virtex-redcaps / app.py
zamborg's picture
updated things
5281471
raw
history blame
1.68 kB
import streamlit as st
import io
# x = st.slider("Select a value")
# st.write(x, "squared is", x * x)
st.title("Image Captioning Demo from Redcaps")
st.sidebar.markdown(
"""
Image Captioning Model from VirTex trained on Redcaps
"""
)
with st.spinner("Loading Model"):
from model import *
sample_images = glob.glob("./samples/*.jpg")
download_files()
virtexModel = VirTexModel()
imageLoader = ImageLoader()
random_image = get_rand_img(sample_images)
st.sidebar.title("Select a sample image")
sample_image = st.sidebar.selectbox(
"",
sample_images
)
if st.sidebar.button("Random Sample Image"):
random_image = get_rand_img(sample_images)
sample_image = None
uploaded_image = None
with st.sidebar.form("file-uploader-form", clear_on_submit=True):
uploaded_file = st.file_uploader("Choose a file")
submitted = st.form_submit_button("Submit")
if uploaded_file is not None and submitted:
uploaded_image = Image.open(io.BytesIO(uploaded_file.get_values()))
if uploaded_image is None and submitted:
st.write("Please select a file to upload")
else:
image_file = sample_image if sample_image is not None else random_image
image = uploaded_image if uploaded_image is not None else Image.open()
image_dict = imageLoader.transform(image)
show.image(st.image(image_dict["image"]), "Target Image")
with st.spinner("Generating Caption"):
subreddit, caption = virtexModel.predict(image_dict)
st.header("Predicted Caption:\n\n")
st.subheader(f"Subreddit: {subreddit}\n")
st.subheader(f"Caption: {caption}\n")
image.close()