Spaces:
Runtime error
Runtime error
import streamlit as st | |
from huggingface_hub import hf_hub_url, cached_download | |
from PIL import Image | |
import os | |
import json | |
import glob | |
import random | |
from typing import Any, Dict, List | |
import torch | |
import torchvision | |
import wordsegment as ws | |
from virtex.config import Config | |
from virtex.factories import TokenizerFactory, PretrainingModelFactory, ImageTransformsFactory | |
from virtex.utils.checkpointing import CheckpointManager | |
CONFIG_PATH = "config.yaml" | |
MODEL_PATH = "checkpoint_last5.pth" | |
VALID_SUBREDDITS_PATH = "subreddit_list.json" | |
SAMPLES_PATH = "./samples/*.jpg" | |
class ImageLoader(): | |
def __init__(self): | |
self.transformer = torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Resize(256), | |
torchvision.transforms.CenterCrop(224), | |
torchvision.transforms.Normalize((.485, .456, .406), (.229, .224, .225))]) | |
self.show_size=500 | |
def load(self, im_path): | |
im = torch.FloatTensor(self.transformer(Image.open(im_path))).unsqueeze(0) | |
return {"image": im} | |
def raw_load(self, im_path): | |
im = torch.FloatTensor(Image.open(im_path)) | |
return {"image": im} | |
def transform(self, image): | |
im = torch.FloatTensor(self.transformer(image)).unsqueeze(0) | |
return {"image": im} | |
def text_transform(self, text): | |
# at present just lowercasing: | |
return text.lower() | |
def show_resize(self, image): | |
# ugh we need to do this manually cuz this is pytorch==0.8 not 1.9 lol | |
image = torchvision.transforms.functional.to_tensor(image) | |
x,y = image.shape[-2:] | |
ratio = float(self.show_size/max((x,y))) | |
image = torchvision.transforms.functional.resize(image, [int(x * ratio), int(y * ratio)]) | |
return torchvision.transforms.functional.to_pil_image(image) | |
class VirTexModel(): | |
def __init__(self): | |
self.config = Config(CONFIG_PATH) | |
ws.load() | |
self.device = 'cpu' | |
self.tokenizer = TokenizerFactory.from_config(self.config) | |
self.model = PretrainingModelFactory.from_config(self.config).to(self.device) | |
CheckpointManager(model=self.model).load("./checkpoint_last5.pth") | |
self.model.eval() | |
self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH)) | |
def predict(self, image_dict, sub_prompt = None, prompt = ""): | |
if sub_prompt is None: | |
subreddit_tokens = torch.tensor([self.model.sos_index], device=self.device).long() | |
else: | |
subreddit_tokens = " ".join(ws.segment(ws.clean(sub_prompt))) | |
subreddit_tokens = ( | |
[self.model.sos_index] + | |
self.tokenizer.encode(subreddit_tokens) + | |
[self.tokenizer.token_to_id("[SEP]")] | |
) | |
subreddit_tokens = torch.tensor(subreddit_tokens, device=self.device).long() | |
if prompt is not "": | |
# at present prompts without subreddits will break without this change | |
# TODO FIX | |
if True: #sub_prompt is not None: | |
cap_tokens = self.tokenizer.encode(prompt) | |
cap_tokens = torch.tensor(cap_tokens, device=self.device).long() | |
subreddit_tokens = torch.cat([subreddit_tokens, cap_tokens]) | |
predictions: List[Dict[str, Any]] = [] | |
is_valid_subreddit = False | |
subreddit, rest_of_caption = "", "" | |
image_dict["decode_prompt"] = subreddit_tokens | |
while not is_valid_subreddit: | |
with torch.no_grad(): | |
caption = self.model(image_dict)["predictions"][0].tolist() | |
if self.tokenizer.token_to_id("[SEP]") in caption: | |
sep_index = caption.index(self.tokenizer.token_to_id("[SEP]")) | |
caption[sep_index] = self.tokenizer.token_to_id("://") | |
caption = self.tokenizer.decode(caption) | |
if "://" in caption: | |
subreddit, rest_of_caption = caption.split("://") | |
subreddit = "".join(subreddit.split()) | |
rest_of_caption = rest_of_caption.strip() | |
else: | |
subreddit, rest_of_caption = "", caption | |
is_valid_subreddit = True if sub_prompt is not None or prompt is not None else subreddit in self.valid_subs | |
return subreddit, rest_of_caption | |
def download_files(): | |
#download model files | |
download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH] | |
for f in download_files: | |
fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f)) | |
os.system(f"cp {fp} ./{f}") | |
def get_samples(): | |
return glob.glob(SAMPLES_PATH) | |
def get_rand_img(samples): | |
i = random.randint(0,len(samples)-1) | |
return i, samples[i] | |
def create_objects(): | |
sample_images = get_samples() | |
virtexModel = VirTexModel() | |
imageLoader = ImageLoader() | |
valid_subs = json.load(open(VALID_SUBREDDITS_PATH)) | |
valid_subs.insert(0, None) | |
return virtexModel, imageLoader, sample_images, valid_subs | |