------
# BEFORE TRAINING STARTS
# -------------------------------------------------------------------------
# Create a gradient scaler for automatic mixed precision.
scaler = amp.GradScaler(enabled=_DOWNC.AMP)
# Create an iterator from dataloader to sample batches perpetually.
train_dataloader_iter = cycle(train_dataloader, device)
if dist.get_world_size() > 1:
dist.synchronize()
model = nn.parallel.DistributedDataParallel(
model, device_ids=[device], find_unused_parameters=True
)
if dist.is_master_process():
checkpoint_manager = CheckpointManager(
_A.serialization_dir,
model=model,
optimizer=optimizer,
scheduler=scheduler,
)
tensorboard_writer = SummaryWriter(log_dir=_A.serialization_dir)
# Keep track of time per iteration and ETA.
timer = Timer(start_from=1, total_iterations=_DOWNC.OPTIM.NUM_ITERATIONS)
# -------------------------------------------------------------------------
# TRAINING LOOP
# -------------------------------------------------------------------------
for iteration in range(1, _DOWNC.OPTIM.NUM_ITERATIONS + 1):
timer.tic()
optimizer.zero_grad()
batch = next(train_dataloader_iter)
with amp.autocast(enabled=_DOWNC.AMP):
logits = model(batch["image"])
loss = criterion(logits, batch["label"])
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
timer.toc()
if iteration % _A.log_every == 0 and dist.is_master_process():
logger.info(
f"{timer.stats} | Loss: {loss:.3f} | GPU: {dist.gpu_mem_usage()} MB"
)
tensorboard_writer.add_scalar(f"{DATASET}/train_loss", loss, iteration)
tensorboard_writer.add_scalar(
f"{DATASET}/learning_rate",
optimizer.param_groups[0]["lr"],
iteration,
)
# ---------------------------------------------------------------------
# VALIDATION
# ---------------------------------------------------------------------
if iteration % _A.checkpoint_every == 0:
torch.set_grad_enabled(False)
model.eval()
total_val_loss = torch.tensor(0.0).to(device)
for val_iteration, batch in enumerate(val_dataloader, start=1):
for key in batch:
batch[key] = batch[key].to(device)
logits = model(batch["image"])
loss = criterion(logits, batch["label"])
top1(logits, batch["label"])
total_val_loss += loss
# Divide each loss component by number of val batches per GPU.
total_val_loss = total_val_loss / val_iteration
dist.average_across_processes(total_val_loss)
# Get accumulated Top-1 accuracy for logging across GPUs.
acc = top1.get_metric(reset=True)
dist.average_across_processes(acc)
torch.set_grad_enabled(True)
# Set model back to train mode only when fine-tuning end-to-end.
if not _DOWNC.MODEL.VISUAL.FROZEN:
model.train()
# Save recent checkpoint and best checkpoint based on accuracy.
if dist.is_master_process():
checkpoint_manager.step(iteration)
if iteration % _A.checkpoint_every == 0 and dist.is_master_process():
logger.info(f"Iter: {iteration} | Top-1 accuracy: {acc})")
tensorboard_writer.add_scalar(
f"{DATASET}/val_loss", total_val_loss, iteration
)
# This name scoping will result in Tensorboard displaying all metrics
# (VOC07, caption, etc.) together.
tensorboard_writer.add_scalars(
f"metrics/{DATASET}", {"top1": acc}, iteration
)
# All processes will wait till master process is done logging.
dist.synchronize()
if __name__ == "__main__":
_A = parser.parse_args()
# Add an arg in config override if `--weight-init` is imagenet.
if _A.weight_init == "imagenet":
_A.config_override.extend(["MODEL.VISUAL.PRETRAINED", True])
if _A.num_gpus_per_machine == 0:
main(_A)
else:
# This will launch `main` and set appropriate CUDA device (GPU ID) as
# per process (accessed in the beginning of `main`).
dist.launch(
main,
num_machines=_A.num_machines,
num_gpus_per_machine=_A.num_gpus_per_machine,
machine_rank=_A.machine_rank,
dist_url=_A.dist_url,
args=(_A,),
)
|