zamborg's picture
added datasets and virtex
a5f8a35
raw
history blame
3.18 kB
import argparse
import json
import os
import tempfile
import unicodedata
from typing import List
import sentencepiece as sp
# fmt: off
parser = argparse.ArgumentParser(
description="""Build a vocabulary out of captions corpus. This vocabulary
would be a file which our tokenizer can understand.
"""
)
parser.add_argument(
"-c", "--captions", default="datasets/coco/annotations/captions_train2017.json",
help="Path to caption annotations file in COCO format.",
)
parser.add_argument(
"-s", "--vocab-size", type=int, default=10000,
help="Total desired size of our vocabulary.",
)
parser.add_argument(
"-o", "--output-prefix", default="datasets/vocab/coco_10k",
help="Prefix of the files to be saved. Two files will be saved: "
"[prefix].model and [prefix].vocab",
)
parser.add_argument(
"-l", "--do-lower-case", action="store_true",
help="Whether to lower case the captions before forming vocabulary.",
)
parser.add_argument(
"-a", "--keep-accents", action="store_true",
help="Whether to keep accents before forming vocabulary (dropped by default).",
)
# fmt: on
def _read_captions(annotations_path: str) -> List[str]:
r"""
Given a path to annotation file, read it and return a list of captions.
These are not processed by any means, returned from the file as-is.
Parameters
----------
annotations_path: str
Path to an annotations file containing captions.
Returns
-------
List[str]
List of captions from this annotation file.
"""
_annotations = json.load(open(annotations_path))
captions: List[str] = []
for ann in _annotations["annotations"]:
captions.append(ann["caption"])
return captions
if __name__ == "__main__":
_A = parser.parse_args()
captions: List[str] = _read_captions(_A.captions)
# Lower case the captions and remove accents according to arguments.
for i, caption in enumerate(captions):
caption = caption.lower() if _A.do_lower_case else caption
if not _A.keep_accents:
caption = unicodedata.normalize("NFKD", caption)
caption = "".join(
[chr for chr in caption if not unicodedata.combining(chr)]
)
captions[i] = caption
# Create a temporary directory and dump the captions corpus as a text file
# with one caption per line. That's how sentencepiece wants its input.
tmpdir_path = tempfile.mkdtemp()
with open(os.path.join(tmpdir_path, "captions.txt"), "w") as captions_file:
for caption in captions:
captions_file.write(caption + "\n")
# Padding/out-of-vocab token will be "<unk>" and ID 0 by default.
# Add [SOS],[EOS] and [MASK] tokens. [MASK] will not be used during
# captioning, but good to have to reuse vocabulary across pretext tasks.
sp.SentencePieceTrainer.train(
f" --input={os.path.join(tmpdir_path, 'captions.txt')}"
f" --vocab_size={_A.vocab_size}"
f" --model_prefix={_A.output_prefix}"
" --model_type=bpe --character_coverage=1.0"
" --bos_id=-1 --eos_id=-1"
" --control_symbols=[SOS],[EOS],[MASK]"
)