Spaces:
Runtime error
Runtime error
import argparse | |
import glob | |
import json | |
import os | |
import re | |
import tempfile | |
from functools import lru_cache | |
from typing import List | |
import ftfy | |
import sentencepiece as sp | |
import wordsegment as ws | |
from tqdm import tqdm | |
ws.load() | |
# fmt: off | |
parser = argparse.ArgumentParser( | |
description="""Build a vocabulary out of captions corpus. This vocabulary | |
would be a file which our tokenizer can understand. | |
""" | |
) | |
parser.add_argument( | |
"-f", "--files", nargs="+", default="datasets/redcaps/annotations/*.json", | |
help="Path(s) to SBU, Conceptual, or RedCaps annotation files.", | |
) | |
parser.add_argument( | |
"-s", "--vocab-size", type=int, default=32000, | |
help="Total desired size of our vocabulary.", | |
) | |
parser.add_argument( | |
"-o", "--output-prefix", default="datasets/vocab/redcaps_32k", | |
help="Prefix of the files to be saved. Two files will be saved: " | |
"[prefix].model and [prefix].vocab", | |
) | |
# fmt: on | |
def read_captions_from_file(annotations_path: str) -> List[str]: | |
r""" | |
Given a path to annotation file, read it and return a list of captions. | |
Parameters | |
---------- | |
annotations_path: str | |
Path to an annotations file containing captions. | |
Returns | |
------- | |
List[str] | |
List of captions from this annotation file. | |
""" | |
_annotations = json.load(open(annotations_path)) | |
captions: List[str] = [] | |
for ann in tqdm(_annotations["annotations"], desc=annotations_path): | |
# This field only exists in RedCaps. Perform word segmentation on the | |
# subreddit name to add appropriae whitespaces. | |
if "subreddit" in ann: | |
subreddit_seg = _segment_subreddit(ann["subreddit"].lower()) | |
caption = f"{subreddit_seg} {ann['caption']}" | |
else: | |
caption = ann["caption"] | |
captions.append(caption.lower()) | |
return captions | |
def _segment_subreddit(subreddit): | |
return " ".join(ws.segment(ws.clean(subreddit))) | |
if __name__ == "__main__": | |
_A = parser.parse_args() | |
all_filepaths: List[str] = [] | |
for f in _A.files: | |
all_filepaths.extend(glob.glob(f)) | |
captions: List[str] = [] | |
for path in tqdm(all_filepaths, desc="Reading captions"): | |
captions.extend(read_captions_from_file(path)) | |
# Create a temporary directory and dump the captions corpus as a text file | |
# with one caption per line. That's how sentencepiece wants its input. | |
tmpdir_path = tempfile.mkdtemp() | |
with open(os.path.join(tmpdir_path, "captions.txt"), "w") as captions_file: | |
for caption in captions: | |
captions_file.write(caption + "\n") | |
# Padding/out-of-vocab token will be "<unk>" and ID 0 by default. | |
# Add [SOS],[EOS] and [SEP] tokens. [SEP] will not be used during | |
# captioning, but good to have to reuse vocabulary across pretext tasks. | |
sp.SentencePieceTrainer.train( | |
f" --input={os.path.join(tmpdir_path, 'captions.txt')}" | |
f" --vocab_size={_A.vocab_size}" | |
f" --model_prefix={_A.output_prefix}" | |
" --model_type=bpe --character_coverage=1.0" | |
" --bos_id=-1 --eos_id=-1" | |
" --control_symbols=[SOS],[EOS],[SEP]" | |
" --user_defined_symbols=<usr>" | |
) | |