Spaces:
Runtime error
Runtime error
File size: 23,847 Bytes
a5f8a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
r"""
This module is a collection of *factories* for creating objects of datasets,
models, optimizers and other useful components. For example, a ResNet-50
visual backbone can be created as:
.. code-block:: python
>>> # Explicitly by name, args and kwargs:
>>> backbone = VisualBackboneFactory.create(
... "torchvision::resnet50", pretrained=False
... )
>>> # Directly from a config object:
>>> _C = Config(override_list=["MODEL.VISUAL.NAME", "torchvision::resnet50"])
>>> backbone = VisualBackboneFactory.from_config(_C)
Creating directly from :class:`~virtex.config.Config` is fast and simple, and
ensures minimal changes throughout the codebase upon any change in the call
signature of underlying class; or config hierarchy. Refer description of
specific factories for more details.
"""
import re
from functools import partial
from typing import Any, Callable, Dict, Iterable, List
import albumentations as alb
from torch import nn, optim
import virtex.data as vdata
import virtex.models as vmodels
import virtex.utils.distributed as dist
from virtex.config import Config
from virtex.data import transforms as T
from virtex.data.tokenizers import SentencePieceBPETokenizer
from virtex.modules import visual_backbones, textual_heads
from virtex.optim import Lookahead, lr_scheduler
from virtex.utils.beam_search import AutoRegressiveBeamSearch
from virtex.utils.nucleus_sampling import AutoRegressiveNucleusSampling
class Factory(object):
r"""
Base class for all factories. All factories must inherit this base class
and follow these guidelines for a consistent behavior:
* Factory objects cannot be instantiated, doing ``factory = SomeFactory()``
is illegal. Child classes should not implement ``__init__`` methods.
* All factories must have an attribute named ``PRODUCTS`` of type
``Dict[str, Callable]``, which associates each class with a unique string
name which can be used to create it.
* All factories must implement one classmethod, :meth:`from_config` which
contains logic for creating an object directly by taking name and other
arguments directly from :class:`~virtex.config.Config`. They can use
:meth:`create` already implemented in this base class.
* :meth:`from_config` should not use too many extra arguments than the
config itself, unless necessary (such as model parameters for optimizer).
"""
PRODUCTS: Dict[str, Callable] = {}
def __init__(self):
raise ValueError(
f"""Cannot instantiate {self.__class__.__name__} object, use
`create` classmethod to create a product from this factory.
"""
)
@classmethod
def create(cls, name: str, *args, **kwargs) -> Any:
r"""Create an object by its name, args and kwargs."""
if name not in cls.PRODUCTS:
raise KeyError(f"{cls.__class__.__name__} cannot create {name}.")
return cls.PRODUCTS[name](*args, **kwargs)
@classmethod
def from_config(cls, config: Config) -> Any:
r"""Create an object directly from config."""
raise NotImplementedError
class TokenizerFactory(Factory):
r"""
Factory to create text tokenizers. This codebase ony supports one tokenizer
for now, but having a dedicated factory makes it easy to add more if needed.
Possible choices: ``{"SentencePieceBPETokenizer"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"SentencePieceBPETokenizer": SentencePieceBPETokenizer
}
@classmethod
def from_config(cls, config: Config) -> SentencePieceBPETokenizer:
r"""
Create a tokenizer directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
tokenizer = cls.create(
"SentencePieceBPETokenizer", model_path=_C.DATA.TOKENIZER_MODEL
)
return tokenizer
class ImageTransformsFactory(Factory):
r"""
Factory to create image transformations for common preprocessing and data
augmentations. These are a mix of default transformations from
`albumentations <https://albumentations.readthedocs.io/en/latest/>`_ and
some extended ones defined in :mod:`virtex.data.transforms`.
It uses sensible default values, however they can be provided with the name
in dict syntax. Example: ``random_resized_crop::{'scale': (0.08, 1.0)}``
.. note::
This factory does not implement :meth:`from_config` method. It is only
used by :class:`PretrainingDatasetFactory` and
:class:`DownstreamDatasetFactory`.
Possible choices: ``{"center_crop", "horizontal_flip", "random_resized_crop",
"normalize", "global_resize", "color_jitter", "smallest_resize"}``.
"""
# fmt: off
PRODUCTS: Dict[str, Callable] = {
# Input resize transforms: whenever selected, these are always applied.
# These transforms require one position argument: image dimension.
"random_resized_crop": partial(
T.RandomResizedSquareCrop, scale=(0.2, 1.0), ratio=(0.75, 1.333), p=1.0
),
"center_crop": partial(T.CenterSquareCrop, p=1.0),
"smallest_resize": partial(alb.SmallestMaxSize, p=1.0),
"global_resize": partial(T.SquareResize, p=1.0),
# Keep hue limits small in color jitter because it changes color drastically
# and captions often mention colors. Apply with higher probability.
"color_jitter": partial(
alb.ColorJitter, brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8
),
"horizontal_flip": partial(T.HorizontalFlip, p=0.5),
# Color normalization: whenever selected, always applied. This accepts images
# in [0, 255], requires mean and std in [0, 1] and normalizes to `N(0, 1)`.
"normalize": partial(
alb.Normalize, mean=T.IMAGENET_COLOR_MEAN, std=T.IMAGENET_COLOR_STD, p=1.0
),
}
# fmt: on
@classmethod
def create(cls, name: str, *args, **kwargs) -> Any:
r"""Create an object by its name, args and kwargs."""
if "::" in name:
name, __kwargs = name.split("::")
_kwargs = eval(__kwargs)
else:
_kwargs = {}
_kwargs.update(kwargs)
return super().create(name, *args, **_kwargs)
@classmethod
def from_config(cls, config: Config):
r"""Augmentations cannot be created from config, only :meth:`create`."""
raise NotImplementedError
class PretrainingDatasetFactory(Factory):
r"""
Factory to create :class:`~torch.utils.data.Dataset` s for pretraining
VirTex models. Datasets are created depending on pretraining task used.
Typically these datasets either provide image-caption pairs, or only images
from COCO Captions dataset (serialized to an LMDB file).
As an exception, the dataset for ``multilabel_classification`` provides
COCO images and labels of their bounding box annotations.
Possible choices: ``{"bicaptioning", "captioning", "masked_lm",
"token_classification", "multilabel_classification"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"virtex": vdata.CaptioningDataset,
"bicaptioning": vdata.CaptioningDataset,
"captioning": vdata.CaptioningDataset,
"masked_lm": vdata.MaskedLmDataset,
"token_classification": vdata.TokenClassificationDataset,
"multilabel_classification": vdata.MultiLabelClassificationDataset,
}
@classmethod
def from_config(cls, config: Config, split: str = "train"):
r"""
Create a dataset directly from config. Names in this factory match with
names in :class:`PretrainingModelFactory` because both use same config
parameter ``MODEL.NAME`` to create objects.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
split: str, optional (default = "train")
Which split to load for the dataset. One of ``{"train", "val"}``.
"""
_C = config
# Every dataset needs these two args.
kwargs = {"data_root": _C.DATA.ROOT, "split": split}
# Create a list of image transformations based on transform names.
image_transform_list: List[Callable] = []
for name in getattr(_C.DATA, f"IMAGE_TRANSFORM_{split.upper()}"):
# Pass dimensions if cropping / resizing, else rely on the defaults
# as per `ImageTransformsFactory`.
if "resize" in name or "crop" in name:
image_transform_list.append(
ImageTransformsFactory.create(name, _C.DATA.IMAGE_CROP_SIZE)
)
else:
image_transform_list.append(ImageTransformsFactory.create(name))
kwargs["image_transform"] = alb.Compose(image_transform_list)
tokenizer = TokenizerFactory.from_config(_C)
if _C.MODEL.NAME in {"virtex", "bicaptioning", "captioning"}:
kwargs.update(
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
use_single_caption=_C.DATA.USE_SINGLE_CAPTION,
percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0,
)
elif _C.MODEL.NAME == "token_classification":
kwargs.update(
tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH
)
elif _C.MODEL.NAME == "masked_lm":
kwargs.update(
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
use_single_caption=_C.DATA.USE_SINGLE_CAPTION,
percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0,
mask_proportion=_C.DATA.MASKED_LM.MASK_PROPORTION,
mask_probability=_C.DATA.MASKED_LM.MASK_PROBABILITY,
replace_probability=_C.DATA.MASKED_LM.REPLACE_PROBABILITY,
)
elif _C.MODEL.NAME in {"virtex_web", "miniclip_web"}:
# Remove "split" argument, not necessary.
_ = kwargs.pop("split")
kwargs.update(
batch_size=_C.OPTIM.BATCH_SIZE // dist.get_world_size(),
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
)
# Dataset names match with model names (and ofcourse pretext names).
return cls.create(_C.MODEL.NAME, **kwargs)
class DownstreamDatasetFactory(Factory):
r"""
Factory to create :class:`~torch.utils.data.Dataset` s for evaluating
VirTex models on downstream tasks.
Possible choices: ``{"datasets/VOC2007", "datasets/imagenet"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"datasets/VOC2007": vdata.VOC07ClassificationDataset,
"datasets/imagenet": vdata.ImageNetDataset,
"datasets/inaturalist": vdata.INaturalist2018Dataset,
}
@classmethod
def from_config(cls, config: Config, split: str = "train"):
r"""
Create a dataset directly from config. Names in this factory are paths
of dataset directories (relative to the project directory), because
config parameter ``DATA.ROOT`` is used to create objects.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
split: str, optional (default = "train")
Which split to load for the dataset. One of ``{"trainval", "test"}``
for VOC2007, or one of ``{"train", "val"}`` for ImageNet.
"""
_C = config
# Every dataset needs these two args.
kwargs = {"data_root": _C.DATA.ROOT, "split": split}
# For VOC2007, `IMAGE_TRANSFORM_TRAIN` is used for "trainval" split and
# `IMAGE_TRANSFORM_VAL` is used fo "test" split.
image_transform_names: List[str] = list(
_C.DATA.IMAGE_TRANSFORM_TRAIN
if "train" in split
else _C.DATA.IMAGE_TRANSFORM_VAL
)
# Create a list of image transformations based on names.
image_transform_list: List[Callable] = []
for name in image_transform_names:
# Pass dimensions for resize/crop, else rely on the defaults.
if name.split("::")[0] in {
"random_resized_crop",
"center_crop",
"global_resize",
}:
transform = ImageTransformsFactory.create(name, 224)
elif name.split("::")[0] in {"smallest_resize"}:
transform = ImageTransformsFactory.create(name, 256)
else:
transform = ImageTransformsFactory.create(name)
image_transform_list.append(transform)
kwargs["image_transform"] = alb.Compose(image_transform_list)
return cls.create(_C.DATA.ROOT, **kwargs)
class VisualBackboneFactory(Factory):
r"""
Factory to create :mod:`~virtex.modules.visual_backbones`. This factory
supports any ResNet-like model from
`Torchvision <https://pytorch.org/docs/stable/torchvision/models.html>`_.
Use the method name for model as in torchvision, for example,
``torchvision::resnet50``, ``torchvision::wide_resnet50_2`` etc.
Possible choices: ``{"torchvision", "timm"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"torchvision": visual_backbones.TorchvisionVisualBackbone,
"timm": visual_backbones.TimmVisualBackbone,
}
@classmethod
def from_config(cls, config: Config) -> visual_backbones.VisualBackbone:
r"""
Create a visual backbone directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
kwargs = {"visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE}
# Check the name for models from torchvision or timm.
package_name, cnn_name = _C.MODEL.VISUAL.NAME.split("::")
kwargs["pretrained"] = _C.MODEL.VISUAL.PRETRAINED
kwargs["frozen"] = _C.MODEL.VISUAL.FROZEN
return cls.create(package_name, cnn_name, **kwargs)
class TextualHeadFactory(Factory):
r"""
Factory to create :mod:`~virtex.modules.textual_heads`. Architectural
hyperparameters for transformers can be specified as ``name::*``.
For example, ``transdec_postnorm::L1_H1024_A16_F4096`` would create a
transformer textual head with ``L = 1`` layers, ``H = 1024`` hidden size,
``A = 16`` attention heads, and ``F = 4096`` size of feedforward layers.
Textual head should be ``"none"`` for pretraining tasks which do not
involve language modeling, such as ``"token_classification"``.
Possible choices: ``{"transdec_postnorm", "transdec_prenorm", "none"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"transdec_prenorm": partial(
textual_heads.TransformerDecoderTextualHead, norm_type="pre"
),
"transdec_postnorm": partial(
textual_heads.TransformerDecoderTextualHead, norm_type="post"
),
"transenc_postnorm": partial(
textual_heads.TransformerEncoderTextualHead, norm_type="post"
),
"transenc_prenorm": partial(
textual_heads.TransformerEncoderTextualHead, norm_type="pre"
),
"none": textual_heads.LinearTextualHead,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a textual head directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
name = _C.MODEL.TEXTUAL.NAME
kwargs = {
"visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE,
"vocab_size": _C.DATA.VOCAB_SIZE,
}
if "trans" in _C.MODEL.TEXTUAL.NAME:
# Get architectural hyper-params as per name by matching regex.
name, architecture = name.split("::")
architecture = re.match(r"L(\d+)_H(\d+)_A(\d+)_F(\d+)", architecture)
num_layers = int(architecture.group(1))
hidden_size = int(architecture.group(2))
attention_heads = int(architecture.group(3))
feedforward_size = int(architecture.group(4))
# Mask the future tokens for autoregressive captioning.
mask_future = _C.MODEL.NAME in {"virtex", "virtex_web", "captioning", "bicaptioning"}
kwargs.update(
hidden_size=hidden_size,
num_layers=num_layers,
attention_heads=attention_heads,
feedforward_size=feedforward_size,
dropout=_C.MODEL.TEXTUAL.DROPOUT,
mask_future_positions=mask_future,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
padding_idx=_C.DATA.UNK_INDEX,
)
return cls.create(name, **kwargs)
class PretrainingModelFactory(Factory):
r"""
Factory to create :mod:`~virtex.models` for different pretraining tasks.
Possible choices: ``{"bicaptioning", "captioning", "masked_lm",
"token_classification", "multilabel_classification"}``.
"""
PRODUCTS: Dict[str, Callable] = {
# First two are basically the same. Added for shorthand notation.
"virtex": vmodels.VirTexModel,
"bicaptioning": vmodels.BidirectionalCaptioningModel,
"captioning": vmodels.ForwardCaptioningModel,
"masked_lm": vmodels.MaskedLMModel,
"token_classification": vmodels.TokenClassificationModel,
"multilabel_classification": vmodels.MultiLabelClassificationModel,
"virtex_web": vmodels.VirTexModel,
"miniclip_web": vmodels.ImageTextContrastiveModel,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a model directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
# Build visual and textual streams based on config.
visual = VisualBackboneFactory.from_config(_C)
textual = TextualHeadFactory.from_config(_C)
# Add model specific kwargs. Refer call signatures of specific models
# for matching kwargs here.
if _C.MODEL.NAME in {"virtex", "captioning", "bicaptioning", "virtex_web"}:
kwargs = {
"sos_index": _C.DATA.SOS_INDEX,
"eos_index": _C.DATA.EOS_INDEX,
"label_smoothing": _C.MODEL.LABEL_SMOOTHING,
"decoder": CaptionDecoderFactory.from_config(_C),
}
elif _C.MODEL.NAME in {"miniclip_web"}:
kwargs = {"label_smoothing": _C.MODEL.LABEL_SMOOTHING}
elif _C.MODEL.NAME == "token_classification":
kwargs = {
"ignore_indices": [
_C.DATA.UNK_INDEX,
_C.DATA.SOS_INDEX,
_C.DATA.EOS_INDEX,
_C.DATA.MASK_INDEX,
]
}
elif _C.MODEL.NAME == "multilabel_classification":
kwargs = {"ignore_indices": [0]} # background index
else:
kwargs = {}
return cls.create(_C.MODEL.NAME, visual, textual, **kwargs)
class CaptionDecoderFactory(Factory):
r"""
Factory to create decoders from predicting captions from VirTex model.
Possible choices: ``{"beam_search", "nucleus_sampling"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"beam_search": AutoRegressiveBeamSearch,
"nucleus_sampling": AutoRegressiveNucleusSampling,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a model directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
kwargs = {
"eos_index": _C.DATA.EOS_INDEX,
"max_steps": _C.MODEL.DECODER.MAX_DECODING_STEPS,
}
if _C.MODEL.DECODER.NAME == "beam_search":
kwargs["beam_size"] = _C.MODEL.DECODER.BEAM_SIZE
elif _C.MODEL.DECODER.NAME == "nucleus_sampling":
kwargs["nucleus_size"] = _C.MODEL.DECODER.NUCLEUS_SIZE
return cls.create(_C.MODEL.DECODER.NAME, **kwargs)
class OptimizerFactory(Factory):
r"""Factory to create optimizers. Possible choices: ``{"sgd", "adamw"}``."""
PRODUCTS: Dict[str, Callable] = {"sgd": optim.SGD, "adamw": optim.AdamW}
@classmethod
def from_config(
cls, config: Config, named_parameters: Iterable[Any]
) -> optim.Optimizer:
r"""
Create an optimizer directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
named_parameters: Iterable
Named parameters of model (retrieved by ``model.named_parameters()``)
for the optimizer. We use named parameters to set different LR and
turn off weight decay for certain parameters based on their names.
"""
_C = config
# Set different learning rate for CNN and rest of the model during
# pretraining. This doesn't matter for downstream evaluation because
# there are no modules with "cnn" in their name.
# Also turn off weight decay for layer norm and bias in textual stream.
param_groups = []
for name, param in named_parameters:
wd = 0.0 if re.match(_C.OPTIM.NO_DECAY, name) else _C.OPTIM.WEIGHT_DECAY
lr = _C.OPTIM.CNN_LR if "cnn" in name else _C.OPTIM.LR
param_groups.append({"params": [param], "lr": lr, "weight_decay": wd})
if _C.OPTIM.OPTIMIZER_NAME == "sgd":
kwargs = {"momentum": _C.OPTIM.SGD_MOMENTUM}
else:
kwargs = {}
optimizer = cls.create(_C.OPTIM.OPTIMIZER_NAME, param_groups, **kwargs)
if _C.OPTIM.LOOKAHEAD.USE:
optimizer = Lookahead(
optimizer, k=_C.OPTIM.LOOKAHEAD.STEPS, alpha=_C.OPTIM.LOOKAHEAD.ALPHA
)
return optimizer
class LRSchedulerFactory(Factory):
r"""
Factory to create LR schedulers. All schedulers have a built-in LR warmup
schedule before actual LR scheduling (decay) starts.
Possible choices: ``{"none", "multistep", "linear", "cosine"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"none": lr_scheduler.LinearWarmupNoDecayLR,
"multistep": lr_scheduler.LinearWarmupMultiStepLR,
"linear": lr_scheduler.LinearWarmupLinearDecayLR,
"cosine": lr_scheduler.LinearWarmupCosineAnnealingLR,
}
@classmethod
def from_config(
cls, config: Config, optimizer: optim.Optimizer
) -> optim.lr_scheduler.LambdaLR:
r"""
Create an LR scheduler directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
optimizer: torch.optim.Optimizer
Optimizer on which LR scheduling would be performed.
"""
_C = config
kwargs = {
"total_steps": _C.OPTIM.NUM_ITERATIONS,
"warmup_steps": _C.OPTIM.WARMUP_STEPS,
}
# Multistep LR requires multiplicative factor and milestones.
if _C.OPTIM.LR_DECAY_NAME == "multistep":
kwargs.update(gamma=_C.OPTIM.LR_GAMMA, milestones=_C.OPTIM.LR_STEPS)
return cls.create(_C.OPTIM.LR_DECAY_NAME, optimizer, **kwargs)
|